Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (11): 2737-2744    DOI: 10.3866/PKU.WHXB201609072
ARTICLE     
Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries
Shou-Pu ZHU1,2,Tian WU1,2,Hai-Ming SU1,2,Shan-Shan QU1,2,Yong-Juan XIE1,2,Ming CHEN1,2,*(),Guo-Wang DIAO1,2,*()
1 College of Chemistry and Chemical Engineering, Yangzhou University, Yangzhou 225002, Jiangsu Province, P. R. China
2 Key Laboratory of Environmental Materials & Environmental Engineering of Jiangsu Province, Yangzhou 225002, Jiangsu Province, P. R. China
Download: HTML     PDF(7432KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Fe3O4/rGO nanocomposites were prepared by hydrothermal method using Fe(OH)3 as precursor of magnetite nanoparticles, graphene oxide (GO) as precursor of reduced graphene oxide (rGO), hydrazine and trisodium citrate as mixed reducing agent. The morphologies, structures and compositions of the products were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD) and thermogravimetric analysis (TGA). The electrochemical characteristics of assembled coin-type cells versus metallic lithium were evaluated by cyclic voltammetry and galvanostatic charge-discharge. The uniform morphology, high reductive level of rGO and the role of rGO buffering the volume changes of Fe3O4 nanoparticles in the charging-discharging process can be responsible for the good electrochemical performance of Fe3O4/rGO nanocomposites.



Key wordsLithium ion battery      Nanocomposite      Magnetite      Graphene      Anode material     
Received: 27 June 2016      Published: 07 September 2016
MSC2000:  O646  
Corresponding Authors: Ming CHEN,Guo-Wang DIAO     E-mail: chenming@yzu.edu.cn;gwdiao@yzu.edu.cn
Cite this article:

Shou-Pu ZHU,Tian WU,Hai-Ming SU,Shan-Shan QU,Yong-Juan XIE,Ming CHEN,Guo-Wang DIAO. Hydrothermal Synthesis of Fe3O4/rGO Nanocomposites as Anode Materials for Lithium Ion Batteries. Acta Phys. -Chim. Sin., 2016, 32(11): 2737-2744.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609072     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2737

Fig 1 Scheme of Fe3O4/rGO nanocomposite forming process
Fig 2 X-ray diffraction (XRD) patterns of Fe3O4/rGO nanocomposites and Fe3O4 nanoparticles, and standard XRD pattern of Fe3O4 (a) and thermogravimetric curves of Fe3O4/rGO nanocomposites (b)
Fig 3 Transmission electron microscopy (TEM) image of Fe3O4/rGO nanocomposites (a) and relevant magnification (b), TEM image of Fe3O4 nanoparticles (c), scanning electron microscopy (SEM) image of Fe3O4/rGO nanocomposites (d) and relevant magnification (e)
Fig 4 TEM image of Fe3O4/rGO nanocomposites and electron-diffraction pattern (a), representative high-resolution transmission electron microscope (HRTEM) image (b) and partial enlargement (c)
Fig 5 C 1s (a, c) and O 1s (b, d) XPS spectra and deconvoluted peaks of rGO and GO
Fig 6 Cycling curves of electrodes of Fe3O4/rGO nanocomposites, Fe3O4 nanoparticles and rGO nanosheets at a current density of 0.5 A?g-1 (a); discharge/charge profiles of Fe3O4/rGO electrode (b); discharge/charge profiles of rGO electrode (c); rate capability of the Fe3O4/rGO electrode at various current densities from 0.05 to 2.0 A?g-1 (d) and discharge/charge profiles (e)
Fig 7 TEM images of Fe3O4/rGO nanocomposites (a) and Fe3O4 nanoparticles (b) after 50 cycles at a current density of 0.5 A?g-1
Fig 8 Cyclic voltammetry (CV) curves of Fe3O4/rGO nanocomposites cycled between 0.01 and 3 V at a scan rate of 0.5 mV?s-1
