Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 63-79    DOI: 10.3866/PKU.WHXB201608233
REVIEW     
Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins
Jing-Fei HOU,Yan-Lian YANG*(),Chen WANG*()
Download: HTML     PDF(2941KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanomaterials have excellent properties and have been used widely in chemical engineering, electronics, mechanics, environment, energy, aerospace, and many other fields in recent years. Besides, nanomaterials have attracted increasing attention in the biomedical field. The interactions between nanomaterials and protein molecules are not only significant to the basic science of the biomedical field, but also crucial for the evaluation of biomedical applications and biosafety of nanomaterials. The interfacial interactions between proteins and nanomaterials could induce a series of changes to the structures and functions of proteins, such as the transformation of protein conformations, and the modulation of aggregation states, which would influence the functions of the protein molecules. Interfacial interactions can also influence the physicochemical features of nanomaterials, including morphology, size, hydrophilicity/hydrophobicity, and surface charge density. In this review we explained the molecular level mechanisms for the interactions between nanomaterials and proteins at the interface based on the detection technologies, and discussed the changes in physical and chemical features, structures, and functions. We envision this review could be helpful for the deeper understanding of the complicated interactions between nanomaterials and proteins, and could be beneficial for promoting the healthy, safe, and sustainable development and application of nanomaterials in the biological and medical fields.



Key wordsNanomaterial      Protein      Interface      Interaction      Biological and medical application      Molecular mechanism     
Received: 01 June 2016      Published: 23 August 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21273051)
Corresponding Authors: Yan-Lian YANG,Chen WANG     E-mail: yangyl@nanoctr.cn;wangch@nanoctr.cn
Cite this article:

Jing-Fei HOU,Yan-Lian YANG,Chen WANG. Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins. Acta Phys. -Chim. Sin., 2017, 33(1): 63-79.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608233     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/63

Type Strength Range/nm* Specificity Amount Main factor
hydrophobic interaction strong 0-10 partial some hydrophobic surface
electrostatic interaction moderate 0-10 no many charge, ion strength
π-π stacking moderate 0-5 yes a few aromatic ring
H-bonds strong < 0 partial many hydrogen donor and acceptor
van der Waals′ force weak 0-10 no many interface complementarity
salt bridge strong < 1 yes a few multiple recognition
Table 1 Comparison of different interactions between proteins and nanomaterials23
Fig 1 Dynamics simulation of the interaction of the graphyne sheet with the protein dimer (A) top view of the initial simulation system; (B) side view of the initial simulation system. Two protein monomers are colored in green and blue respectively. The graphyne nanosheet was placed near the dimer interface. (C) dynamic of the insertion process of the graphyne into the dimer. (a) time-dependent contact areas of the dimer during the process; (b-f) snapshots of the insertion process of the graphyne into the dimer from the fourth simulation trajectory; (b, g-k) snapshots of the insertion process of the graphyne into the dimer from the first simulation trajectory. color online (Adapted from Ref.37, Copyright 2016, American Chemical Society).
Fig 2 Inhibition of fullerene C60 and its derivatives for the Aβ peptide fibrosis top six most-populated clusters and their percentage of occupancy for (A) Aβ + C60; (B) Aβ + 3C60; (C) Aβ + C180; (D) red ones for parallel-aligned hexagons-Phe interaction and orange ones for pentagons-Phe interaction, the distances between fullerenes and the aromatic ring of amino acids are reported; (E) AFM images of Aβ + C60 with different percentage at four incubation times. color online (Adapted from Ref.52, Copyright 2014, Royal Society of Chemistry).
Fig 3 Effects of GO binding on peptide hIAPP (A) DMD structure simulation of hIAPP; (B) CD and DMD estimates of secondary structure contents of hIAPP with or without GO; (C) The hIAPP-GO binding structure, in which the aromatic residues that form π-π stacking with GO carbon atoms are highlighted with stick representation; (D) The binding is strengthened by hydrogen bonds, which is highlighted with pink dotted lines (Adapted from Ref.61, Copyright 2016, Royal Society of Chemistry).
