Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2785-2793    DOI: 10.3866/PKU.WHXB201608304
ARTICLE     
Synthesis and Photocatalytic Characterization of Porous Cu-Doped ZnO Nanorods
Yuan-You WANG1,2,Guo-Qiang ZHOU1,Long ZHANG1,Tian-Qing LIU1,*()
1 Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, School of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu Province, P. R. China
2 Department of Chemical Engineering, Yangzhou Polytechnic Institute, Yangzhou 225127, Jiangsu Province, P. R. China
Download: HTML     PDF(4603KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A two-step method was developed for the selective synthesis of porous ZnO nanorods (undoped and Cu doped):first, Zn[C6H4(COO)2]·H2O and Cu doped Zn[C6H4(COO)2]·H2O nanorods were synthesized via the hydrothermal reaction of Zn(NO3)2·6H2O, NaOH, KHC8H4O4, and Cu(NO3)2·3H2O at 120℃ for 6 h; second, porous undoped and doped ZnO nanorods were obtained by thermal decomposition of the precursors in air at 500℃ for 2 h, respectively. The porous ZnO nanorods were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), and ultraviolet-visible (UV-Vis) spectroscopy. The photocatalytic degradation of rhodamine B (RhB) aqueous solution shows that the porous Cu-doped ZnO nanorods have the highest photodegradation performance with visible light and acetaldehyde (CH3CHO) gas degradation. These results are because of the special interface structures of the catalysts and fast separation of its photogenerated charge carriers. These favorable photocatalytic properties of the doped microstructures demonstrate their potential for degradation of wastewater and aldehydes.



Key wordsSemiconductor      Cu-doped ZnO      Nanorod      Photocatalysis     
Received: 27 June 2016      Published: 30 August 2016
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21505118);Natural Science Foundation of Jiangsu Province, China(BK2150438);Jiangsu Key Laboratory of Environmental Material and Environmental Engineering, China(K13065);Priority Academic Program Development of Jiangsu Higher Education Institutions, Senior Visiting Scholar Program of Jiangsu Higher Vocational College, China(2015FX089);Qing Lan Project of Jiangsu Province, China
Corresponding Authors: Tian-Qing LIU     E-mail: tqliu@yzu.edu.cn
Cite this article:

Yuan-You WANG,Guo-Qiang ZHOU,Long ZHANG,Tian-Qing LIU. Synthesis and Photocatalytic Characterization of Porous Cu-Doped ZnO Nanorods. Acta Physico-Chimica Sinca, 2016, 32(11): 2785-2793.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201608304     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2785

 
SampleAtomic ratio of Cu/ZnSBET/(m2·g-1)Pore size/nm
pure ZnO0.0004.898.31
1% (x) Cu-doped ZnO0.0096.927.96
2% (x) Cu-doped ZnO0.02512.245.95
5% (x) Cu-doped ZnO0.04612.495.98
 
 
 
 
 
 
Samplekr/min-1r2
pure ZnO3.88 × 10-40.95
1% (x) Cu-doped ZnO0.002170.93
2% (x) Cu-doped ZnO0.003120.94
5% (x) Cu-doped ZnO0.039610.95
10% (x) Cu-doped ZnO0.021610.96
 