1 Zhang L. ; Wu H. B. ; Lou X.W. D. Adv. Energy Mater. 2014, 4 (4), 1032.
2 Ji L.W. ; Lin Z. ; Alcoutlabi M. ; Zhang X. W. Energy Enviro. Sci. 2011, 4 (8), 2682.
3 Yoshio M. ; Wang H. Y. ; Fukuda K. ; Hara Y. ; Adachi Y. J. Electrochem. Soc. 2000, 147 (4), 1245.
4 Armstrong M. J. ; O'Dwyer C. ; Macklin W. J. ; Holmes J. D. Nano Res. 2014, 7, 1.
5 Wu H. B. ; Chen J. S. ; Hng H. H. ; Lou X.W. D. Nanoscale 2012, 4, 2526.
6 Wu Z. S. ; Ren W. C. ; Wen L. ; Gao L. B. ; Zhao J. P. ; Chen Z. P. ; Zhou G. M. ; Li F. ; Cheng H. M. ACS Nano 2010, 4 (6), 3187.
7 Wang H. ; Cui L. F. ; Yang Y. ; Sanchez Casalongue H. S. ; Robinson J. T. ; Liang Y. ; Cui Y. ; Dai H. J. Am. Chem. Soc. 2010, 132 (40), 13978.
8 Feng K. ; Ahn W. ; Lui G. ; Park H.W. ; Kashkooli A. G. ; Jiang G. P. ; Wang X. L. ; Xiao X. C. ; Chen Z. W. Nano Energy 2016, 19 (187)
9 Mai Y. J. ; Wang X. L. ; Xiang J. Y. ; Qiao Y. Q. ; Zhang D. ; Gu C. D. ; Tu J. P. Electrochim. Acta 2011, 56 (5), 2306.
10 Bai L. ; Fang F. ; Zhao Y. Y. ; Liu Y. G. ; Li J. P. ; Huang G. Y. ; Sun H. Y. RSC Adv. 2014, 4 (81), 43039.
11 Wu Z. S. ; Zhou G. M. ; Yin L. C. ; Ren W. C. ; Li F. ; Cheng H. M. Nano Energy 2012, 1 (1), 107.
12 Paek S. M. ; Yoo E. J. ; Honma I. Nano Lett. 2008, 9 (1), 72.
13 Zhou X. ; Wan L. J. ; Guo Y. G. Adv. Mater. 2013, 25 (15), 2152.
14 Zhu X. J. ; Zhu Y.W. ; Murali S. ; Stoller M. D. ; Ruoff R. S. J. Power Sources 2011, 196 (15), 6473.
15 Sun Y. ; Hu X. ; Luo W. ; Huang Y. ACS Nano 2011, 5 (9), 7100.
16 Zhu X. J. ; Hu J. ; Dai H. L. ; Ding L. ; Jiang L. Electrochim. Acta 2012, 64 (23)
17 Zou Y. Q. ; Wang Y. Nanoscale 2011, 3 (6), 2615.
18 Sun Y. M. ; Hu X. L. ; Luo W. ; Xia F. F. ; Huang Y. H. Adv. Funct. Mater. 2013, 23 (19), 2436.
19 Zhou W.W. ; Ding C. Y. ; Jia X. T. ; Tian Y. ; Guan Q. T. ; Wen G. W. Mater. Res. Bull. 2015, 62, 19.
20 Xiao L. ; Schroeder M. ; Kluge S. ; Balducci A. ; Hagemann U. ; Schulz C. ; Wiggers H. J. Mater. Chem. A 2015, 3 (21), 11566.
21 Wang L. L. ; Chen Q. S. ; Zhu Y. C. ; Qian Y. T. Chin. Sci. Bull. 2014, 59 (32), 4271.
22 Chen G. ; Rodriguez R. ; Fei L. ; Xu Y. ; Deng S. G. ; Smirnov S. ; Luo H. M. J. Power Sources 2014, 259, 227.
23 Liu S. K. ; Chen Z. X. ; Xie K. ; Li Y. J. ; Xu J. ; Zheng C. M. J. Mater. Chem. A 2014, 2 (34), 13942.
24 Du M. ; Xu C. H. ; Sun J. ; Gao L. J. Mater. Chem. A 2013, 1 (24), 7154.
25 Li T. ; Long Z. H. ; Zhang D. H. Acta Phys. -Chim. Sin. 2016, 32 (2), 573.
25 李婷; 龙志辉; 张道洪. 物理化学学报, 2016, 32 (2), 573.