Fig 4 isperse and selective binding of ZnO and CuO nanoparticles in the buffer (A) TEM image of ZnO NPs dispersed in medium supplemented with (a) and without (b) fetal bovine serum; (B) scattering plot of bound elements by ZnO and CuO NPs from the DMEM or DMEM with FBS, showing different binding affinities for various components of the DMEM or DMEM with FBS by the NPs; (C) various zeta potentials of ZnO and CuO NPs dispersed in different solvents. DMEM: dulbecco′s modified eagle medium, FBS: fetal bovine serus (Adapted from Ref.74, Copyright 2012, Nature).
Fig 5 Characterization of the PEGylation on GO surface, and the effects on GO binding serum proteins (A) characterization of zeta potential of GO and nGO-PEG; (B) AFM images of GO and nGO-PEG; (C) photos of GO and nGO-PEG at the same concentration; (D) Biotin-streptavidin pull-down assay. The nGO-PEG was biotinylated at PEG terminal amines, and pulled down after incubation for 1 h. Bound proteins were eluted and separated by 12% SDS-PAGE and analyzed by silver staining or LC-MS/MS identification. (E) silver staining of serum proteins associated with different GO nanosheet (Adapted from Ref.76, Copyright 2013, American Chemical Society).
Fig 6 Assembly process of peptide GrBP5 on HOPG surface (A) chemical properties and three distinct domains of GrBP5 sequence; (B) AFM image of six-fold symmetrical ordered nanostructure of GrBP5 on the graphite; (C) the FFT of the AFM image; (D) the assembly mechanism where peptides undergo binding and diffusion via domain-Ⅲ, forming rough AP, and then rearranging Domain-Ⅰ and Domain-Ⅱ folding into OP; (E) schematic of peptides assembly process on graphite, which including aggregation and ordering (Adapted from Ref.14, Copyright 2012, American Chemical Society).
Fig 7 Conformation changes of peptides induced by nanomaterials (A) STM image of peptide DELERRIRELEARIK assembly on HOPG surface; (B) CD spectra of peptide DELERRIRELEARIK with (b) and without (a) graphite particles. The presence of the peak at 213 nm is indicative of the β-sheet secondary structure induced by graphite particles. The peptide remains β-sheet secondary structure after centrifugation (c); (C) schematic model of the structural conformation of the peptide DELERRIRELEARIK; (D) STM image of peptide Vpr13-33 assembled with 4Bpy on HOPG; (E) CD spectra of Vpr13-33 with (b) and without (a) graphene oxide. The presence of the peaks at 205 and 213 nm indicates the β-sheet and β-turn induced by graphene oxide, and it remains stable after centrifugation (c); (F) the schematic illustration of mechanism how GO reduces the Vpr13-33-induced cytotoxicity (Adapted from Refs.83, 86, Copyright 2013, Elsevier; Copyright 2009, American chemical Society).
Fig 8 STM images of peptides assemblies on HOPG surface and the molecular simulation results (A) STM images of the peptide R4G4H8, and brightness contrast; (B) the relative heights of four regions (F4, R4, G4, and H8), normalized with H8 as standard reference; (C) snapshots at t=0-100 ns, with R4G4H4 cartoon representation; (D) top view and side view of R4G4H4 assembly on graphite surface (Adapted from Ref.94, Copyright 2013, American Chemical Society).
Fig 9 STM images of peptides assemblies on HOPG surface and the molecular simulation results (A) STM images of the peptide R4G4H8, and brightness contrast; (B) the relative heights of four regions (F4, R4, G4, and H8), normalized with H8 as standard reference; (C) snapshots at t=0-100 ns, with R4G4H4 cartoon representation; (D) top view and side view of R4G4H4 assembly on graphite surface (Adapted from Ref.94, Copyright 2013, American Chemical Society).
