Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 130-148    DOI: 10.3866/PKU.WHXB201609012
REVIEW     
Research on Carbon-Based Electrode Materials for Supercapacitors
Xue-Qin LI1,2,Lin CHANG2,Shen-Long ZHAO2,Chang-Long HAO2,Chen-Guang LU2,*(),Yi-Hua ZHU1,*(),Zhi-Yong TANG2,*()
1 Key Laboratory for Ultrafine Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai 200237, P. R. China
2 CAS Key Laboratory for Nanosystem and Hierarchy Fabrication, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
Download: HTML     PDF(2582KB) Export: BibTeX | EndNote (RIS)      

Abstract  

As a new type of energy storage device, supercapacitors with high specific capacitance, fast charge and discharge, and long cycle life have attracted significant attention in the energy storage field. Electrode materials are a crucial factor defining the electrochemical performance of supercapacitors. The standard supercapacitor electrode materials used can be classified into three types:carbon-based materials, metal oxides and hydroxide materials, and conductive polymers. This review introduces the principles of supercapacitors and summarizes recent research progress of carbon-based electrode materials, including pure carbon materials, and the binary and ternary complex materials with carbon.



Key wordsSupercapacitor      Energy storage mechanism      Carbon material      Electrode material     
Received: 13 June 2016      Published: 01 September 2016
MSC2000:  O643  
Fund:  National Key Basic Research Program of China (973)(2014CB931801);National Natural Science Foundation of China(21676093);National Natural Science Foundation of China(21471056);National Natural Science Foundation of China(21473044);National Natural Science Foundation of China(21475029);National Natural Science Foundation of China(91427302);Instrument Developing Project of the Chinese Academy of Sciences(YZ201311);CAS-CSIRO Cooperative Research Program(GJHZ1503);"Strategic Priority Research Program" of ChineseAcademy of Sciences(XDA09040100)
Corresponding Authors: Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG     E-mail: LUCG@nanoctr.cn.;yhzhu@ecust.edu.cn;zytang@nanoctr.cn
Cite this article:

Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609012     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/130

Fig 1 Ragone plots for various electrochemical energy storage devices9
Fig 2 Scheme of two different charge storage mechanisms11 (a) electrochemical double-layer capacitance (EDLC); (b) redox reactions based pseudocapacitance
Fig 3 Capacitive performance of various electrode materials reported in the literature22
Fig 4 Schematic representation of construction of nanoporous materials from MOFs with two-step method and direct carbonization of MOFs49
Fig 5 Schematic illustration of the carbonization procedure of MOF-5 infiltrated with FA precursors47
Fig 6 Synthetic scheme for the preparation of ZIF-8@ZIF-6755 (a) ZIF-8 crystals and NC, (b) ZIF-67 crystals and GC, (c) core-shell ZIF-8@ZIF-67 crystals and NC@GC
Fig 7 Carbon nanotubes applied in supercapacitor electrode materials (a) rolled design of the separator with SWNT films and (b) the resulting compact-designed supercapacitor65; (c) conductive textiles are fabricated by dipping textile into an aqueous SWNT ink followed by drying in oven at 120 °C for 10 min; (d) a thin, 10 cm × 10 cm textile conductor based on a fabric sheet with 100% cotton68
Fig 8 Supercapacitor performance of the typical GN-GH81 (a) cycle voltammetry (CV) curves for different scan rates; (b) Galvanostatic charge/discharge curves of the GN-GH supercapacitor under different constant currents; (c) plot of specific capacitance versus discharging current density; (d) Nyquist plots of a typical GN-GH and G-GH supercapacitors
