Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 63-79    DOI: 10.3866/PKU.WHXB201608233
REVIEW     
Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins
HOU Jing-Fei, YANG Yan-Lian, WANG Chen
National Center for Nanoscience and Technology, CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Key Laboratory of Standardization and Measurement for Nanotechnology, CAS Center for Excellence in Nanoscience, Beijing 100190, P. R. China
Download:   PDF(2941KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Nanomaterials have excellent properties and have been used widely in chemical engineering, electronics, mechanics, environment, energy, aerospace, and many other fields in recent years. Besides, nanomaterials have attracted increasing attention in the biomedical field. The interactions between nanomaterials and protein molecules are not only significant to the basic science of the biomedical field, but also crucial for the evaluation of biomedical applications and biosafety of nanomaterials. The interfacial interactions between proteins and nanomaterials could induce a series of changes to the structures and functions of proteins, such as the transformation of protein conformations, and the modulation of aggregation states, which would influence the functions of the protein molecules. Interfacial interactions can also influence the physicochemical features of nanomaterials, including morphology, size, hydrophilicity/hydrophobicity, and surface charge density. In this review we explained the molecular level mechanisms for the interactions between nanomaterials and proteins at the interface based on the detection technologies, and discussed the changes in physical and chemical features, structures, and functions. We envision this review could be helpful for the deeper understanding of the complicated interactions between nanomaterials and proteins, and could be beneficial for promoting the healthy, safe, and sustainable development and application of nanomaterials in the biological and medical fields.



Key wordsNanomaterial      Protein      Interface      Interaction      Biological and medical application      Molecular mechanism     
Received: 01 June 2016      Published: 23 August 2016
MSC2000:  O647  
Fund:  

The project was supported by the National Natural Science Foundation of China (21273051).

Corresponding Authors: YANG Yan-Lian, WANG Chen     E-mail: yangyl@nanoctr.cn;wangch@nanoctr.cn
Cite this article:

HOU Jing-Fei, YANG Yan-Lian, WANG Chen. Molecular Mechanisms of Interface Interactions between Nanomaterials and Proteins. Acta Phys. -Chim. Sin., 2017, 33(1): 63-79.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201608233     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I1/63

(1) Mai, L. Q.; Yang, S.; Han, C. H.; Xu, L.; Xu, X.; Pi, Y. Q. Acta Phys. -Chim. Sin. 2011, 27, 1551. [麦立强, 杨霜, 韩春华, 徐林, 许絮, 皮玉强. 物理化学学报, 2011, 27, 1551.] doi: 10.3866/PKU.WHXB20110710