26 Zhu S. ; Chen M. ; Ren W. ; Yang J. ; Qu S. ; Li Z. ; Diao G. New J. Chem. 2015, 39 (10), 7923.
27 Chang Y. H. ; Li J. ; Wang B. ; Luo H. ; Zhi L. J. J. Mater. Sci. Technol. 2014, 30 (8), 759.
28 Liu J. L. ; Feng H. B. ; Wang X. P. ; Qian D. ; Jiang J. B. ; Li J. H. ; Peng S. J. ; Deng M. ; Liu Y. C. Nanotechnology 2014, 25 (22), 225401.
29 Li X. Y. ; Huang X. L. ; Liu D. P. ; Wang X. ; Song S. Y. ; Zhou L. ; Zhang H. J. J. Phys. Chem. C 2011, 115 (44), 21567.
30 Dong Y. C. ; Ma R. G. ; Hu M. J. ; Cheng H. ; Tsang C. K. ; Yang Q. D. ; Li Y. Y. ; Zapien J. A. J. Solid State Chem. 2013, 201, 330.
31 He C. ; Wu S. ; Zhao N. ; Shi C. ; Liu E. ; Li J. ACS Nano 2013, 7, 4459.
32 Wang J. Z. ; Zhong C. ; Wexler D. ; Idris N. H. ; Wang Z. X. ; Chen L. Q. ; Liu H. K. Chem. -Eur. J. 2011, 17, 661.
33 Piao Y. ; Kim H. S. ; Sung Y. E. ; Hyeon T. Chem. Commun. 2010, 46 (1), 118.
34 Yang Z. ; Shen J. ; Archer L. J. Mater. Chem. 2011, 21 (30), 11092.
35 Marcano D. C. ; Kosynkin D. V. ; Berlin J. M. ; Sinitskii A. ; Sun Z. ; Slesarev A. ; Alemany L. B. ; Lu W. ; Tour J. M. ACS Nano 2010, 4 (8), 4806.
36 Ganguly A. ; Sharma S. ; Papakonstantinou P. ; Hamilton J. J. Phys. Chem. C 2011, 115 (34), 17009.
37 Wang L. ; Yu Y. ; Chen P. C. ; Zhang D.W. ; Chen C. H. J. Power Sources 2008, 183, 717.
38 Li X. ; Li Q. ; Li D. ; Wang X. ; Xie W. ; He D. J. Mater. Chem. A 2013, 1, 6400.
39 Laruelle S. ; Grugeon S. ; Poizot P. ; Dolle M. ; Dupont L. ; Tarascon J. M. J. Electrochem. Soc. 2002, 149 (5), A627.
40 Zhou G. ; Wang D.W. ; Hou P. X. ; Li W. ; Li N. ; Liu C. ; Li F. ; Cheng H. M. J. Mater. Chem. 2012, 22 (34), 17942.
[1] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.
[2] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[3] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[4] Chengzhen SUN,Bofeng BAI. Selective Permeation of Gas Molecules through a Two-Dimensional Graphene Nanopore[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1136-1143.
[5] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[6] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1822-1827.
[7] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[8] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1621-1627.
[9] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1628-1634.
[10] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[11] Lei WANG,Fei YU,Jie MA. Design and Construction of Graphene-Based Electrode Materials for Capacitive Deionization[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1338-1353.
[12] Mei-Song WANG,Pei-Pei ZOU,Yan-Li HUANG,Yuan-Yuan WANG,Li-Yi DAI. Three-Dimensional Graphene-Based Pt-Cu Nanoparticles-Containing Composite as Highly Active and Recyclable Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1230-1235.
[13] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 845-852.
[14] Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 554-562.
[15] Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 520-529.