Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (1): 103-129    DOI: 10.3866/PKU.WHXB201608303
REVIEW     
Progress in the Investigation and Application of Na3V2(PO4)3 for Electrochemical Energy Storage
Wei-Xin SONG1,2,Hong-Shuai HOU1,Xiao-Bo JI1,*()
1 College of Chemistry and Chemical Engineering, Central South University, Changsha 410083, P. R. China
2 Department of Materials, Imperial College London, London SW72AZ, UK
Download: HTML     PDF(6769KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Lithium ion batteries (LiBs) have been widely utilized, but the limited lithium resource restricts development and application of LiBs in large-scale energy storage. Sodium has similar physicochemical characteristics to that of lithium and is suitable to transfer between two electrodes as a cation in the "rocking chair" mechanism of LiBs. Na-containing compounds have been proposed as the electrodes to store sodium ions and provide channels for diffusion. Polyanion Na3V2(PO4)3 is a Na-super-ionic conductor (NASICON) with specific Na sites in its crystal structure and three-dimensional open channels. Recently, Na3V2(PO4)3 has been demonstrated as potential electrode material with promising properties for energy storage. In this review we systematically summarize the structure of Na3V2(PO4)3, the application and mechanism in a specific energy system, and the recent development of Na3V2(PO4)3 structure for use as electrodes. The potential problems and trends of Na3V2(PO4)3 are also discussed.



Key wordsNa3V2(PO4)3      Na-super-ionic conductor      Electrochemistry      Energy storage      Material structure     
Received: 23 June 2016      Published: 30 August 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21473258);the National Natural Science Foundation of China(21673298);the National Natural Science Foundation of China(51622406)
Corresponding Authors: Xiao-Bo JI     E-mail: xji@csu.edu.cn
Cite this article:

Wei-Xin SONG,Hong-Shuai HOU,Xiao-Bo JI. Progress in the Investigation and Application of Na3V2(PO4)3 for Electrochemical Energy Storage. Acta Physico-Chimica Sinca, 2017, 33(1): 103-129.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608303     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/103

Fig 1 Energy cost for the production of 1 kWh battery comparing among Li-ion, Ni-MH, and Pb-acid batteries1
Category Sodium Lithium
cation radius/nm 0.102 0.076
atomic weight/(g·mol-1) 23 6.94
Eo/V (vs SHE) -2.71 -3.04
abundance/% 2.83 0.0065
distribution wide distribution 67% in South America
cost, carbonates ($ ton-1) 150 5000
capacity/(mAh·g-1) 1165 3829
Table 1 Physiochemical characteristics of sodium and lithium
Fig 2 Theoretical capacity and working voltage of Na-insertion/de-insertion electrode materials13
Fig 3 Crystal structure at different orientations of rhombohedra NVP36 NVP: Na3V2(PO4)3
SG a/nm b/nm c/nm α β γ V/nm3
Na3V2(PO4)3 R3c(167) 0.868(2) 0.868(2) 2.171(2) 90° 90° 120° 1.41654
Na2V2(PO4)3 R3c(167) 0.863(2) 0.863(2) 2.179(2) 90° 90° 120° 1.40543
V2(PO4)3 R3c(167) 0.852(3) 0.852(3) 2.202(4) 90° 90° 120° 1.38429
Table 2 Cell parameters of Na3V2(PO4)3, Na2V2(PO4)3, and V2(PO4)3 with space group (SG)39
Phase Site Element Wyckoff symbol Symmetry x y z Occupation
Na3V2(PO4)3 O1 O 36f 1 0.01714 0.20172 0.19119 1
O2 O 36f 1 0.18532 0.16658 0.08488 1
P1 P 18e 0.2 0.29683 0 42739 1
Na2 Na 18e 0.2 0.63747 0 42739 0.750
V1 V 12c 3 0 0 0.14679 1
Na1 Na 6b -3 0 0 0 0.750
Na2V2(PO4)3 O1 O 36f 1 0.01714 0.20172 0.19119 1
O2 O 36f 1 0.18532 0.16658 0.08488 1
P1 P 18e 0.2 0.29683 0 42739 1
Na2 Na 18e 0.2 0.63747 0 42739 0.500
V1 V 12c 3 0 0 0.14679 1
Na1 Na 6b -3 0 0 0 0.500
V2(PO4)3 O1 O 36f 1 0.0289 0.1981 0.1943 1
O2 O 36f 1 0.2012 0.1704 0.0916 1
P1 P 18e 0.2 0.2821 0 42739 1
V1 V 12c 3 0 0 0.14131 1
Table 3 Atomic coordinates of Na3V2(PO4)3, Na2V2(PO4)3 and V2(PO4)339
Fig 4 Structure of γ-NVP along [001] direction with VO6 octahedra and PO4 tetrahedra45
Crystal family Crystal system Point group Bravais lattice Symmetry Bravais system Unit cell shape
hexagonal trigonal 3, 3, 32, 3m, 3m R one threefold axis
(rhombohedral axis)
rombohedral a=b=c,
α=β=γ ≠ 90°
one threefold axis
(rhombohedral-centering hexagonal axis)
hexagonal a=bc,
α=β=90°,
P one threefold axis γ=120°
hexagonal 6, 6, 6/m, 622, 6mm, 62m, 6/mmm P one sixfold axis
Table 4 Hexagonal crystal family with related Bravais crystal system.