Fig 10 Multi-level heterogeneous ordered assemblies and the modifications of nanomaterials (A) Proteins are used as linkers (ⅰ) for nanoparticle immobilization, functional molecules (ⅱ) on substrates; and heterobifunctional linkers (ⅲ) for linking nanoinorganic units; (B) schematic illustration of assembly of nanogold particles on protein coated flat polystyrene surface; (C) ordered assemblies of heterogeneous nanomaterials by linking to specific proteins on ordered substrates (Adapted from Ref.12, Copyright 2003, Nature).
1 Mai L. Q. ; Yang S. ; Han C. H. ; Xu L. ; Xu X. ; Pi Y. Q. Acta Phys. -Chim. Sin 2011, 27, 1551.
1 麦立强; 杨霜; 韩春华; 徐林; 许絮; 皮玉强. 物理化学学报, 2011, 27, 1551.
2 Qiu J. S. ; An Y. L. ; Li Q. X. ; Zhou Y. ; Yang Q. Acta Phys. -Chim. Sin 2004, 20, 260.
2 邱介山; 安玉良; 李杞秀; 周颖; 杨青. 物理化学学报, 2004, 20, 260.
3 Johnston H. ; Brown D. ; Kermanizadeh A. ; Gubbins E. ; Stone V. J. Control. Release 2012, 164, 307.
4 Wu Y. L. ; Putcha N. ; Ng K.W. ; Leong D. T. ; Lim C. T. ; Joachim Loo S. C. ; Chen X. Acc. Chem. Res 2013, 46, 782.
5 Tenzer S. ; Docter D. ; Rosfa S. ; Wlodarski A. ; Kuharev J. ; Rekik A. ; Knauer S. K. ; Bantz C. ; Nawroth T. ; Bier C. ; Sirirattanapan J. ; Mann W. ; Treuel L. ; Zellner R. ; Maskos M. ; Schild H. ; Stauber R. H. ACS Nano 2011, 5, 7155.
6 Hong H. ; Gao T. ; Cai W. Nano Today 2009, 4, 252.
7 Algar W. R. ; Krull U. J. J. Colloid Interface Sci 2011, 359, 148.
8 Zhang X. ; Yang R. ; Wang C. ; Heng C. L. Acta Phys. -Chim. Sin 2012, 28, 1520.
8 张晓; 杨蓉; 王琛; 衡成林. 物理化学学报, 2012, 28, 1520.
9 Wu W. ; Wieckowski S. ; Pastorin G. ; Benincasa M. ; Klumpp C. ; Briand J. P. ; Gennaro R. ; Prato M. ; Bianco A. Angew. Chem. Int. Edit 2005, 44, 6358.
10 Peer D. ; Karp J. M. ; Hong S. ; Farokhzad O. C. ; Margalit R. ; Langer R. Nat. Nanotechnol 2007, 2, 751.
11 So C. R. ; Kulp J. L. ; Oren E. E. ; Zareie H. ; Tamerler C. ; Evans J. S. ; Sarikaya M. ACS Nano 2009, 3, 1525.
12 Sarikaya M. ; Tamerler C. ; Jen A. K. J. ; Schulten K. ; Baneyx F. Nat. Mater 2003, 2, 577.
13 Sarikaya M. Proc. Natl. Acad. Sci. U. S. A 1999, 96, 14183.
14 So C. R. ; Hayamizu Y. ; Yazici H. ; Gresswell C. ; Khatayevich D. ; Tamerler C. ; Sarikaya M. ACS Nano 2012, 6, 1648.
15 So C. R. ; Tamerler C. ; Sarikaya M. Angew. Chem. Int. Edit 2009, 48, 5174.
16 Weissbuch I. ; Addadi L. ; Lahav M. ; Leiserowitz L. Science 1991, 253, 637.
17 Mann S. Nature 1988, 332, 119.
18 Basalyga D. M. ; Latour R.A. Jr. J. Biomed. Mater. Res. A 2003, 64A, 120.
19 Latour R. A.Jr. ; Rini C. J. J. Biomed. Mater. Res 2001, 60, 564.
20 Bos M. A. ; Shervani Z. ; Anusiem A. C. I. ; Giesbers M. ; Norde W. ; Kleijin J. M. Colloid Surface B 1993, 3, 91.
21 Elwing H. ; Nilsson B. ; Svensson K. E. ; Askendahl A. ; Nilsson U. R. ; Lundstrom I. J. Colloid Interface Sci 1987, 125, 139.