Fig 9 Flexible FGH thin film electrodes82 (a) digital photograph of a flexible functionalized graphene hydrogel (FGH) thin film electrode; (b) low-and (c) high-magnification SEM images of interior microstructures of the FGH film; (d) digital photograph of a FGH-based flexible solid-state supercapacitor; (e) a schematic diagram of the solid-state device with H2SO4-PVA polymer gel as the electrolyte and separator. PVA: polyvinyl alcohol
Fig 10 Structures of N-doped ordered mesoporous few-layer carbon and related materials83 (a) fabrication schematic of ordered mesoporous few-layer carbon (OMFLC); (b) possible locations for N incorporation into a few-layer carbon network; high-angle annular dark-field transmission electron microscopy (TEM) images of (c) ordered mesoporous carbon (OMC) and (d) OMFLC; (e) high-resolution TEM image of OMFLC
Fig 11 CNTs@MnO2 nanocomposites directly grown on nickel foam92, 93 (a, b) scanning electron microscopy (SEM) images of CNTs@MnO2 core-shell nanostructures grown on nickel foam, insets show the corresponding local 3D structures in low magnifications; (c, d) TEM and HRTEM images of a partial coverage of the MnO2 nanosheets on the surface of CNTs; (e, f) electrochemical properties of the as-prepared CNTs@MnO2 core-shell nanocomposite electrode
Fig 12 SEM images of MnO2-graphene composites with different structures (a) graphene nanosheets/MnO2 23; (b) graphene nanoribbons/MnO2 94-96; (c) partially exfoliated graphite/MnO2 97; (d) 3D graphene hydrogel/MnO2 98
Fig 13 3D GA/TiO2 nanocomposites99 (a) SEM images of 3D GA/TiO2 hybrids, inset in (a) is the image of the monolithic GA/TiO2 product after freeze-drying; (b) TEM image of GA/TiO2 hybrids; (c) CV curves of AC, GA, GA/TiO2 in 0.1 mol?L-1 NaCl solution at a scan rate of 100 mV?s-1; (d) the specific capacitance of AC, GA, GA/TiO2 at different scan rates
Fig 14 MoS2/PPy-n nanocomposites104 TEM images of (a) as-exfoliated MoS2 monolayers; (b, c) MoS2/PPy-2 nanocomposites; (d) pure polypyrrole; (e) fabrication process of MoS2/PPy-n nanocomposites
Fig 15 Scheme of hybrid ternary electrodes based on carbon/metal oxides/conducting polymers (a) schematic of MnO2/CNTs/PEDOT-PSS ternary composite material, (b) TEM of PEDOT-PSS dispersed MnO2 nano spheres in situ grown on CNTs; 110 (c) schematic illustration showing the conductive wrapping of graphene/MnO2 (GM) to introduce an additional electron transport path, (d) typical SEM image showing graphene/MnO2/PEDOT:PSS nanostructures (GMP)111. PEDOT-PSS: poly (3, 4-ethylenedioxythiophene)-polystrene sulfonate
Fig 16 Hybrid ternary thin film electrode based on graphene/MnO2/CNTs composites17 (a) SEM and (b) TEM images of the interconnected structure formed by the graphene/MnO2 composite (red arrows) and fFWNTs (white arrows); (c) cross-sectional SEM image and a picture (inserted at the top right corner) of the film showing the flexibility of these structures; (d) typical stress-strain curve for the graphene/MnO2/CNT composite film with 25% (w) of fFWNTs. color online
1 Wang G. ; Zhang L. ; Zhang J. Chem. Soc. Rev 2012, 41, 797.
2 Simon P. ; Gogotsi Y. Nat. Mater 2008, 7, 845.
3 Chu S. ; Majumdar A. Nature 2012, 488, 294.
4 Arico A. S. ; Bruce P. ; Scrosati B. ; Tarascon J. M. ; VanSchalkwijk W. Nat. Mater 2005, 4, 366.
5 Yang Z. ; Zhang J. ; Kintner Meyer M. C. ; Lu X. ; Choi D. ; Lemmon J. P. ; Liu J. Chem. Rev 2011, 111, 3577.
6 Winter M. ; Brodd R. J.Chem. Rev 2004, 104, 4245.
7 Zhang Y. ; Gui Y. ; Wu X. ; Feng H. ; Zhang A. ; Wang L. ; Xia T. Int. J.Hydrog. Energy 2009, 34, 2467.
8 Miller J. R. ; Simon P. Science Magazine 2008, 321, 651.
9 Service R. F. Science 2006, 313, 902.
10 Conway B. Electrochemical Supercapacitors-ScientificFundamentals and Technological Applications New York: Plenum Press, 1999, pp 11- 30.