Fig 5 XRD pattern of NVP at 25 ℃ with refinement46
Fig 6 DSC curve of NVP from -30 to 225 ℃ with four different crystal structures (α, β, β′, γ)45
Fig 7 Precession image from single crystal X-ray diffraction of the NVP (0kl) layer measured at -10 ℃ 45 Green open circle represent thetheoretical rhombohedral cell (R3c). Nonindexed superstructure peak sare clearly visible.
Atom Wyckoff site x y z Uiso Occupation
Na (1a) 4a 0 0 0 0.000270(13)* 1
Na (1b) 8f 0.3453(3) 0.0564(6) 0.16617(14) 0.000408(13)* 1
Na (2a) 8f 0.18084(18) 0.1910(3) 0.25889(16) 0.000215(8)* 1
Na (2b) 8f 0.01286(18) 0.3235(3) 0.41390(14) 0.000174(7)* 1
Na (2c) 8f 0.16827(18) 0.1336(3) 0.58619(16) 0.000240(9)* 1
V (a) 8f 0.00265(6) 0.00064(11) 0.35357(4) 0.000045(2) 1
V (b) 8f 0.33442(6) 0.00000(11) 0.31342(4) 0.000043(2) 1
V (c) 8f 0.33220(6) 0.00013(11) 0.02012(4) 0.000051(2) 1
P (a) 8f 0.18604(9) 0.14674(16) 0.41785(6) 0.000057(3) 1
P (b) 4e 0 0.3000(2) 0.25 0.000047(4) 1
P (c) 8f 0.35409(9) 0.36051(16) 0.25245(6) 0.000047(3) 1
P (d) 8f 0.52135(9) 0.14988(16) 0.07983(6) 0.000052(3) 1
P (e) 8f 0.16877(9) 0.21156(16) 0.08702(6) 0.000050(3) 1
O (1a) 8f 0.2627(3) 0.4370(5) 0.2490(2) 0.000111(11) 1
O (1b) 8f 0.2483(3) 0.1066(5) 0.0789(2) 0.000121(11) 1
O (1c) 8f 0.0835(3) 0.3999(5) 0.24663(19) 0.000092(10) 1
O (1d) 8f 0.3407(3) 0.1880(5) 0.25918(19) 0.000099(11) 1
O (1e) 8f 0.4291(3) 0.0787(5) 0.07595(19) 0.000089(10) 1
O (1f) 8f 0.0847(3) 0.1098(5) 0.08765(18) 0.000073(10) 1
O (1g) 8f 0.0922(3) 0.0777(5) 0.41395(18) 0.000068(10) 1
O (1h) 8f 0.5147(3) 0.3232(5) 0.08794(19) 0.000078(10) 1
O (1i) 8f 0.1771(3) 0.3241(5) 0.41646(18) 0.000076(10) 1
O (2a) 8f 0.2415(3) 0.1055(5) 0.3621(2) 0.000132(11) 1
O (2b) 8f 0.5746(3) 0.1268(5) 0.0203(2) 0.000116(11) 1
O (2c) 8f 0.4086(3) 0.3887(6) 0.1943(2) 0.000186(13) 1
O (2d) 8f 0.0131(3) 0.2010(5) 0.3076(2) 0.000135(11) 1
O (2e) 8f 0.1548(3) 0.3257(5) 0.0346(2) 0.000126(11) 1
O (2f) 8f 0.1793(3) 0.2950(5) 0.14898(19) 0.000094(10) 1
O (2g) 8f 0.3980(3) 0.4284(6) 0.3098(2) 0.000147(12) 1
O (2h) 8f 0.2281(3) 0.0913(5) 0.47811(18) 0.000083(10) 1
O (2i) 8f 0.4332(3) 0.0686(6) 0.3670(2) 0.000159(12) 1
Atom U11 U22 U33 U12 U13 U23
*Na (1a) 0.00044(3) 0.00019(2) 0.000182(19) 0.000139(19) 0.000004(18) -0.000051(16)
*Na (1b) 0.00047(2) 0.00067(3) 0.000084(13) 0.00002(2) 0.000013(13) -0.000059(15)
*Na (2a) 0.000099(12) 0.000134(13) 0.000411(17) 0.000002(10) -0.000073(11) 0.000101(12)
*Na (2b) 0.000136(12) 0.000089(11) 0.000298(15) -0.000022(9) -0.000025(10) -0.000008(10)