22 Xu Z. Z. ; Yan X. M. ; Zhang J. ; Wang Y. Q. ; Tang S. C. ; Zhong R. G. Prog. Chem 2013, 25, 1383.
22 许志珍; 晏晓敏; 张杰; 王煜倩; 唐仕川; 钟儒刚. 化学进展, 2013, 25, 1383.
23 Yang S. T. ; Liu Y. ; Wang Y.W. ; Cao A. Small 2013, 9, 1635.
24 Lynch I. ; Cedervall T. ; Lundqvist M. ; Cabaleiro-Lago C. ; Linse S. ; Dawson K. A. Adv. Colloid Interface Sci 2007, 134, 167.
25 Chen Q. ; Xu S. ; Liu Q. ; Masliyah J. ; Xu Z. Adv. Colloid Interface Sci 2016, 233, 94.
26 Lindman S. ; Lynch I. ; Thulin E. ; Nilsson H. ; Dawson K. A. ; Linse S. Nano Lett 2007, 7, 914.
27 Ma X. ; Liu L. ; Mao X. ; Niu L. ; Deng K. ; Wu W. ; Li Y. ; Yang Y. ; Wang C. J. Mol. Biol 2009, 388, 894.
28 Mao X. ; Ma X. ; Liu L. ; Niu L. ; Yang Y. ; Wang C. J. Struct. Biol 2009, 167, 209.
29 Gebauer J. S. ; Malissek M. ; Simon S. ; Knauer S. K. ; Maskos M. ; Stauber R. H. ; Peukert W. ; Treuel L. Langmuir 2012, 28, 9673.
30 Boyer C. ; Huang X. ; Whittaker M. R. ; Bulmus V. ; Davis T.P. Soft Matter 2011, 7, 1599.
31 Peiris R. H. ; Ignagni N. ; Budman H. ; Moresoli C. ; Legge R. Talanta 2012, 99, 457.
32 Gagner J. E. ; Qian X. ; Lopez M. M. ; Dordick J. S. ; Siegel R.W. Biomaterial 2012, 33, 8503.
33 Liu L. ; Busuttil K. ; Zhang S. ; Yang Y. ; Wang C. ; Besenbacher F. ; Dong M. Phys. Chem. Chem. Phys 2011, 13, 17435.
34 Liedberg B. ; Tengvall P. Langmuir 1995, 11, 3821.
35 Zhong J. ; Wang J. ; Zhou J. G. ; Mao B. H. ; Liu C. H. ; Liu H. B. ; Li Y. L. ; Sham T. K. ; Sun X. H. ; Wang S. D. J. Phys. Chem. C 2013, 117, 5931.