(2) Qiu, J. S.; An, Y. L.; Li, Q. X.; Zhou, Y.; Yang, Q. Acta Phys. -Chim. Sin. 2004, 20, 260. [邱介山, 安玉良, 李杞秀, 周颖, 杨青. 物理化学学报, 2004, 20, 260.] doi: 10.3866/PKU.WHXB20040309
(3) Johnston, H.; Brown, D.; Kermanizadeh, A.; Gubbins, E.; Stone, V. J. Control. Release 2012, 164, 307. doi: 10.1016/j.jconrel.2012.08.018
(4) Wu, Y. L.; Putcha, N.; Ng, K.W.; Leong, D. T.; Lim, C. T.; Joachim Loo, S. C.; Chen, X. Acc. Chem. Res. 2013, 46, 782. doi: 10.1021/ar300046u
(5) Tenzer, S.; Docter, D.; Rosfa, S.; Wlodarski, A.; Kuharev, J.; Rekik, A.; Knauer, S. K.; Bantz, C.; Nawroth, T.; Bier, C.; Sirirattanapan, J.; Mann, W.; Treuel, L.; Zellner, R.; Maskos, M.; Schild, H.; Stauber, R. H. ACS Nano 2011, 5, 7155. doi: 10.1021/nn201950e
(6) Hong, H.; Gao, T.; Cai, W. Nano Today 2009, 4, 252. doi: 10.1016/j.nantod.2009.04.002
(7) Algar, W. R.; Krull, U. J. J. Colloid Interface Sci. 2011, 359, 148. doi: 10.1016/j.jcis.2011.03.058
(8) Zhang, X.; Yang, R.; Wang, C.; Heng, C. L. Acta Phys. -Chim. Sin. 2012, 28, 1520. [张晓, 杨蓉, 王琛, 衡成林. 物理化学学报, 2012, 28, 1520.] doi: 10.3866/PKU.WHXB201203131
(9) Wu, W.; Wieckowski, S.; Pastorin, G.; Benincasa, M.; Klumpp, C.; Briand, J. P.; Gennaro, R.; Prato, M.; Bianco, A. Angew. Chem. Int. Edit. 2005, 44, 6358. doi: 10.1002/anie.200501613
(10) Peer, D.; Karp, J. M.; Hong, S.; Farokhzad, O. C.; Margalit, R.; Langer, R. Nat. Nanotechnol. 2007, 2, 751. doi: 10.1038/nnano.2007.387
(11) So, C. R.; Kulp, J. L.; Oren, E. E.; Zareie, H.; Tamerler, C.; Evans, J. S.; Sarikaya, M. ACS Nano 2009, 3, 1525. doi: 10.1021/nn900171s
(12) Sarikaya, M.; Tamerler, C.; Jen, A. K. J.; Schulten, K.; Baneyx, F. Nat. Mater. 2003, 2, 577. doi: 10.1038/nmat964
(13) Sarikaya, M. Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 14183. doi: 10.1073/pnas.96.25.14183
(14) So, C. R.; Hayamizu, Y.; Yazici, H.; Gresswell, C.; Khatayevich, D.; Tamerler, C.; Sarikaya, M. ACS Nano 2012, 6, 1648. doi: 10.1021/nn204631x
(15) So, C. R.; Tamerler, C.; Sarikaya, M. Angew. Chem. Int. Edit. 2009, 48, 5174. doi: 10.1002/anie.200805259.
(16) Weissbuch, I.; Addadi, L.; Lahav, M.; Leiserowitz, L. Science 1991, 253, 637. doi: 10.1126/science.253.5020.637
(17) Mann, S. Nature 1988, 332, 119. doi: 10.1038/332119a0
(18) Basalyga, D. M.; Latour, R. A., Jr. J. Biomed. Mater. Res. A 2003, 64A, 120. doi: 10.1002/jbm.a.10360
(19) Latour, R. A., Jr.; Rini, C. J. J. Biomed. Mater. Res. 2001, 60, 564. doi: 10.1002/jbm.10052
(20) Bos, M. A.; Shervani, Z.; Anusiem, A. C. I.; Giesbers, M.; Norde, W.; Kleijin, J. M. Colloid Surface B 1993, 3, 91. doi: 10.1016/0927-7765(93)01109-5
(21) Elwing, H.; Nilsson, B.; Svensson, K. E.; Askendahl, A.; Nilsson, U. R.; Lundstrom, I. J. Colloid Interface Sci. 1987, 125, 139. doi: 10.1016/0021-9797(88)90062-8
(22) Xu, Z. Z.; Yan, X. M.; Zhang, J.; Wang, Y. Q.; Tang, S. C.; Zhong, R. G. Prog. Chem. 2013, 25, 1383. [许志珍, 晏晓敏, 张杰, 王煜倩, 唐仕川, 钟儒刚. 化学进展, 2013, 25, 1383.]