*Na (2c) 0.000103(12) 0.000152(13) 0.000464(19) -0.000021(10) 0.000091(12) 0.000021(13)
Table 5 Atom coordinates of α-NVP and anisotropic temperature factors (Uij, in nm2) of Na sites
Fig 8 Structure of α-NVP along [001] direction45 VO6: octahedra; PO4: tetrahedral
Fig 9 Projection in the (ab) plane of the Na (2) arrangement in (a) α-NVP and in (b) γ-NVP45 Blue spheres represent the partially occupied Na (2) sites in γ-NVP and the fully occupied Na (2) sites in α-NVP, respectively. Vacancies are depicted by a white square. color online
β-NVP β′-NVP
Instrument Synchrotron 11BM Synchrotron 11BM
Space group unknown unknown
T/℃ 60 120
a/nm 1.51113(2) 1.5119(2)
b/nm 0.87297(6) 0.87347(4)
c/nm 0.88346(11) 0.88543(7)
β/(°) 124.568(9) 124.557(6)
(V/Z)/nm3 0.239947 0.240756
Table 6 Cell parameters of β-NVP and β′-NVP from XRD refinement45
Fig 10 Scheme representing ions occupations based on the calculated [Na3V2(PO4)3]2 unit model
Fig 11 Schematic representation of a refined Na3V2(PO4)3 (NVP) structure53 (a) labelling specific atomic sites, (b) the corresponding simulated XRD of the refined NVP, and (c) the scheme of Na extraction in charging. Na1, Na2, Na3, Na4, Na5, Na6 occupied the Na (2) sites and Na7, Na8 occupied Na (1) site in NVP.
Fig 12 Possible Na ion migration paths in NVP along (a) x, (b) y and (c) curved z directions
Fig 13 Electrochemical voltage-composition curves of the first galvanostatic cycle at a current rate of 0.1C for 24 h stated NVP hybrid-ion battery36 Inset shows the initial charge/discharge profiles.
Fig 14 Idealized representation of the rhombohedral NVP NASICON structure37 showing the occurring ions exchange between sodium and lithium ions
Fig 15 Electrochemical voltage-composition curves of the first galvanostatic cycle at a current rate of 0.1C for NVP hybrid-ion battery62
Fig 16 Representation of NVP-structure exhibiting the hybrid ion migration of Na and Li ions62
Fig 17 First (solid line) and third (dotted line) cyclic voltammograms (CV) curves of NVP in NVP在Li2SO4, Na2SO4, K2SO4 electrolytes63 voltage range:-0.2-0.9 V (vs SCE); scan rate: 5 mV?s-1; NVP in 1 mol?L-1 Li2SO4, Na2SO4, K2SO4
Fig 18 Battery and capacitance behaviors towards NVP electrode in Li2SO4, Na2SO4, K2SO4 electrolytes63
Fig 19 Photo of the battery (top left), battery stack composition (top right) and design of the high temperature cell (down)46 High-temperature solid-ion batteries include SiO2 tube connecting Swageloc tap and the cell is inside the tube.