36 Yang Y. ; Xu X. Comput. Mater. Sci 2012, 61, 83.
37 Luan B. ; Huynh T. ; Zhou R. J. Phys. Chem. B 2016, 120, 2124.
38 Zuo G. ; Huang Q. ; Wei G. ; Zhou R. ; Fang H. ACS Nano 2010, 4, 7508.
39 Zuo G. ; Zhou X. ; Huang Q. ; Fang H. ; Zhou R. J. Phys. Chem. C 2011, 115, 23323.
40 Webb K. ; Hlady V. ; Tresco P. A. J. Biomed. Mater. Res 1998, 41, 422.
41 Sander M. ; Madliger M. ; Schwarzenbach R. P. Environ. Sci. Technol 2010, 44, 8870.
42 Madliger M. ; Sander M. ; Schwarzenbach R. P. Environ. Sci. Technol 2010, 44, 8877.
43 Whaley S. R. ; English D. S. ; Hu E. L. ; Barbara P. F. ; Belcher A. M. Nature 2000, 405, 665.
44 Sarikaya M. ; Tamerler C. ; Schwartz D. T. ; Baneyx F. Annu. Rev. Mater. Res 2004, 34, 373.
45 Brown S. ; Sarikaya M. ; Johnson E. J. Mol. Biol 2000, 299, 725.
46 Brown S. Nat. Biotechnol 1997, 15, 269.
47 Kulp J. L. ; Sarikaya M. ; Evans J. S. J. Mater. Chem 2004, 14, 2325.
48 Collins P. G. ; Arnold M. S. ; Avouris P. Science 2001, 292, 706.
49 Wang S. ; Humphreys E. S. ; Chung S. Y. ; Delduco D. F. ; Lustig S. R. ; Wang H. ; Parker K. N. ; Rizzo N.W. ; Subramoney S. ; Chiang Y. M. ; Jagota A. Nat. Mater 2003, 2, 196.
50 Ge C. ; Du J. ; Zhao L. ; Wang L. ; Liu Y. ; Li D. ; Yang Y. ; Zhou R. ; Zhao Y. ; Chai Z. Chen C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16968.
51 Kim J. E. ; Lee M. Biochem. Biophys. Res. Commun 2003, 303, 576.
52 Xie L. ; Luo Y. ; Lin D. ; Xi W. ; Yang X. ; Wei G. Nanoscale 2014, 6, 9752.
53 Noon W. H. ; Kong Y. ; Ma J. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 6466.
54 DuBay K. F. ; Pawar A. P. ; Chiti F. ; Zurdo J. ; Dobson C. M. ; Vendruscolo M. J. Mol. Biol 2004, 341, 1317.
55 Lopes P. ; Xu M. ; Zhang M. ; Zhou T. ; Yang Y. ; Wang C. ; Elena E. F. Nanoscale 2014, 6, 7853.
56 Saifuddin N. ; Raziah A. Z. ; Junizah A.R. J. Chem 2013, 2013, 1.
57 Azevedo R. M. ; Costa J. B. ; Serp P. ; Loureiro J. M. ; Faria J.L. ; Silva C. G. ; Tavares A. P. J. Chem. Technol. Biotech 2015, 90, 1570.
58 Dreyer D. R. ; Park S. ; Bielawski C.W. ; Ruoff R. S. Chem. Soc. Rev 2010, 39, 228.
59 Zhang M. ; Yin B. C. ; Wang X. F. ; Ye B. C. Chem. Commun 2011, 47, 2399.
60 Loh K. P. ; Bao Q. ; EdaM G. ; Chhowalla M. Nat. Chem 2010, 2, 1015.
61 Praveen N. G. ; Gurzov E. N. ; Chen P. ; Pilkington E. H. ; Stanley W. J. ; Litwak S. A. ; Davis T. P. ; Ke P. C. ; Ding F. Phys. Chem. Chem. Phys 2016, 18, 94.
62 Docter D. ; Westmeier D. ; Markiewicz M. ; Stolte S. ; Knauer S. ; Stauber R. H. Chem. Soc. Rev 2015, 44, 6094.
63 Zhu M. ; Nie G. ; Meng H. ; Xia T. ; Nel A. ; Zhao Y. Acc. Chem. Res 2013, 46, 622.
64 O'Connell D. J. ; Bombelli F. B. ; Pitek A. S. ; Monopoli M.P. ; Cahill D. J. ; Dawson K. A. Nanoscale 2015, 7, 15268.
65 Zhang X. D. ; Wu D. ; Shen X. ; Liu P. X. ; Fan F. Y. ; Fan S. J. Biomaterials 2012, 33, 4628.
66 Wang J. ; Cao Y. ; Li Q. ; Liu L. ; Dong M. Chem. -Eur. J 2015, 21, 9632.
67 Walkey C. D. ; Chan W. C.W. Chem. Soc. Rev 2012, 41, 2780.
68 Rodriguez-Lorenzo L. ; Krpetic Z. ; Barbosa S. ; Alvarez-Puebla R. A. ; Liz-Marzan L. M. ; Prior I. A. ; Brust M. Integr. Biol 2011, 3, 922.
