Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2652-2662    DOI: 10.3866/PKU.WHXB201608262
REVIEW     
Smart Aqueous Foams: State of the Art
Mei-Qing LIANG1,2,Hong-Yao YIN3,Yu-Jun FENG1,3,*()
1 Chengdu Institute of Organic Chemistry, Chinese Academy of Sciences, Chengdu 610041, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049
3 State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute, Sichuan University, Chengdu 610065, P. R. China
Download: HTML     PDF(16149KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Aqueous foams are a typical type of soft matter that are widely used in detergents, cosmetics, food engineering, and oil and gas production because of their relatively small particle size, large superficial area and good fluidity. The stability of a foam plays a crucial role in determining its performance in practical applications. Smart foams, with controllable stability, have been developed recently and their stability can be regulated by external stimuli. This review article mainly focuses on the recent progress in intelligent aqueous foams. To date, smart aqueous foams with temperature, light, magnetic field, pH and CO2-responsive behaviors have been obtained by introducing sensitive groups into foaming agent molecules or adding stimuli-responsive particles to foaming systems. The formation mechanism and properties of different types of smart aqueous foams are summarized and discussed. The potential applications and future prospects of smart foams are also considered.



Key wordsSmart foam      Foamability      Stability      Stimuli-responsive     
Received: 05 July 2016      Published: 26 August 2016
MSC2000:  O648  
Fund:  The project was supported by the National Natural Science Foundation of China(21173207)
Corresponding Authors: Yu-Jun FENG     E-mail: yjfeng@scu.edu.cn
Cite this article:

Mei-Qing LIANG,Hong-Yao YIN,Yu-Jun FENG. Smart Aqueous Foams: State of the Art. Acta Physico-Chimica Sinca, 2016, 32(11): 2652-2662.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608262     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2652

Fig 1 (a) Chemical structure of 12-hydroxy stearic acid and ethanolamine, hexanolamine; (b) the ultra-stable foam generated from 12-hydroxy stearic acid and hexanolamine salt, and the appearance after six months; (c) the evolution of the foam volume as a function of time and temperature On the top of graph is shown the schematic representation of the supramolecular assemblies (not at scale) present in solution and in the foam as a function of the temperature23.
Fig 2 (a) Photograph of foams prepared using PDEA-PS particles at different temperatures taking at different time; (b) photographs of PDEA-PS particle-stabilized foams prepared at temperatures of 25 and 50 °C; (c) schematic illustration of PDEA-PS particles as a temperature-sensitive particulate foam stabilizer25 PDEA: poly[2-(diethylamino)ethyl methacrylate]; PS: polystyrene
Fig 3 (a) Light-responsive mechanism of azobenzene-modified polyacrylate foam; (b) light-responsive foam bubble states under UV irradiation26
Fig 4 Foam prepared from cationic AzoTAB photoresponsive surfactant and its states under UV light27
Fig 5 (a) Snapshots of microscopic collapse process for wet foam (top row) and dry foam (bottom row) exposure to a magnetic field; (b) mechanism of collapse for wet foam (top row) and dry foam (bottom row) under magnetic field29 Fmag: magnetic force that the field exerts on one iron particle; Fdrag: drag force; ΔP: Laplace pressure inside an air bubble
Fig 6 (a) Schematic synthesis of PEGMA-P2VP latex and air bubbles formed; (b) digital photographs of latex foam with pH from 10 down to 3; (c) schematic illustration of PEGMA-P2VP latex desorption with addition of HCl33 PEGMA: poly(ethylene glycol) monomethacrylate; P2VP: poly(2-vinylpyridine)
Fig 7 Schematic illustration of stable particulate foam with PDEA-PS latex particles34
Fig 8 Effect of the polymerization degree of PDEAn-PS particles on foamability and foam stability under different pH values35 color online
Fig 9 (a) Schematic illustration of stable foam formed with UC22AMPM after bubbling into CO2; (b) different foaming performance of UC22AMPM when bubbling into CO2 and N2 respectively47
Fig 10 (a) Mechanism of HEAIBs responsed to CO2; (b) different foaming performance of 0.2 g?L-1 HEAIBs when bubbling into CO2 and N2 respectively49
Fig 11 (A) Photograph of 12-HSA foams with CBP particles; (B) photographs of 12-HSA foams with CI particles: (a) original foam, (b) an increase in temperature, (c) UV irradiation, (d) exposure to magnetic field; (C) schematic illustrating the mechanism of foam destabilization upon UV irradiation50
Fig 12 Schematic illustrating the mechanism of PS-PDMA foam responsed to pH and temperature; digital camera images showing aqueous solutions of the PDMA homopolymer51 PS: polystyrene; PDMA: poly[2-(dimethylamino)ethyl methacrylate]
1 Jiang Q. Z. ; Song Z. Z. ; Zhao M. F. ; Ke M. Surfactant Science and Application Beijing: China Petrochemical Press, 2006, 285- 316.
1 蒋庆哲; 宋昭峥; 赵密福; 柯明. 表面活性剂科学与应用, 北京: 中国石化出版社, 2006, 285- 316.