11 Long J.W. ; Bélanger D. ; Brousse T. ; Sugimoto W. ; Sassin M. B. ; Crosnier O. Mrs. Bull 2011, 36, 513.
12 Yu G. ; Xie X. ; Pan L. ; Bao Z. ; Cui Y. Nano Energy 2013, 2, 213.
13 Bhattacharjya D. ; Yu J. S. J.Power Sources 2014, 262, 224.
14 Yi H. ; Wang H. ; Jing Y. ; Peng T. ; Wang X. J. Power Sources 2015, 285, 281.
15 Fan W. ; Xia Y. Y. ; Tjiu W.W. ; Pallathadka P. K. ; He C. ; Liu T. J.Power Sources 2013, 243, 973.
16 Wang H. ; Gao Q. ; Hu J. Microporous Mesoporous Mat 2010, 131, 89.
17 Cheng Y. ; Lu S. ; Zhang H. ; Varanasi C. V. ; Liu J. Nano Lett 2012, 12, 4206.
18 Soin N. ; Roy S. S. ; Mitra S. K. ; Thundat T. ; McLaughlin J.A. J.Mater. Chem 2012, 22, 14944.
19 Wang B. ; Chen J. S. ; Wang Z. ; Madhavi S. ; Lou X.W. D. Adv. Eng. Mater 2012, 2, 1188.
20 Yuan C. ; Yang L. ; Hou L. ; Shen L. ; Zhang X. ; Lou X.W.D. Energy Environ. Sci 2012, 5, 7883.
21 Naoi K. ; Morita M. Electrochem. Soc. Interface 2008, 17, 44.
22 Naoi K. ; Simon P. Electrochem. Soc. Interface 2008, 17, 34.
23 Wu Z. S. ; Ren W. ; Wang D.W. ; Li F. ; Liu B. ; Cheng H. M. ACS Nano 2010, 4, 5835.
24 Sivakkumar S. ; Kim W. J. ; Choi J. A. ; MacFarlane D. R. ; Forsyth M. ; Kim D.W. J.Power Sources 2007, 171, 1062.
25 Chen P. C. ; Shen G. ; Shi Y. ; Chen H. ; Zhou C. ACS Nano 2010, 4, 4403.
26 Yan J. ; Wang Q. ; Wei T. ; Fan Z. Adv. Eng. Mater 2014, 4, 1300816.
27 Wei L. ; Sevilla M. ; Fuertes A. B. ; Mokaya R. ; Yushin G. Adv. Eng. Mater 2011, 1, 356.
28 Yan J. ; Wei T. ; Qiao W. ; Fan Z. ; Zhang L. ; Li T. ; Zhao Q. Electrochem. Commun 2010, 12, 1279.
29 Wei L. ; Sevilla M. ; Fuertes A. B. ; Mokaya R. ; Yushin G. Adv. Funct. Mater 2012, 22, 827.
30 Ania C. O. ; Khomenko V. ; Raymundo Pi?ero E. ; Parra J. B. ; Béguin F. Adv. Funct. Mater 2007, 17, 1828.
31 Zhou H. C. ; Long J. R. ; Yaghi O. M. Chem. Rev 2012, 112, 673.
32 Sakata Y. ; Furukawa S. ; Kondo M. ; Hirai K. ; Horike N. ; Takashima Y. ; Uehara H. ; Louvain N. ; Meilikhov M. ; Tsuruoka T. Science 2013, 339, 193.
33 Tranchemontagne D. J. ; Mendoza Cortés J. L. ; O'Keeffe M. ; Yaghi O. M. Chem. Soc. Rev 2009, 38, 1257.
34 Perry Iv J. J. ; Perman J. A. ; Zaworotko M. J. Chem. Soc. Rev 2009, 38, 1400.
35 O'Keeffe M. Chem. Soc. Rev 2009, 38, 1215.
36 Furukawa H. ; Ko N. ; Go Y. B. ; Aratani N. ; Choi S. B. ; Choi E. ; Yazaydin A. ?. ; Snurr R. Q. ; O'Keeffe M. ; Kim J. Science 2010, 329, 424.
37 Farha O. K. ; Yazayd?n A. ?. ; Eryazici I. ; Malliakas C. D. ; Hauser B. G. ; Kanatzidis M. G. ; Nguyen S. T. ; Snurr R. Q. ; Hupp J. T. Nat. Chem 2010, 2, 944.
38 Farha O. K. ; Eryazici I. ; Jeong N. C. ; Hauser B. G. ; Wilmer C. E. ; Sarjeant A. A. ; Snurr R. Q. ; Nguyen S. T. ; Yazayd?n A. O. Z. R. ; Hupp J. T. J.Am. Chem. Soc 2012, 134, 15016.