Fig 20 (a) Charge/discharge profiles and (b) cyclic performance of nano NVP@C in sodium ion half cell at 0.2C in 1.3-2 V; (c) Charge/discharge profiles and (d) cyclic performance of Nano NVP@C as both cathode and anode in sodium ion full cell at 2C in 1-2.2 V70
Fig 21 (a) Traditional solid-state way to prepare carbon-coated NVP, (b) soft-chemistry method for double carbon embedded NVP78 TEG: tetraethylene glycol
Fig 22 Electron and sodium ion conduction in (a) NVP particles, (b) NVP@C and (c) nano NVP@C70
Fig 23 (a) 3D hierarchical NVP/C/rGO with meso-and macro-pore provides pathways for Na ions and electrons; (b) schematic of freeze-drying-assisted method to prepare NVP/C/rGO83
Fig 24 Representation of K-doped NVP by doping into Na (6b) site96
Fig 25 Electrochemical signatures of Na3AlyV2-y(PO4)3 upon the insertion and extraction of sodium ions in specific voltage range at 0.05C 99
Fig 26 Schematic representation of sodium insertion/deinsertion for (a) bulk and (b) oriented nanoparticles confined in one dimension73
Fig 27 Schematic routes for preparation of nanoflake-assembled NVP/C hierarchical microflowers50
1 Larcher D. ; Tarascon J. M. Nat. Chem 2015, 7, 19.
2 Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
3 Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
4 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
5 Yang Z. ; Zhang J. ; Kintner-Meyer M. C.W. ; Lu X. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev 2011, 111, 3577.
6 Saravanan K. ; Mason C.W. ; Rudola A. ; Wong K. H. ; Balaya P. Adv. Energy Mater 2013, 3, 444.
7 Palomares V. ; Serras P. ; Villaluenga I. ; Hueso K. B. ; Carretero-González J. ; Rojo T. Energ. Environ. Sci 2012, 5, 5884.
8 Ong S. P. ; Chevrier V. L. ; Hautier G. ; Jain A. ; Moore C. ; Kim S. ; Ma X. ; Ceder G. Energ. Environ. Sci 2011, 4, 3680.
9 Raju V. ; Rains J. ; Gates C. ; Luo W. ; Wang X. ; Stickle W.F. ; Stucky G. D. ; Ji X. Nano Lett 2014, 14, 4119.
10 Slater M. D. ; Kim D. ; Lee E. ; Johnson C. S. Adv. Funct. Mater 2013, 23, 947.
11 Li Z. ; Young D. ; Xiang K. ; Carter W. C. ; Chiang Y. -M. Adv. Energy Mater 2013, 3, 290.
12 Palomares V. ; Casas-Cabanas M. ; Castillo-Martinez E. ; Han M. H. ; Rojo T. Energ. Environ. Sci 2013, 6, 2312.
13 Pan H. ; Hu Y. S. ; Chen L. Energ. Environ. Sci 2013, 6, 2338.
14 Yabuuchi N. ; Kubota K. ; Dahbi M. ; Komaba S. Chem. Rev 2014, 114, 11636.
15 Wang L. ; Lu Y. ; Liu J. ; Xu M. ; Cheng J. ; Zhang D. ; Goodenough J. B. Angew. Chem. Int. Ed 2013, 52, 1964.
16 Kundu D. ; Talaie E. ; Duffort V. ; Nazar L. F. Angew. Chem. Int. Ed. Engl 2015, 54, 3431.
17 Kim S.W. ; Seo D. H. ; Ma X. ; Ceder G. ; Kang K. Adv. Energy Mater 2012, 2, 710.
18 Kim H. ; Hong J. ; Park K. Y. ; Kim H. ; Kim S.W. ; Kang K. Chem. Rev 2014, 114, 11788.
19 Chen J. ; Hou H. ; Yang Y. ; Song W. ; Zhang Y. ; Yang X. ; Lan Q. ; Ji X. Electrochim. Acta 2015, 164, 330.
20 Ye F. P. ; Wang L. ; Lian F. ; He X. M. ; Tian G. Y. ; Ouyang M. G. Chem. Eng. Prog 2013, 1789.
20 叶飞鹏; 王莉; 连芳; 何向明; 田光宇; 欧阳明高. 化工进展, 2013, 1789
21 Zhang N. ; Liu Y. C. ; Chen C. C. ; Tao Z. L. ; Chen J. Chin. J.Inorg. Chem 2015, 31, 1739.
21 张宁; 刘永畅; 陈程成; 陶占良; 陈军. 无机化学学报, 2015, 31, 1739.