2 Yan Y. L. Stabilization and Applications of Foams and Emulsions Beijing: Chemical Industry Press, 2013, 2- 5.
2 燕永利. 泡沫、乳状液的稳定化及其应用, 北京: 化学工业出版社, 2013, 2- 5.
3 Brun N. ; Ungureanu S. ; Deleuze H. ; Backov R. Chem. Soc. Rev 2011, 40, 771.
4 Schramm L. L. Foams: Fundamental and Applications in the Petroleum Industry Washington DC: American Chemical Society, 1992, 1- 49.
5 Cantat I. ; Cohen-Addad S. ; Elias F. ; Graner F. ; H?hler R. ; Pitois O. Foams: Structure and Dynamics Oxford: Oxford University Press, 2013.
6 Pugh R. J. Adv. Colloid Interface Sci 1996, 64, 67.
7 Kristen-Hochrein N. ; Schelero N. ; von Klitzing R. Colloid Surf. A: Physicochem. Eng. Asp 2011, 382, 165.
8 Arriaga L. R. ; Drenckhan W. ; Salonen A. ; Rodrigues J. A. ; íňiguez-Palomares R. ; Rio E. ; Langevin D. Soft Matter 2012, 8, 11085.
9 Alargova R. G. ; Warhadpande D. S. ; Paunov V. N. ; Velev O. D. Langmuir 2004, 20, 10371.
10 Fukuoka K. ; Tomikawa A. ; Nakamura Y. ; Fujii S. Chem. Lett. 2016, 45, 667.
11 Martin A. ; Grolle K. ; Bos M. ; Stuart M. ; Vanvliet T. J. Colloid Interface Sci 2002, 254, 175.
12 Cox A. R. ; Aldred D. L. ; Russell A. B. Food Hydrocolloids 2009, 23, 366.
13 Fujii S. ; Ryan A. ; Armes S. P. J. Am. Chem. Soc 2006, 128, 7882.
14 Gonzenbach U. T. ; Studart A. R. ; Tervoort E. ; Gauckler L. J. Angew. Chem. Int. Ed. 2006, 45, 3526.
15 Stocco A. ; Rio E. ; Binks B. P. ; Langevin D. Soft Matter 2011, 7, 1260.
16 Zhu Y. ; Jiang J. ; Cui Z. ; Binks B. P. Soft Matter 2014, 10, 9739.
17 Nguyen P. ; Fadaei H. ; Sinton D. Energy & Fuels 2014, 28, 6221.
18 Sun Q. ; Li Z. M. ; Wang J. Q. ; Li S. Y. ; Li B. F. ; Jiang L. ; Wang H. Y. ; Lü Q. C. ; Zhang C. ; Liu W. Colloid Surf. A: Physicochem. Eng. Asp 2015, 471, 54.
19 Carl A. ; von Klitzing R. Angew. Chem. Int. Ed 2011, 50, 11290.
20 Fameau A. L. ; Carl A. ; Saint-Jalmes A. ; von Klitzing R. ChemPhysChem 2015, 16, 66.
21 Fameau A. L. ; Lam S. ; Arnould A. ; Gaillard C. ; Velev O. D. ; Saint-Jalmes A. Langmuir 2015, 31, 13501.
22 Brown P. ; Butts C. P. ; Eastoe J. Soft Matter 2013, 9, 2365.
23 Fameau A. L. ; Saint-Jalmes A. ; Cousin F. ; Houinsou H. B. ; Novales B. ; Navailles L. ; Emile J. ; Nallet F. ; Gaillard C. ; Boue F. ; Douliez J. P. Angew. Chem. Int. Ed 2011, 50, 8264.
24 Douliez J. P. ; Navailles L. ; Nallet F. ; Gaillard C. ChemPhysChem 2008, 9, 74.
25 Nakayama S. ; Yusa S. ; Nakamura Y. ; Fujii S. Soft Matter 2015, 11, 9099.
26 Salonen A. ; Langevin D. ; Perrin P. Soft Matter 2010, 6, 5308.
27 Chevallier E. ; Monteux C. ; Lequeux F. ; Tribet C. Langmuir 2012, 28, 2308.
28 Rodrigues J. A. ; Rio E. ; Bobroff J. ; Langevin D. ; Drenckhan W. Colloids Surf. A: Physicochem. Eng. Aspects 2011, 384, 408.