69 Cedervall T. ; Lynch I. ; Lindman S. ; Berggard T. ; Thulin E. ; Nilsson H. ; Dawson K. A. ; Linse S. Proc. Natl. Acad Sci. U. S. A. 2007, 104, 2050.
70 Meng H. ; Liong M. ; Xia T. ; Li Z. ; Ji Z. ; Zink J. I. ; Nel A.E. ACS Nano 2010, 4, 4539.
71 Qiu Y. ; Liu Y. ; Wang L. ; Xu L. ; Bai R. ; Ji Y. ; Wu X. ; Zhao Y. ; Li Y. ; Chen C. Biomaterials 2010, 31, 7606.
72 Xia T. ; Kovochich M. ; Liong M. ; Meng H. ; Kabehie S. ; George S. ; Zink J. I. ; Nel A. E. ACS Nano 2009, 3, 3273.
73 Moros M. ; Pelaz B. ; Lopez-Larrubia P. ; Garcia-Martin M.L. ; Grazu V. ; de la Fuente J. M. Nanoscale 2010, 2, 1746.
74 Xu M. ; Li J. ; Lwai H. ; Mei Q. ; Fujita D. ; Su H. ; Chen H. ; Hanagata N. Sci. Rep 2012, 2, 406.
75 Lunqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T. & Dawson, K. A. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14265.doi:10.1073/pnas.0805135105
76 Tan X. ; Feng L. ; Zhang J. ; Yang K. ; Zhang S. ; Liu Z. ; Peng R. ACS Appl. Mater. Interfaces 2013, 5, 1370.
77 Sethuraman A. ; Belfort G. Biophys. J 2005, 88, 1322.
78 Castells V. ; Yang S. ; Van Tassel P. R. Phys. Rev. E 2002, 64, 031912.
79 Kafer D. ; Witte G. ; Cyganik P. ; Terfort A. ; Woll C. A. J. Am. Chem. Soc 2006, 128, 1723.
80 Tamerler C. ; Oren E. E. ; Duman M. ; Venkatasubramanian E. ; Sarikaya M. Langmuir 2006, 22, 7712.
81 Schreiber F. Prog. Surf. Sci 2000, 65, 151.
82 Pelaz B. ; Charron G. ; Pfeiffer C. ; Zhao Y. ; de la Fuente J. ; Liang X. ; Parak W. ; del Pino P. Small 2013, 9, 1573.
83 Zhang M. ; Mao X. ; Wang C. ; Zeng W. ; Zhang C. ; Li Z. ; Fang Y. ; Yang Y. ; Liang W. ; Wang C. Biomaterials 2013, 34, 1383.
84 Kelly J.W. Curr. Opin. Struct. Biol 1996, 6, 11.
85 Burkhard P. ; Meier M. ; Lustig A. Protein Sci 2000, 9, 2294.
86 Mao X. ; Wang Y. ; Liu L. ; Niu L. ; Yang Y. ; Wang C. Langmuir 2009, 25, 8849.
87 Lewis P. F. ; Emerman M. J. Virol 1994, 68, 510.
88 Nie Z. ; Bergeron D. ; Subbramanian R. A. ; Yao X. J. ; Checroune F. ; Rougeau N. ; Cohen E. A. J. Virol 1998, 72, 4104.
89 Emerman M. Curr. Biol 1996, 6, 1096.
90 Rogel M. E. ; Wu L. I. ; Emerman M. J. Virol 1995, 69, 882.
91 Romani B. ; Engelbrecht S. J. Gen. Virol 2009, 90, 1795.
92 Engler A. ; Stangler T. ; Willbold D. Eur. J. Biochem 2001, 268, 389.
93 Wecker K. ; Roques B. P. Eur. J. Biochem 1999, 266, 359.
94 Mao X. ; Guo Y. ; Luo Y. ; Niu L. ; Liu L. ; Ma X. ; Wang H. ; Yang Y. ; Wei G. ; Wang C. J. Am. Chem. Soc 2013, 135, 2181.