(23) Yang, S. T.; Liu, Y.; Wang, Y.W.; Cao, A. Small 2013, 9, 1635. doi: 10.1002/smll.201201492
(24) Lynch, I.; Cedervall, T.; Lundqvist, M.; Cabaleiro-Lago, C.; Linse, S.; Dawson, K. A. Adv. Colloid Interface Sci. 2007, 134, 167. doi: 10.1016/j.cis.2007.04.021
(25) Chen, Q.; Xu, S.; Liu, Q.; Masliyah, J.; Xu, Z. Adv. Colloid Interface Sci. 2016, 233, 94. doi: 10.1016/j.cis.2015.10.004
(26) Lindman, S.; Lynch, I.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Nano Lett. 2007, 7, 914. doi: 10.1021/nl062743+
(27) Ma, X.; Liu, L.; Mao, X.; Niu, L.; Deng, K.; Wu, W.; Li, Y.; Yang, Y.; Wang, C. J. Mol. Biol. 2009, 388, 894. doi: 10.1016/j.jmb.2009.03.054
(28) Mao, X.; Ma, X.; Liu, L.; Niu, L.; Yang, Y.; Wang, C. J. Struct. Biol. 2009, 167, 209. doi: 10.1016/j.jsb.2009.05.009
(29) Gebauer, J. S.; Malissek, M.; Simon, S.; Knauer, S. K.; Maskos, M.; Stauber, R. H.; Peukert, W.; Treuel, L. Langmuir 2012, 28, 9673. doi: 10.1021/la301104a
(30) Boyer, C.; Huang, X.; Whittaker, M. R.; Bulmus, V.; Davis, T.P. Soft Matter 2011, 7, 1599. doi: 10.1039/C0SM00412J
(31) Peiris, R. H.; Ignagni, N.; Budman, H.; Moresoli, C.; Legge, R.L. Talanta 2012, 99, 457. doi: 10.1016/j.talanta.2012.06.010
(32) Gagner, J. E.; Qian, X.; Lopez, M. M.; Dordick, J. S.; Siegel, R.W. Biomaterials 2012, 33, 8503. doi: 10.1016/j.biomaterials.2012.07.009
(33) Liu, L.; Busuttil, K.; Zhang, S.; Yang, Y.; Wang, C.; Besenbacher, F.; Dong, M. Phys. Chem. Chem. Phys. 2011, 13, 17435. doi: 10.1039/C1CP21338E
(34) Liedberg, B.; Tengvall P. Langmuir 1995, 11, 3821. doi: 10.1021/la00010a037
(35) Zhong, J.; Wang, J.; Zhou, J. G.; Mao, B. H.; Liu, C. H.; Liu, H. B.; Li, Y. L.; Sham, T. K.; Sun, X. H.; Wang, S. D. J. Phys. Chem. C 2013, 117, 5931. doi: 10.1021/jp310013z
(36) Yang, Y.; Xu, X. Comput. Mater. Sci. 2012, 61, 83. doi: 10.1016/j.commatsci.2012.03.052
(37) Luan, B.; Huynh, T.; Zhou, R. J. Phys. Chem. B 2016, 120, 2124. doi: 10.1021/acs.jpcb.5b11449
(38) Zuo, G.; Huang, Q.; Wei, G.; Zhou, R.; Fang, H. ACS Nano 2010, 4, 7508. doi: 10.1021/nn101762b
(39) Zuo, G.; Zhou, X.; Huang, Q.; Fang, H.; Zhou, R. J. Phys. Chem. C 2011, 115, 23323. doi: 10.1021/jp208967t
(40) Webb, K.; Hlady, V.; Tresco, P. A. J. Biomed. Mater. Res. 1998, 41, 422. doi: 10.1002/(SICI)1097-4636(19980905)41:3<422::AID-JBM12>3.0.CO;2-K
(41) Sander, M.; Madliger, M.; Schwarzenbach, R. P. Environ. Sci. Technol. 2010, 44, 8870. doi: 10.1021/es103008s
(42) Madliger, M.; Sander, M.; Schwarzenbach, R. P. Environ. Sci. Technol. 2010, 44, 8877. doi: 10.1021/es103007u
(43) Whaley, S. R.; English, D. S.; Hu, E. L.; Barbara, P. F.; Belcher, A. M. Nature 2000, 405, 665. doi: 10.1038/35015043
(44) Sarikaya, M.; Tamerler, C.; Schwartz, D. T.; Baneyx, F. Annu. Rev. Mater. Res. 2004, 34, 373. doi: 10.1146/annurev.matsci.34.040203.121025