22 Cao Y. ; Luo X. ; Yu H. ; Peng F. ; Wang H. ; Ning G. Catalysis Science & Technology 2013, 3, 2654.
23 Komaba S. ; Murata W. ; Ishikawa T. ; Yabuuchi N. ; Ozeki T. ; Nakayama T. ; Ogata A. ; Gotoh K. ; Fujiwara K. Adv. Funct. Mater 2011, 21, 3859.
24 Park Y. U. ; Seo D. H. ; Kwon H. S. ; Kim B. ; Kim J. ; Kim H. ; Kim I. ; Yoo H. I. ; Kang K. J.Am. Chem. Soc 2013, 135, 13870.
25 Goodenough J. B. ; Hong H. Y. P. ; Kafalas J. A. Materials Research Bulletin 1976, 11, 203.
26 Tripathi R. ; Wood S. M. ; Islam M. S. ; Nazar L. F. Energ. Environ. Sci 2013, 6, 2257.
27 Li J. ; Daniel C. ; Wood D. J.Power. Sources 2011, 196, 2452.
28 Kabbour H. ; Coillot D. ; Colmont M. ; Masquelier C. ; Mentre O. J.Am. Chem. Soc 2011, 133, 11900.
29 Ferrari A. C. ; Robertson J. Phys. Rev. B 2001, 63, 121405.
30 Park S. I. ; Gocheva I. ; Okada S. ; Yamaki J. I. J.Electrochem. Soc 2011, 158, A1067.
31 Wang D. ; Liu Q. ; Chen C. ; Li M. ; Meng X. ; Bie X. ; Wei Y. ; Huang Y. ; Du F. ; Wang C. ; Chen G. ACS Appl. Mater. Interfaces 2016, 8, 2238.
32 Shakoor R. A. ; Seo D. H. ; Kim H. ; Park Y. U. ; Kim J. ; Kim S.W. ; Gwon H. ; Lee S. ; Kang K. J.Mater. Chem 2012, 22, 20535.
33 Song W. ; Liu S. Solid State Sciences 2013, 15, 1.
34 Song W. ; Ji X. ; Wu Z. ; Zhu Y. ; Li F. ; Yao Y. ; Banks C. E. RSC Adv 2014, 4, 11375.
35 Jiang T. ; Chen G. ; Li A. ; Wang C. Z. ; Wei Y. J. J.Alloy. Compd 2009, 478, 604.
36 Song W. ; Ji X. ; Pan C. ; Zhu Y. ; Chen Q. ; Banks C. E. Phys. Chem. Chem. Phys 2013, 15, 14357.
37 Jian Z. ; Han W. ; Lu X. ; Yang H. ; Hu Y. S. ; Zhou J. ; Zhou Z. ; Li J. ; Chen W. ; Chen D. ; Chen L. Adv. Energy Mater 2013, 3, 156.
38 Jian Z. ; Zhao L. ; Pan H. ; Hu Y. S. ; Li H. ; Chen W. ; Chen L. Electrochem. Commun 2012, 14, 86.
39 Gopalakrishnan J. ; Rangan K. K. Chem. Mater 1992, 4, 745.
40 Delmas C. ; Olazcuaga R. ; Cherkaoui F. ; Brochu R. ; LeFlem G. C. R.Seances Acad. Sci., Ser. C 1978, 287, 169.
41 Cushing B. L. ; Goodenough J. B. J.Solid State Chem 2001, 162, 176.
42 Zatovsky I. V. Acta Crystallographica. Section E, Structure Reports Online 2010, 66, i12.
43 Lim S. Y. ; Kim H. ; Shakoor R. A. ; Jung Y. ; Choi J.W. J.Electrochem. Soc 2012, 159, A1393.
44 Jian Z. ; Yuan C. ; Han W. ; Lu X. ; Gu L. ; Xi X. ; Hu Y. S. ; Li H. ; Chen W. ; Chen D. ; Ikuhara Y. ; Chen L. Adv. Funct. Mater 2014, 24, 4265.
45 Chotard J. N. ; Rousse G. ; David R. ; Mentré O. ; Courty M. ; Masquelier C. Chem. Mater 2015, 27, 5982.
46 Lalère F. ; Leriche J. B. ; Courty M. ; Boulineau S. ; Viallet V. ; Masquelier C. ; Seznec V. J. J.Power. Sources 2014, 247, 975.