 
1 Ai Z. H. ; Huang Y. ; Lee S. C. ; Zhang L. Z. J. Alloy. Compd. 2011, 509, 2044.
2 Guo Q. ; Zhou C. Y. ; Ma Z. B. ; Ren Z. F. ; Fan H. J. ; Yang X. M. Acta Phys. -Chim. Sin. 2016, 32, 28.
2 郭庆; 周传耀; 马志博; 任泽峰; 樊红军; 杨学明. 物理化学学报, 2016, 32, 28.
3 Liao Y. C. ; Xie C. S. ; Liu Y. ; Chen H. ; Li H. Y. ; Wu J. Ceram. Int. 2012, 38, 4437.
4 Tian H. ; He J. H. ; Liu L. L. ; Wang D. H. ; Hao Z. P. ; Ma C. Y. Microporous Mesoporous Mat. 2012, 151, 397.
5 Yang L. P. ; Liu Z. Y. ; Shi J.W. ; Zhang Y. Q. ; Hu H. ; Shang W. F. Sep. Purif. Technol 2007, 54, 204.
6 You Y. ; Zhang S. Y. ; Wan L. ; Xu D. F. Appl. Surf. Sci. 2012, 258, 3469.
7 Zhang L. ; Fu H. ; Zhang C. ; Zhu Y. J. Solid State Chem. 2006, 179, 804.
8 Zhou J. ; Mullins D. R. Surf. Sci. 2006, 600, 1540.
9 Zhu Y. ; Yu F. ; Man Y. ; Tian Q. ; He Y. ; Wu N. J. Solid State Chem. 2005, 178, 224.
10 Sakatani Y. ; Ando H. ; Okusako K. ; Koike H. ; Nunoshige J. ; Takata T. ; Kondo J. N. ; Hara M. ; Domen K. J. Mater. Res. 2004, 19, 2100.
11 Zhao W. ; Ma W. ; Chen C. ; Zhao J. ; Shuai Z. J. Am. Chem. Soc. 2004, 126, 4782.
12 Sakatani Y. ; Nunoshige J. ; Ando H. ; Okusako K. ; Koike H. ; Takata T. ; Kondo J. N. ; Hara M. ; Domen K. Chem. Lett. 2003, 32, 1156.
13 Li X. K. ; Ma D. D. ; Zheng Y. P. ; Zhang H. ; Ding D. ; Chen M. S. ; Wan H. L. Acta Phys. -Chim. Sin. 2015, 31, 1753.
13 李晓坤; 马冬冬; 郑燕萍; 张宏; 丁丁; 陈明树; 万惠霖. 物理化学学报, 2015, 31, 1753.
14 Bu Y. Y. ; Chen Z. Y. RSC Adv. 2014, 4, 45397.
15 Bettinelli M. ; Dallacasa V. ; Falcomer D. ; Fornasiero P. ; Gombac V. ; Montini T. ; Romano L. ; Speghini A. J. Hazard. Mater. 2007, 146, 529.
16 Yang X. ; Cao C. ; Hohn K. ; Erickson L. ; Maghirang R. ; Hamal D. ; Klabunde K. J. Catal. 2007, 252, 296.
17 Akpan U. G. ; Hameed B. H. J. Hazard. Mater. 2009, 170, 520.
18 Hayata K. ; Gondalb M. A. ; Khaleda M. M. ; Ahmedc S. ; Shemsi A. M. Appl. Catal. A: Gen. 2011, 393, 122.
19 Chen S. F. ; Zhao W. ; Liu W. ; Zhang S. J. Appl. Surf. Sci. 2008, 255, 2478.
20 Rehman S. ; Ullah R. ; Butt A. M. ; Gohar N. D. J. Hazard. Mater. 2009, 170, 560.
21 Xu C. ; Cao L. ; Su G. ; Liu W. ; Qu X. ; Yu Y. J. Alloy. Compd. 2010, 497, 373.
22 Dindar B. ; I?li S. J. Photochem. Photobiol. A: Chem. 2001, 140, 263.
23 Yu J. Y. ; Zhuang S. D. ; Xu X. Y. ; Zhu W. C. ; Feng B. ; Hu J. G. J. Mater. Chem. A 2015, 3, 1199.
24 Liang G. F. ; Hu L.W. ; Feng W. P. ; Li G. D. ; Jing A. H. Appl. Surf. Sci. 2014, 296, 158.
25 Xue H. ; Chen Y. ; Xu X. L. ; Zhang G. H. ; Zhang H. ; Ma S. Y. Phys. E 2009, 41, 788.
26 Kamalianfar A. ; Halim S. A. ; Azak K. Ceram. Int. 2014, 40, 3193.
27 Guo Q. ; Minton T. K. ; Yang X. M. Chin. J. Catal 2015, 36, 1649.
27 郭庆; MintonT.K.; 杨学明. 催化学报, 2015, 36, 1649.
28 Rajneesh M. ; Karthikeyan K. ; Sang-Jae K. Solid State Commun. 2012, 152, 375.
29 Sahu D. ; Panda N. R. ; Acharya B. S. ; Panda A. K. Ceram. Int. 2014, 40, 11041.
30 Yang M. Q. ; He J. H. J. Colloid Interface Sci. 2011, 355, 15.
31 Li X. J. ; Sheng J. Y. ; Chen H. H. ; Xu Y. M. Acta Phys. -Chim. Sin. 2015, 31, 540.
31 李晓金; 盛珈怡; 陈海航; 许宜铭. 物理化学学报, 2015, 31, 540.
32 Pawar R. C. ; Choi D. H. ; Lee J. S. ; Lee C. S. Mater. Chem. Phys. 2015, 151, 167.
33 Yang M. ; He J. J. Colloid Interface Sci. 2011, 355, 15.
34 Zhang Y. ; Chen L. ; Zheng Z. ; Yang F. Solid State Sci. 2009, 11, 1265.
35 Segal S. R. ; Suib S. L. ; Foland L. Chem. Mater. 1997, 9, 2526.
36 Zhang W. ; Yang Z. ; Wang X. ; Zhang Y. ; Wen X. ; Yang S. Catal. Commun. 2006, 7, 408.
37 Chu F. H. ; Huang C.W. ; Hsin C. L. ; Wang C.W. ; Yu S. Y. ; Ye P.H. ; Wu W. W. Nanoscale 2012, 4, 1471.
38 Liu Y. ; Zhao N. ; Gao W. RSC Adv. 2013, 3, 21666.
39 Macwan D. P. ; Dave P. N. ; Chaturvedi S. J. Mater. Sci. 2011, 46, 3669.
[1] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 296-302.
[2] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[3] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[4] Xue-Jiao HU,Guan-Bin GAO,Ming-Xi ZHANG. Gold Nanorods——from Controlled Synthesis and Modification to Nano-Biological and Biomedical Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1324-1337.
[5] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[6] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[7] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 399-406.
[8] Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 314-328.
[9] Jun-Jun CHEN,Cheng-Wu SHI,Zheng-Guo ZHANG,Guan-Nan XIAO,Zhang-Peng SHAO,Nan-Nan LI. 4.81%-Efficiency Solid-State Quantum-Dot Sensitized Solar Cells Based on Compact PbS Quantum-Dot Thin Films and TiO2 Nanorod Arrays[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2029-2034.
[10] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2072-2081.
[11] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2082-2091.
[12] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 80-102.
[13] LU Yang. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2185-2196.
[14] ZHAO Fei, SHI Lin-Qi, CUI Jia-Bao, LIN Yan-Hong. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2069-2076.
[15] MENG Ying-Shuang, AN Yi, GUO Qian, GE Ming. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2077-2083.