(45) Brown, S.; Sarikaya, M.; Johnson, E. J. Mol. Biol. 2000, 299, 725. doi: 10.1006/jmbi.2000.3682
(46) Brown, S. Nat. Biotechnol. 1997, 15, 269. doi: 10.1038/nbt0397-269
(47) Kulp, J. L.; Sarikaya, M.; Evans, J. S. J. Mater. Chem. 2004, 14, 2325. doi: 10.1039/B401260G
(48) Collins, P. G.; Arnold, M. S.; Avouris, P. Science 2001, 292, 706. doi: 10.1126/science.1058782
(49) Wang, S.; Humphreys, E. S.; Chung, S. Y.; Delduco, D. F.; Lustig, S. R.; Wang, H.; Parker, K. N.; Rizzo, N.W.; Subramoney, S.; Chiang, Y. M.; Jagota, A. Nat. Mater. 2003, 2, 196. doi: 10.1038/nmat833
(50) Ge, C.; Du, J.; Zhao, L.; Wang, L.; Liu, Y.; Li, D.; Yang, Y.; Zhou, R.; Zhao, Y.; Chai, Z.; Chen, C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 16968. doi: 10.1073/pnas.1105270108
(51) Kim, J. E.; Lee, M. Biochem. Biophys. Res. Commun. 2003, 303, 576. doi: 10.1016/S0006-291X(03)00393-0
(52) Xie, L.; Luo, Y.; Lin, D.; Xi, W.; Yang, X.; Wei, G. Nanoscale 2014, 6, 9752. doi: 10.1039/C4NR01005A
(53) Noon, W. H.; Kong, Y.; Ma, J. Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 6466. doi: 10.1073pnas.022532599
(54) DuBay, K. F.; Pawar, A. P.; Chiti, F.; Zurdo, J.; Dobson, C. M.; Vendruscolo, M. J. Mol. Biol. 2004, 341, 1317. doi: 10.1016/j.jmb.2004.06.043
(55) Lopes, P.; Xu, M.; Zhang, M.; Zhou, T.; Yang, Y.; Wang, C.; Elena, E. F. Nanoscale 2014, 6, 7853. doi: 10.1039/C4NR02413C
(56) Saifuddin, N.; Raziah, A. Z.; Junizah, A. R. J. Chem. 2013, 2013, 1. doi: 10.1155/2013/676815
(57) Azevedo, R. M.; Costa, J. B.; Serp, P.; Loureiro, J. M.; Faria, J.L.; Silva, C. G.; Tavares, A. P. J. Chem. Technol. Biotech. 2015, 90, 1570. doi: 10.1002/jctb.4698
(58) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem. Soc. Rev. 2010, 39, 228. doi: 10.1039/B917103G
(59) Zhang, M.; Yin, B. C.; Wang, X. F.; Ye, B. C. Chem. Commun. 2011, 47, 2399. doi: 10.1039/C0CC04887A
(60) Loh, K. P.; Bao, Q.; EdaM, G.; Chhowalla, M. Nat. Chem. 2010, 2, 1015. doi: 10.1038/nchem.907
(61) Praveen, N. G.; Gurzov, E. N.; Chen, P.; Pilkington, E. H.; Stanley, W. J.; Litwak, S. A.; Davis, T. P.; Ke, P. C.; Ding, F.Phys. Chem. Chem. Phys. 2016, 18, 94. doi: 10.1039/C5CP05924K
(62) Docter, D.; Westmeier, D.; Markiewicz, M.; Stolte, S.; Knauer, S.; Stauber, R. H. Chem. Soc. Rev. 2015, 44, 6094. doi: 10.1039/C5CS00217F
(63) Zhu, M.; Nie, G.; Meng, H.; Xia, T.; Nel, A.; Zhao, Y. Acc. Chem. Res. 2013, 46, 622. doi: 10.1021/ar300031y
(64) O'Connell, D. J.; Bombelli, F. B.; Pitek, A. S.; Monopoli, M.P.; Cahill, D. J.; Dawson, K. A. Nanoscale 2015, 7, 15268. doi: 10.1039/C5NR01970B
(65) Zhang, X. D.; Wu, D.; Shen, X.; Liu, P. X.; Fan, F. Y.; Fan, S.J. Biomaterials 2012, 33, 4628. doi: 10.1016/j.biomaterials.2012.03.020