47 Gaubicher J. ; Wurm C. ; Goward G. ; Masquelier C. ; Nazar L. Chem. Mater 2000, 12, 3240.
48 Chen C. ; Wen Y. ; Hu X. ; Ji X. ; Yan M. ; Mai L. ; Hu P. ; Shan B. ; HuangY. Nat. Commun 2016, 6
49 Pivko M. ; Arcon I. ; Bele M. ; Dominko R. ; Gaberscek M. Power. Sources 2012, 216, 145.
50 An Q. ; Xiong F. ; Wei Q. ; Sheng J. ; He L. ; Ma D. ; Yao Y. ; Mai L. Adv. Energy Mater 2015, 5.
51 Du K. ; Guo H. ; Hu G. ; Peng Z. ; Cao Y. J.Power. Sources 2013, 223, 284.
52 Song W. ; Cao X. ; Wu Z. ; Chen J. ; Huangfu K. ; Wang X. ; Huang Y. ; Ji X. Phys. Chem. Chem. Phys 2014, 16, 17681.
53 Cong H. P. ; He J. J. ; Lu Y. ; Yu S. H. Small 2010, 6, 169.
54 Song W. ; Ji X. ; Wu Z. ; Zhu Y. ; Yang Y. ; Chen J. ; Jing M. ; Li F. ; Banks C. E. J.Mater. Chem. A 2014, 2, 5358.
55 Kang J. ; Baek S. ; Mathew V. ; Gim J. ; Song J. ; Park H. ; Chae E. ; Rai A. K. ; Kim J. J.Mater. Chem 2012, 22, 20857.
56 Anantharamulu N. ; Koteswara Rao K. ; Rambabu G. ; VijayaKumar B. ; Radha V. ; Vithal M. J.Mater. Sci 2011, 46, 2821.
57 Yaroslavtsev A. B. ; Stenina I. A. Russian Journal of Inorganic Chemistry 2006, 51, S97.
58 Song H.-K. ; Lee K. T. ; Kim M. G. ; Nazar L. F. ; Cho J. Adv. Funct. Mater 2010, 20, 3818.
59 Song W. ; Ji X. ; Wu Z. ; Zhu Y. ; Yao Y. ; Huangfu K. ; Chen Q. ; Banks C. E. J.Mater. Chem. A 2014, 2, 2571.
60 Rui X. H. ; Ding N. ; Liu J. ; Li C. ; Chen C. H. Electrochim. Acta 2010, 55, 2384.
61 Yang Y. ; Qiao B. ; Yang X. ; Fang L. ; Pan C. ; Song W. ; Hou H. ; Ji X. Adv. Funct. Mater 2014, 24, 4349.
62 Song W. ; Ji X. ; Yao Y. ; Zhu H. ; Chen Q. ; Sun Q. ; Banks C. E. Phys. Chem. Chem. Phys 2014, 16, 3055.
63 Song W. ; Ji X. ; Zhu Y. ; Zhu H. ; Li F. ; Chen J. ; Lu F. ; Yao Y. ; Banks C. E. ChemElectroChem 2014, 1, 871.
64 Santos-Pe?a J. ; Crosnier O. ; Brousse T. Electrochim. Acta 2010, 55, 7511.
65 Lee J.W. ; Hong J. K. ; Kjeang E. Electrochim. Acta 2012, 83, 430.
66 Reddy R. N. ; Reddy R. G. J.Power. Sources 2003, 124, 330.
67 Reddy R. N. ; Reddy R. G. J. Power. Sources 2006, 156, 700.
68 Wang S. ; Zhao J. ; Wang L. ; Liu X. ; Wu Y. ; Xu J. Ionics 2015, 21, 2633.
69 Noguchi Y. ; Kobayashi E. ; Plashnitsa L. S. ; Okada S. ; Yamaki J. I. Electrochim. Acta 2013, 101, 59.
70 Duan W. ; Zhu Z. ; Li H. ; Hu Z. ; Zhang K. ; Cheng F. ; Chen J. J.Mater. Chem. A 2014, 2, 8668.
71 Plashnitsa L. S. ; Kobayashi E. ; Noguchi Y. ; Okada S. ; Yamaki J. I. J.Electrochem. Soc 2010, 157, A536.
72 Jian Z. ; Sun Y. ; Ji X. Chem. Commun 2015, 51, 6381.
73 Kajiyama S. ; Kikkawa J. ; Hoshino J. ; Okubo M. ; Hosono E. Chem. -Eur. J 2014, 20, 12636.
74 Song W. ; Wu Z. ; Chen J. ; Lan Q. ; Zhu Y. ; Yang Y. ; Pan C. ; Hou H. ; Jing M. ; Ji X. Electrochim. Acta 2014, 146, 142.