29 Blanco E. ; Lam S. ; Smoukov S. K. ; Velikov K. P. ; Khan S. A. ; Velev O. D. Langmuir 2013, 29, 10019.
30 Lam S. ; Blanco E. ; Smoukov S. K. ; Velikov K. P. ; Velev O. D. J. Am. Chem. Soc 2011, 133, 13856.
31 Binks B. P. ; Murakami R. ; Armes S. P. ; Fujii S. ; Schmid A. Langmuir 2007, 23, 8691.
32 Kettlewell S. L. ; Schmid A. ; Fujii S. ; Dupin D. ; Armes S. P. Langmuir 2007, 23, 11381.
33 Dupin D. ; Howse J. R. ; Armes S. P. ; Randall D. P. J. Mater. Chem 2008, 18, 545.
34 Fujii S. ; Mochizuki M. ; Aono K. ; Hamasaki S. ; Murakami R. ; Nakamura Y. Langmuir 2011, 27, 12902.
35 Nakayama S. ; Hamasaki S. ; Ueno K. ; Mochizuki M. ; Yusa S. ; Nakamura Y. ; Fujii S. Soft Matter 2016, 12, 4794.
36 Malcolm A. S. ; Dexter A. F. ; Middelberg A. P. J. Soft Matter 2006, 2, 1057.
37 Malcolm A. S. ; Dexter A. F. ; Middelberg A. P. J. Asia-Pac. J. Chem. Eng 2007, 2, 362.
38 Middelberg A. P. J. ; Dimitrijev-Dwyer M. ChemPhysChem 2011, 12, 1426.
39 Micheau C. ; Bauduin P. ; Diat O. ; Faure S. Langmuir 2013, 29, 8472.
40 Jessop P. G. ; Mercer S. M. ; Heldebrant D. J. Energ. Environ. Sci 2012, 5, 7240.
41 Liang C. ; Harjani J. R. ; Robert T. ; Rogel E. ; Kuehne D. ; Ovalles C. ; Sampath V. ; Jessop P. G. Energy & Fuels 2012, 26, 488.
42 Yan Q. ; Zhao Y. Chem. Commun 2014, 50, 11631.
43 Yan Q. ; Zhang H. ; Zhao Y. ACS Macro. Lett 2014, 3, 472.
44 Yin H. ; Feng Y. ; Liu H. ; Mu M. ; Fei C. Langmuir 2014, 30, 9911.
45 Wang W. ; Liu H. ; Mu M. ; Yin H. ; Feng Y. Polym. Chem. 2015, 6, 2900.
46 Yin H. ; Liu H. ; Wang W. ; Feng Y. Langmuir 2015, 31, 12260.
47 Li D. ; Ren B. ; Zhang L. ; Ezekiel J. ; Ren S. ; Feng Y. Chem. Eng. Res. Des. 2015, 102, 234.
48 周素林.基于开关型表面活性剂的泡沫性能研究[D].成都:西南石油大学, 2015.
48 Zhou, S. L. Study on Foam Performance Based on Switchable Surfactant. M. S. Dissertation, Southwest Petroleum University, Chengdu, 2015.
49 Lu H. ; He Y. ; Huang Z. J. Disp. Sci. Technol 2014, 35, 832.
50 Fameau A. L. ; Lam S. ; Velev O. D. Chem. Sci. 2013, 4, 3874.
51 Fujii S. ; Akiyama K. ; Nakayama S. ; Hamasaki S. ; Yusa S. ; Nakamura Y. Soft Matter 2015, 11, 572.
[1] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[2] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1781-1788.
[3] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1838-1845.
[4] Jing-Wei LIU,Na-Ting YANG,Yan ZHU. Pd/Co3O4 Nanoparticles Inlaid in Alkaline Al2O3 Nanosheets as an Efficient Catalyst for Catalytic Oxidation of Methane[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1453-1461.
[5] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1379-1389.
[6] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 486-499.
[7] SHAI Xu-Xia, LI Dan, LIU Shuang-Shuang, LI Hao, WANG Ming-Kui. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2159-2170.
[8] XIAO Juan, ZHANG Hao-Li. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1894-1912.
[9] SUN Xiao-Xiang, CHEN Yu, ZHAO Jian-Xi. Foams Stabilized by Fumed Silica Particles with a Quaternary Ammonium Gemini Surfactant[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2045-2051.
[10] LI Hong-Mei, LAN Li, CHEN Shan-Hu, LIU Da-Yu, WANG Wei, GONG Mao-Chu, CHEN Yao-Qiang. Preparation of CeO2-ZrO2-Al2O3 with a Composite Precipitant and Its Supported Pd-Only Three-Way Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1734-1746.
[11] Cheng-Xiong DANG,Hao-Bo YANG,Hao YU,Hong-Juan WANG,Feng PENG. CexNi0.5La0.5-xO Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol: Influence of the Ce-to-La Ratio[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1527-1533.
[12] WANG Ya-Li, LI Qi, WENG Wei-Zheng, XIAWen-Sheng, WAN Hui-Lin. Catalytic Behaviors and Stability of Y2O3-Modified Ni/SiO2 for Partial Oxidation of Methane into Synthesis Gas[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2776-2784.
[13] LI Cui-Can, ZHANG Meng-Xiao, HUA Wei-Ming, YUE Ying-Hong, GAO Zi. Effect of the Carbon Precursor on the Design of Perfluorosulfonic Acid Functionalized Carbon Catalysts[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1747-1752.
[14] WU Na, LUO Qun, WU Zhen-Wu, MA Chang-Qi. Influence of Electrode Interfacial Buffer Layers on Thermal Stability of P3HT:PC61BM Solar Cells[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1413-1420.
[15] ZHANG Xiao-Hui, XU Zhi-Guang, GONG Li-Zhen, XU Xuan, SHEN Gui-Xian, CHEN Hua-Bin, LIU Hai-Yang. Stability of trans-Dioxo Manganese(V) Corrole Complex[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1069-1076.