(66) Wang, J.; Cao, Y.; Li, Q.; Liu, L.; Dong, M. Chem. -Eur. J. 2015, 21, 9632. doi: 10.1002/chem.201500577
(67) Walkey, C. D.; Chan, W. C.W. Chem. Soc. Rev. 2012, 41, 2780. doi: 10.1039/C1CS15233E
(68) Rodriguez-Lorenzo, L.; Krpetic, Z.; Barbosa, S.; Alvarez-Puebla, R. A.; Liz-Marzan, L. M.; Prior, I. A.; Brust, M. Integr. Biol. 2011, 3, 922. doi: 10.1039/C1IB00029B
(69) Cedervall, T.; Lynch, I.; Lindman, S.; Berggard, T.; Thulin, E.; Nilsson, H.; Dawson, K. A.; Linse, S. Proc. Natl. Acad, Sci. U. S. A. 2007, 104, 2050. doi: 10.1073/pnas.0608582104
(70) Meng, H.; Liong, M.; Xia, T.; Li, Z.; Ji, Z.; Zink, J. I.; Nel, A.E. ACS Nano 2010, 4, 4539. doi: 10.1021/nn100690m
(71) Qiu, Y.; Liu, Y.; Wang, L.; Xu, L.; Bai, R.; Ji, Y.; Wu, X.; Zhao, Y.; Li, Y.; Chen, C. Biomaterials 2010, 31, 7606. doi: 10.1016/j.biomaterials.2010.06.051
(72) Xia, T.; Kovochich, M.; Liong, M.; Meng, H.; Kabehie, S.; George, S.; Zink, J. I.; Nel, A. E. ACS Nano 2009, 3, 3273. doi: 10.1021/nn900918w
(73) Moros, M.; Pelaz, B.; Lopez-Larrubia, P.; Garcia-Martin, M.L.; Grazu, V.; de la Fuente, J. M. Nanoscale 2010, 2, 1746. doi: 10.1039/C0NR00104J
(74) Xu, M.; Li, J.; Lwai, H.; Mei, Q.; Fujita, D.; Su, H.; Chen, H.; Hanagata, N. Sci. Rep. 2012, 2, 406. doi: 10.1038/srep00406
(75) Lunqvist, M., Stigler, J., Elia, G., Lynch, I., Cedervall, T. &Dawson, K. A. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 14265. doi: 10.1073/pnas.0805135105
(76) Tan, X.; Feng, L.; Zhang, J.; Yang, K.; Zhang, S.; Liu, Z.; Peng, R. ACS Appl. Mater. Interfaces 2013, 5, 1370. doi: 10.1021/am302706g
(77) Sethuraman, A.; Belfort, G. Biophys. J. 2005, 88, 1322. doi: 10.1529/biophysj.104.051797
(78) Castells, V.; Yang, S.; Van Tassel, P. R. Phys. Rev. E 2002, 65, 031912. doi: 10.1103/PhysRevE.65.031912
(79) Kafer, D.; Witte, G.; Cyganik, P.; Terfort, A.; Woll, C. A.J. Am. Chem. Soc. 2006, 128, 1723. doi: 10.1021/ja0571592
(80) Tamerler, C.; Oren, E. E.; Duman, M.; Venkatasubramanian, E.; Sarikaya, M. Langmuir 2006, 22, 7712. doi: 10.1021/la0606897
(81) Schreiber, F. Prog. Surf. Sci. 2000, 65, 151. doi: 10.1016/S0079-6816(00)00024-1
(82) Pelaz, B.; Charron, G.; Pfeiffer, C.; Zhao, Y.; de la Fuente, J.; Liang, X.; Parak, W.; del Pino, P. Small 2013, 9, 1573. doi: 10.1002/smll.201201229
(83) Zhang, M.; Mao, X.; Wang, C.; Zeng, W.; Zhang, C.; Li, Z.; Fang, Y.; Yang, Y.; Liang, W.; Wang, C. Biomaterials 2013, 34, 1383. doi: 10.1016/j.biomaterials.2012.10.067
(84) Kelly, J.W. Curr. Opin. Struct. Biol. 1996, 6, 11. doi: 10.1016/S0959-440X(96)80089-3
(85) Burkhard, P.; Meier, M.; Lustig, A. Protein Sci. 2000, 9, 2294. doi: 10.1110/ps.9.12.2294
(86) Mao, X.; Wang, Y.; Liu, L.; Niu, L.; Yang, Y.; Wang, C.Langmuir 2009, 25, 8849. doi: 10.1021/la901342r
(87) Lewis, P. F.; Emerman, M. J. Virol. 1994, 68, 510.