95 Xie H. ; Becraft E. J. ; Baughman R. H. ; Dalton A. B. ; Dieckmann G. R. J. Pept. Sci 2008, 14, 139.
96 Tomasio S. M. ; Walsh T. R. J. Phys. Chem. C 2009, 113, 8778.
97 Mao X. B. ; Wang C. X. ; Wu X. K. ; Ma X. J. ; Liu L. ; Zhang L. ; Niu L. ; Guo Y. Y. ; Li D. H. ; Yang Y. L. ; Wang C. Proc. Natl. Acad. Sci. U. S. A 2011, 108, 19605.
98 Gagner J. E. ; Shrivastava S. ; Qian X. ; Dordick J. S. ; Siegel R.W. J. Phys. Chem. Lett 2012, 3, 3149.
99 Shrivastava S. ; McCallum S. A. ; Nuffer J. H% Qian X. ; Siegel R.W. ; Dordick J. S. Langmuir 2013, 29, 10841.
100 Deshapriya I. K. ; Kumar C. V. Langmuir 2013, 29, 14001.
101 Goy-López S. ; Juárez J. ; Alatorre-Meda M. ; Casals E. ; Puntes V. F. ; Taboada P. ; Mosquera V. Langmuir 2012, 28, 9113.
102 Morgner F. ; Stufler S. ; Gei?ler D. ; Medintz I. L. ; Algar W.R. ; Susumu K. ; Stewart M. H. ; Blanco-Canosa J. B. ; Dawson P. E. ; Hildebrandt N. Sensors 2011, 11, 9667.
103 Schoen A. P. ; Schoen D. T. ; Huggins K. N. L. ; Arunagirinathan M. A. ; Heilshorn S. C. J. Am. Chem. Soc 2011, 133, 18202.
104 Naik R. R. ; Brott L. L. ; Clarson S. J. ; Stone M. O. J. Nanosci. Nanotechnol 2002, 2, 95.
105 Oren E. E. ; Tamerler C. ; Sahin D. ; Hnilova M. ; Safak Seker U. O. ; Sarikaya M. ; Samudrala R. Bioinformatics 2007, 23, 2816.
106 Poghossian A. ; Cherstvy A. ; Ingebrandt S. ; Offenh?usser A. ; Sch?ning M. J. Sensor. Actuat. B-Chem 2005, 111-112, 470.
107 Gungormus M. ; Fong H. ; Kim W. ; Evans J. S. ; Tamerler C. ; Sarikaya M. Biomacromolecules 2008, 9, 966.
108 Tamerler C. ; Sarikaya M. ACS Nano 2009, 3, 1606.
109 Langer R. ; Peppas ; N A. AIChE J. 2003, 49, 2990.
[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Yanfang SHEN,Longjiu CHENG. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 830-836.
[3] Huarong BAI,Huanhuan FAN,Xiaobing ZHANG,Zhuo CHEN,Weihong TAN. Aptamer-Conjugated Nanomaterials for Specific Cancer Diagnosis and Targeted Therapy[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 348-360.
[4] Hengwei WANG,Junling LU. Atomic Layer Deposition: A Gas Phase Route to Bottom-up Precise Synthesis of Heterogeneous Catalyst[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1334-1357.
[5] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[6] Jianyong OUYANG. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1211-1220.
[7] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[8] Xiang-Feng HUANG,Wan-Qi LIU,Yong-Jiao XIONG,Kai-Ming PENG,Jia LIU,Li-Jun LU. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 49-64.
[9] Wei-Yun XU,Li-Li WANG,Yi-Ming MI,Xin-Xin ZHAO. Effect of Adsorption of Fe Atoms on the Structure and Properties of WS2 Monolayer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1765-1772.
[10] Fu-Feng LIU,Yu-Bo FAN,Zhen LIU,Shu BAI. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[11] Yu HE,Yi-Bo WANG. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1149-1159.
[12] . Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[13] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[14] Yi-Jian CHEN,Hong-Tao ZHOU,Ji-Jiang GE,Gui-Ying XU. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[15] Hao HUANG,Ran LONG,Yu-Jie XIONG. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 661-669.