39 Zhao X. ; Xiao B. ; Fletcher A. J. ; Thomas K. M. ; Bradshaw D. ; Rosseinsky M. J. Science 2004, 306, 1012.
40 Sumida K. ; Rogow D. L. ; Mason J. A. ; McDonald T. M. ; Bloch E. D. ; Herm Z. R. ; Bae T. H. ; Long J. R. Chem. Rev 2011, 112, 724.
41 Yoon M. ; Srirambalaji R. ; Kim K. Chem. Rev 2011, 112, 1196.
42 Lee J. ; Farha O. K. ; Roberts J. ; Scheidt K. A. ; Nguyen S. T. ; Hupp J. T. Chem. Soc. Rev 2009, 38, 1450.
43 Yanai N. ; Kitayama K. ; Hijikata Y. ; Sato H. ; Matsuda R. ; Kubota Y. ; Takata M. ; Mizuno M. ; Uemura T. ; Kitagawa S. Nat. Mater 2011, 10, 787.
44 Chen B. ; Yang Y. ; Zapata F. ; Lin G. ; Qian G. ; Lobkovsky E. B. Adv. Mater 2007, 19, 1693.
45 Sadakiyo M. ; ōkawa H. ; Shigematsu A. ; Ohba M. ; Yamada T. ; Kitagawa H. J.Am. Chem. Soc 2012, 134, 5472.
46 Horcajada P. ; Chalati T. ; Serre C. ; Gillet B. ; Sebrie C. ; Baati T. ; Eubank J. F. ; Heurtaux D. ; Clayette P. ; Kreuz C. Nature Mater 2010, 9, 172.
47 Liu B. ; Shioyama H. ; Akita T. ; Xu Q. J.Am. Chem. Soc 2008, 130, 5390.
48 Li S.L. ; Xu Q. Energy Environ. Sci 2013, 6, 1656.
49 Chaikittisilp W. ; Ariga K. ; Yamauchi Y. J.Mater. Chem. A 2013, 1, 14.
50 Liu B. ; Shioyama H. ; Jiang H. ; Zhang X. ; Xu Q. Carbon 2010, 48, 456.
51 Jin S. L. ; Deng H. G. ; Liang Z. ; Qiao W. M. ; Ling L. C. New Carbon Mater 2012, 27, 87.
52 Hu J. ; Wang H. ; Gao Q. ; Guo H. Carbon 2010, 48, 3599.
53 Jiang H. L. ; Liu B. ; Lan Y. Q. ; Kuratani K. ; Akita T. ; Shioyama H. ; Zong F. ; Xu Q. J.Am. Chem. Soc 2011, 133, 11854.
54 Hu M. ; Reboul J. ; Furukawa S. ; Torad N. L. ; Ji Q. ; Srinivasu P. ; Ariga K. ; Kitagawa S. ; Yamauchi Y. J.Am. Chem. Soc 2012, 134, 2864.
55 Tang J. ; Salunkhe R. R. ; Liu J. ; Torad N. L. ; Imura M. ; Furukawa S. ; Yamauchi Y. J.Am. Chem. Soc 2015, 137, 1572.
56 Dresselhaus M. S. ; Dresselhaus G. ; Eklund P. C. Science of Fullerenes and Carbon Nanotubes: Their Properties and Applications San Diego: Academic Press, 1996, pp 757- 870.
57 Saito R. ; Dresselhaus G. ; Dresselhaus M. J. Appl. Phys 1993, 73, 494.
58 Issi J. P. ; Langer L. ; Heremans J. ; Olk C. Carbon 1995, 33, 941.
59 Niu C. ; Sichel E. K. ; Hoch R. ; Moy D. ; Tennent H. Appl. Phys. Lett 1997, 70, 1480.
60 Ebbesen T. ; Lezec H. ; Hiura H. ; Bennett J. ; Ghaemi H. ; Thio T. Nature 1996, 382, 54.
61 Zhang L. L. ; Zhao X. Chem. Soc. Rev 2009, 38, 2520.
62 An H. F. ; Wang X. Y. ; Li N. ; Zheng L. P. ; Chen Q. Q. Prog. Chem 2009, 21, 1832.
62 安红芳; 王先友; 李娜; 郑丽萍; 陈权启. 化学进展, 2009, 21, 1832.