(88) Nie, Z.; Bergeron, D.; Subbramanian, R. A.; Yao, X. J.; Checroune, F.; Rougeau, N.; Cohen, E. A. J. Virol. 1998, 72, 4104.
(89) Emerman, M. Curr. Biol. 1996, 6, 1096. doi: 10.1016/S0960-9822(02)00676-0
(90) Rogel, M. E.; Wu, L. I.; Emerman, M. J. Virol. 1995, 69, 882.
(91) Romani, B.; Engelbrecht, S. J. Gen. Virol. 2009, 90, 1795. doi: 10.1099/vir.0.011726-0
(92) Engler, A.; Stangler, T.; Willbold, D. Eur. J. Biochem. 2001, 268, 389. doi: 10.1046/j.1432-1033.2001.01895.x
(93) Wecker, K.; Roques, B. P. Eur. J. Biochem. 1999, 266, 359. doi: 10.1046/j.1432-1327.1999.00858.x
(94) Mao, X.; Guo, Y.; Luo, Y.; Niu, L.; Liu, L.; Ma, X.; Wang, H.; Yang, Y.; Wei, G.; Wang, C. J. Am. Chem. Soc. 2013, 135, 2181. doi: 10.1021/ja307198u
(95) Xie, H.; Becraft, E. J.; Baughman, R. H.; Dalton, A. B.; Dieckmann, G. R. J. Pept. Sci. 2008, 14, 139. doi: 10.1002/psc.978
(96) Tomasio, S. M.; Walsh, T. R. J. Phys. Chem. C 2009, 113, 8778. doi: 10.1021/jp8087594
(97) Mao, X. B.; Wang, C. X.; Wu, X. K.; Ma, X. J.; Liu, L.; Zhang, L.; Niu, L.; Guo, Y. Y.; Li, D. H.; Yang, Y. L.; Wang, C. Proc. Natl. Acad. Sci. U. S. A. 2011, 108, 19605. doi: 10.1073/pnas.1102971108
(98) Gagner, J. E.; Shrivastava, S.; Qian, X.; Dordick, J. S.; Siegel, R.W. J. Phys. Chem. Lett. 2012, 3, 3149. doi: 10.1021/jz301253s
(99) Shrivastava, S.; McCallum, S. A.; Nuffer J. H.; Qian, X.; Siegel, R.W.; Dordick, J. S. Langmuir 2013, 29, 10841. doi: 10.1021/la401985d
(100) Deshapriya, I. K.; Kumar, C. V. Langmuir 2013, 29, 14001. doi: 10.1021/la403165y
(101) Goy-López, S.; Juárez, J.; Alatorre-Meda, M.; Casals, E.; Puntes, V. F.; Taboada, P.; Mosquera, V. Langmuir 2012, 28, 9113. doi: 10.1021/la300402w
(102) Morgner, F.; Stufler, S.; Geißler, D.; Medintz, I. L.; Algar, W.R.; Susumu, K.; Stewart, M. H.; Blanco-Canosa, J. B.; Dawson, P. E.; Hildebrandt, N. Sensors 2011, 11, 9667. doi: 10.3390/s111009667
(103) Schoen, A. P.; Schoen, D. T.; Huggins, K. N. L.; Arunagirinathan, M. A.; Heilshorn. S. C. J. Am. Chem. Soc. 2011, 133, 18202. doi: 10.1021/ja204732n
(104) Naik, R. R.; Brott, L. L.; Clarson, S. J.; Stone, M. O. J. Nanosci. Nanotechnol. 2002, 2, 95. doi: 10.1166/jnn.2002.074
(105) Oren, E. E.; Tamerler, C.; Sahin, D.; Hnilova, M.; Safak Seker, U. O.; Sarikaya, M.; Samudrala, R. Bioinformatics 2007, 23, 2816. doi: 10.1093/bioinformatics/btm436
(106) Poghossian, A.; Cherstvy, A.; Ingebrandt, S.; Offenhäusser, A.; Schöning, M. J. Sensor. Actuat. B-Chem. 2005, 111-112, 470. doi: 10.1016/j.snb.2005.03.083
(107) Gungormus, M.; Fong, H.; Kim, W.; Evans, J. S.; Tamerler, C.; Sarikaya, M. Biomacromolecules 2008, 9, 966. doi: 10.1021/bm701037x
(108) Tamerler, C.; Sarikaya, M. ACS Nano 2009, 3, 1606. doi: 10.1021/nn900720g