75 Song W. ; Cao X. ; Wu Z. ; Chen J. ; Zhu Y. ; Hou H. ; Lan Q. ; Ji X. Langmuir 2014, 30, 12438.
76 Song W. ; Ji X. ; Wu Z. ; Yang Y. ; Zhou Z. ; Li F. ; Chen Q. ; Banks C. E. J.Power. Sources 2014, 256, 258.
77 Chen Z. ; Dai C. ; Wu G. ; Nelson M. ; Hu X. ; Zhang R. ; Liu J. ; Xia J. Electrochim. Acta 2010, 55, 8595.
78 Zhu C. ; Song K. ; Van Aken P. A. ; Maier J. ; Yu Y. Nano Lett 2014, 14, 2175.
79 Li S. ; Dong Y. ; Xu L. ; Xu X. ; He L. ; Mai L. Adv. Mater 2014, 26, 3545.
80 Wang W. J. ; Zhao H. B. ; Yuan A. B. ; Fang J. H. ; Xu J. Q. Acta Phys. -Chim. Sin 2014, 30, 1113.
80 王文俊; 赵宏滨; 袁安保; 方建慧; 徐甲强. 物理化学学报, 2014, 30, 1113.
81 Shen W. ; Li H. ; Guo Z. ; Wang C. ; Li Z. ; Xu Q. ; Liu H. ; Wang Y. ; Xia Y. ACS Appl. Mater. Interfaces 2016, 8, 15341.
82 Fang Y. ; Xiao L. ; Ai X. ; Cao Y. ; Yang H. Adv. Mater 2015, 27, 5895.
83 Rui X. ; Sun W. ; Wu C. ; Yu Y. ; Yan Q. Adv. Mater 2015, 27, 6670.
84 Chen D. ; Tang L. ; Li J. Chem. Soc. Rev 2010, 39, 3157.
85 Huang X. ; Qi X. ; Boey F. ; Zhang H. Chem. Soc. Rev 2012, 41, 666.
86 Song W. ; Ji X. ; Deng W. ; Chen Q. ; Shen C. ; Banks C. E. Phys. Chem. Chem. Phys 2013, 15, 4799.
87 Song W. ; Chen J. ; Ji X. ; Zhang X. ; Xie F. ; Riley D. J. J.Mater. Chem. A 2016, 4, 8762.
88 Yang Y. ; Ji X. ; Yang X. ; Wang C. ; Song W. ; Chen Q. ; Banks C. E. RSC Adv 2013, 3, 16130.
89 Jung Y. H. ; Lim C. H. ; Kim D. K. J.Mater. Chem. A 2013, 1, 11350.
90 Guo J. Z. ; Wu X. L. ; Wan F. ; Wang J. ; Zhang X. H. ; Wang R. S. Chem. -Eur. J 2015, 21, 17371.
91 Xu Y. ; Wei Q. ; Xu C. ; Li Q. ; An Q. ; Zhang P. ; Sheng J. ; Zhou L. ; Mai L. Adv. Energy Mater 2016.
92 Zhang W. ; Liu Y. ; Chen C. ; Li Z. ; Huang Y. ; Hu X. Small 2015, 11, 3822.
93 Choi M. S. ; Kim H. S. ; Lee Y. M. ; Lee S. M. ; Jin B. S. J Nanosci. Nanotechno 2015, 15, 8937.
94 Jiang Y. ; Yang Z. ; Li W. ; Zeng L. ; Pan F. ; Wang M. ; Wei X. ; Hu G. ; Gu L. ; Yu Y. Adv. Energy Mater 2015, 5, 1402104.
95 Chu Z. ; Yue C. Solid State Ionics 2016, 287, 36.
96 Lim S. J. ; Han D.W. ; Nam D. H. ; Hong K. S. ; Eom J. Y. ; Ryu W. H. ; Kwon H. S. J.Mater. Chem. A 2014, 2, 19623.
97 Mouahid F. E. ; Zahir M. ; Maldonado-Manso P. ; Bruque S. ; Losilla E. R. ; Aranda M. A. G. ; Rivera A. ; Leon C. ; Santamaria J. J.Mater. Chem 2001, 11, 3258.