63 Meng F. ; Ding Y. Adv. Mater 2011, 23, 4098.
64 Fu Y. ; Cai X. ; Wu H. ; Lv Z. ; Hou S. ; Peng M. ; Yu X. ; Zou D. Adv. Mater 2012, 24, 5713.
65 Niu Z. ; Zhou W. ; Chen J. ; Feng G. ; Li H. ; Ma W. ; Li J. ; Dong H. ; Ren Y. ; Zhao D. Energy Environ. Sci 2011, 4, 1440.
66 Kaempgen M. ; Chan C. K. ; Ma J. ; Cui Y. ; Gruner G. Nano Lett 2009, 9, 1872.
67 Hu L. ; Wu H. ; Cui Y. Appl. Phys. Lett 2010, 96, 183502.
68 Hu L. ; Pasta M. ; Mantia F. L. ; Cui L. ; Jeong S. ; Deshazer H. D. ; Choi J.W. ; Han S. M. ; Cui Y. Nano Lett 2010, 10, 708.
69 Brown B. ; Parker C. B. ; Stoner B. R. ; Grill W. M. ; Glass J.T. J.Electrochem. Soc 2011, 158, K217.
70 Zhang H. ; Cao G. ; Yang Y. Energy Environ. Sci 2009, 2, 932.
71 Jiang H. ; Ma J. ; Li C. Adv. Mater 2012, 24, 4197.
72 Novoselov K. S. ; Geim A. K. ; Morozov S. ; Jiang D. ; Zhang Y. ; Dubonos S. A. ; Grigorieva I. ; Firsov A. Science 2004, 306, 666.
73 Allen M. J. ; Tung V. C. ; Kaner R. B. Chem. Rev 2009, 110, 132.
74 Rao C. E. N. E. R. ; Sood A. E. K. ; Subrahmanyam K. E. S. ; Govindaraj A. Angew. Chem. Int. Edit 2009, 48, 7752.
75 Chen D. ; Tang L. ; Li J. Chem. Soc. Rev 2010, 39, 3157.
76 Lee C. ; Wei X. ; Kysar J.W. ; Hone J. Science 2008, 321, 385.
77 Hu C. ; Song L. ; Zhang Z. ; Chen N. ; Feng Z. ; Qu L. Energy Environ. Sci 2015, 8, 31.
78 Dai L. Accounts Chem. Res 2012, 46, 31.
79 Wassei J. K. ; Kaner R. B. Accounts Chem. Res 2013, 46, 2244.
80 Huang X. ; Zeng Z. ; Fan Z. ; Liu J. ; Zhang H. Adv. Mater 2012, 24, 5979.
81 Chen P. ; Yang J. J. ; Li S. S. ; Wang Z. ; Xiao T. Y. ; Qian Y.H. ; Yu S. H. Nano Energy 2013, 2, 249.
82 Xu Y. ; Lin Z. ; Huang X. ; Wang Y. ; Huang Y. ; Duan X. Adv. Mater 2013, 25, 5779.
83 Lin T. Q. ; Chen I.W. ; Liu F. X. ; Yang C. Y. ; Bi H. ; Xu F.F. ; Huang F. Q. Science 2015, 350 1508.
84 Conway B. ; Birss V. ; WojtowiczJ. J. Power Sources 1997, 66, 1.
85 Wang X. F. ; Wang D. Z. ; Liang J. Rare Metal Mat. Eng 2003, 32, 424.
85 王晓峰; 王大志; 梁吉. 稀有金属材料与工程, 2003, 32, 424.