(109) Langer, R.; Peppas, N, A. AIChE J. 2003, 49, 2990. doi: 10.1002/aic.690491202

[1] HUANG Xiang-Feng, LIU Wan-Qi, XIONG Yong-Jiao, PENG Kai-Ming, LIU Jia, LU Li-Jun. Application and Effect of Functional Magnetic Nanoparticles in Emulsion Preparation and Demulsification[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 49-64.
[2] LIU Fu-Feng, FAN Yu-Bo, LIU Zhen, BAI Shu. Molecular Mechanism Underlying Affinity Interactions between ZAβ3 and the Aβ16-40 Monomer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1905-1914.
[3] XU Wei-Yun, WANG Li-Li, MI Yi-Ming, ZHAO Xin-Xin. Effect of Adsorption of Fe Atoms on the Structure and Properties of WS2 Monolayer[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1765-1772.
[4] HE Yu, WANG Yi-Bo. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1149-1159.
[5] HUANG Yu-Fen, ZHANG Hai-Long, YANG Zheng-Zheng, ZHAO Ming, HUANG Mu-Lan, LIANG Yan-Li, WANG Jian-Li, CHEN Yao-Qiang. Effects of CeO2 Addition on Improved NO Oxidation Activities of Pt/SiO2-Al2O3 Diesel Oxidation Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1242-1252.
[6] GU Ze-Yu, GAO Song, HUANG Hao, JIN Xiao-Zhe, WU Ai-Min, CAO Guo-Zhong. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1197-1204.
[7] CHEN Yi-Jian, ZHOU Hong-Tao, GE Ji-Jiang, XU Gui-Ying. Aggregation Behavior of Double-Chained Anionic Surfactant 1-Cm-C9-SO3Na at Air/Liquid Interface: Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1214-1222.
[8] ZHEN Xu, GUO Xue-Jing. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[9] SHU Ning-Kai, XU Zhi-Cheng, LIU Zi-Yu, JIN Zhi-Qiang, HUANG Jian-Bin, ZHANG Lei, ZHANG Lu. Effect of Short Alkyl Chain on Interfacial Properties of Poly-Substituted Alkyl Benzene Sulfonate[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 803-809.
[10] WANG Xiao-Wen, LI Lei, WANG Chang-Sheng. A Scheme for Rapid Simulation of Anion-π Interactions Involving Halide Anions and Substituted Benzenes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 755-762.
[11] HUANG Hao, LONG Ran, XIONG Yu-Jie. Design of Plasmonic-Catalytic Materials for Organic Hydrogenation Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 661-669.
[12] CHENG Fang, WANG Han-Qi, XU Kuang, HE Wei. Preparation and Characterization of Dithiocarbamate Based Carbohydrate Chips[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 426-434.
[13] LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng. Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 270-282.
[14] SANG Li-Xia, LIN Jia, GE Hao, LEI Lei. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2454-2462.
[15] YAN Ren, LAI Lu, XU Zi-Qiang, JIANG Feng-Lei, LIU Yi. Thermodynamics of the Interactions between Quantum Dots and Proteins[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2377-2387.