98 Aragón M. J. ; Lavela P. ; Ortiz G. F. ; Tirado J. L. J. Electrochem. Soc 2015, 162, A3077.
99 Lalere F. ; Seznec V. ; Courty M. ; David R. ; Chotard J. N. ; Masquelier C. J.Mater. Chem. A 2015, 3, 16198.
100 Aragón M. J. ; Lavela P. ; Ortiz G. F. ; Tirado J. L. ChemElectroChem 2015, 2, 995.
101 Li H. ; Bai Y. ; Wu F. ; Ni Q. ; Wu C. Solid State Ionics 2015, 278, 281.
102 Liu J. ; Tang K. ; Song K. ; van Aken P. A. ; Yu Y. ; Maier J. Nanoscale 2014, 6, 5081.
[1] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[2] Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO,Jing-Juan XU,Hong-Yuan CHEN. New Developments in Photoelectrochemical Bioanalysis[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 476-485.
[3] LI Xue-Qin, CHANG Lin, ZHAO Shen-Long, HAO Chang-Long, LU Chen-Guang, ZHU Yi-Hua, TANG Zhi-Yong. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 130-148.
[4] MIAO Sheng-Yi, WANG Xian-Fu, YAN Cheng-Lin. Self-Roll-Up Technology for Micro-Energy Storage Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 18-27.
[5] WU Wen-Hao, HUANG Xin-Yu, YAO Rui-Min, CHEN Ren-Jie, LI Kai, ZOU Ru-Qiang. Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 255-261.
[6] YANG Ze, ZHANG Wang, SHEN Yue, YUAN Li-Xia, HUANG Yun-Hui. Next-Generation Energy Storage Technologies and Their Key Electrode Materials[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1062-1071.
[7] LIU Lin, LI Zhi-Sheng, HU Hui-Dong, SONG Wei-Li. Insight into Macroscopic Metal-Assisted Chemical Etching for Silicon Nanowires[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 1019-1028.
[8] Lü Jing-Mei, CHENG Xuan. Electrochemical Behavior of Porous and Flat Silicon Electrode Interfaces[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 711-716.
[9] XU Juan, LIU Jia-Qin, LI Jing-Wei, WANG Yan, Lü Jun, WU Yu-Cheng. Controlled Synthesis and Supercapacitive Performance of Heterostructured MnO2/H-TiO2 Nanotube Arrays[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2545-2554.
[10] LIANG Jia-Xu, XIAO Zhi-Chang, ZHI Lin-Jie. Graphenal Polymers: 3D Carbon-Rich Polymers as Energy Materials with Electronic and Ionic Transport Pathways[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2390-2398.
[11] ZHU Qing-Gong, SUN Xiao-Fu, KANG Xin-Chen, MA Jun, QIAN Qing-Li, HAN Bu-Xing. Cu2S on Cu Foam as Highly Efficient Electrocatalyst for Reduction of CO2 to Formic Acid[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 261-266.
[12] XU Zhen, CHEN Yu, ZHANG Zhao, ZHANG Jian-Qing. Progress of Research on Underpotential Deposition—— I. Theory of Underpotential Deposition[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1219-1230.
[13] LI Wen-You, HE Yun-Qiu, LI Yi-Ming. Photoelectric Properties of Graphene Oxide Film Prepared with the Electrochemical Method Using Varying Levels of Reduction[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 457-466.
[14] YANG Yu-Wen, FENG Gang, LU Zhang-Hui, HU Na, ZHANG Fei, CHEN Xiang-Shu. In situ Synthesis of Reduced Graphene Oxide Supported Co Nanoparticles as Efficient Catalysts for Hydrogen Generation from NH3BH3[J]. Acta Physico-Chimica Sinca, 2014, 30(6): 1180-1186.
[15] ZHAO Wei-Rong, ZENG Wan-Yun, XI Hai-Ping, YU Xian-Xian. Photocatalytic Degradation of Gas-Phase Toluene over CuO Loaded BiVO4 Hollow Nanospheres under Visible-light Irradiation[J]. Acta Physico-Chimica Sinca, 2014, 30(4): 761-767.