86 Wu Z. S. ; Wang D.W. ; Ren W. ; Zhao J. ; Zhou G. ; Li F. ; Cheng H. M. Adv. Funct. Mater 2010, 20, 3595.
87 Hsieh T. F. ; Chuang C. C. ; Chen W. J. ; Huang J. H. ; Chen W. T. ; Shu C. M. Carbon 2012, 50, 1740.
88 Bélanger D. ; Brousse L. ; Long J.W. Electrochem. Soc. Interface 2008, 17, 49.
89 Jiang H. ; Zhao T. ; Ma J. ; Yan C. ; Li C. Chem. Commun 2011, 47, 1264.
90 Toupin M. ; Brousse T. ; Bélanger D. Chem. Mater 2004, 16, 3184.
91 Ghodbane O. ; Ataherian F. ; Wu N. L. ; Favier F. J. Power Sources 2012, 206, 454.
92 Huang M. ; Li F. ; Dong F. ; Zhang Y. X. ; Zhang L. L. J.Mater. Chem. A 2015, 3, 21380.
93 Huang M. ; Mi R. ; Liu H. ; Li F. ; Zhao X. L. ; Zhang W. ; He S. X. ; Zhang Y. X. J. Power Sources 2014, 269, 760.
94 Shi K. ; Zhitomirsky I. ChemElectroChem 2015, 2, 396.
95 Shi K. ; Ren M. ; Zhitomirsky I. ACS Sustainable Chem. Eng 2014, 2, 1289.
96 Liu M. ; Tjiu W.W. ; Pan J. ; Zhang C. ; Gao W. ; Liu T. Nanoscale 2014, 6, 4233.
97 Song Y. ; Feng D. Y. ; Liu T. Y. ; Li Y. ; Liu X. X. Nanoscale 2015, 7, 3581.
98 Zhu S. ; Zhang H. ; Chen P. ; Nie L. H. ; Li C. H. ; Li S. K. J.Mater. Chem. A 2014, 3, 1540.
99 Yin H. ; Zhao S. ; Wan J. ; Tang H. ; Chang L. ; He L. ; Zhao H. ; Gao Y. ; Tang Z. Adv. Mater 2013, 25, 6270.
100 Reddy A. L. M. ; Ramaprabhu S. J.Phys. Chem. C 2007, 111, 7727.
101 Dubal D. P. ; Lee S. H. ; Kim J. G. ; Kim W. B. ; Lokhande C.D. J. Mater. Chem 2012, 22, 3044.
102 Liao Y. ; Zhang C. ; Zhang Y. ; Strong V. ; Tang J. ; Li X. G. ; Kalantar Zadeh K. ; Hoek E. M. ; Wang K. L. ; Kaner R. B. Nano Lett 2011, 11, 954.
103 Zhang J. ; Jiang J. ; Li H. ; Zhao X. Energy Environ. Sci 2011, 4, 4009.
104 Tang H. ; Wang J. ; Yin H. ; Zhao H. ; Wang D. ; Tang Z. Adv. Mater 2015, 27, 1117.
105 Yi H. ; Wang H. ; Jing Y. ; Peng T. ; Wang Y. ; Guo J. ; He Q. ; Guo Z. ; Wang X. J.Mater. Chem. A 2015, 3, 19545.
106 Su Y. Z. ; Xiao K. ; Li N. ; Liu Z. Q. ; Qiao S. Z. J.Mater. Chem. A 2014, 2, 13845.
107 Chen G. F. ; Su Y. Z. ; Kuang P. Y. ; Liu Z. Q. ; Chen D. Y. ; Wu X. ; Li N. ; Qiao S. Z. Chemistry 2015, 21, 4614.
108 Zhu Z. ; Jiang H. ; Guo S. ; Cheng Q. ; Hu Y. ; Li C. Sci. Rep 2015, 5, 15936.
109 Zhu Z. ; Hu Y. ; Jiang H. ; Li C. J.Power Sources 2014, 246, 402.
110 Hou Y. ; Cheng Y. ; Hobson T. ; Liu J. Nano Lett 2010, 10, 2727.
111 Yu G. ; Hu L. ; Liu N. ; Wang H. ; Vosgueritchian M. ; Yang Y. ; Cui Y. ; Bao Z. Nano Lett 2011, 11, 4438.
112 Li L. ; Li R. ; Gai S. ; Gao P. ; He F. ; Zhang M. ; Chen Y. ; Yang P. J.Mater. Chem. 2015, 3, 15642.
113 Zhi J. ; Zhao W. ; Liu X. ; Chen A. ; Liu Z. ; Huang F. Adv. Funct. Mater 2014, 24, 2013.
[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[3] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[4] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 670-690.
[5] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[6] Chun-Rong LIAO,Feng XIONG,Xian-Jun LI,Yi-Qiang WU,Yong-Feng LUO. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[7] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[8] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[9] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[10] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[11] Meng SUN,Jing-Hong LI. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 198-210.
[12] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1593-1603.
[13] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[14] Yong-Fang WANG,Song-Lin ZUO. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 481-492.
[15] You-Cheng LIN,Xin-Xian ZHONG,Han-Xing HUANG,Hong-Qiang WANG,Qi-Peng FENG,Qing-Yu LI. Preparation and Application of Polyaniline Doped with Different Sulfonic Acids for Supercapacitor[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 474-480.