Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2811-2818    DOI: 10.3866/PKU.WHXB201609131
ARTICLE     
Molecular Simulations on Dynamic Binding of Ibuprofen onto Site II of Human Serum Albumin: One Potential Way Analysis
Shi-Wen XU,Dong-Qiang LIN*(),Shan-Jing YAO
Download: HTML     PDF(3318KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Human serum albumin (HSA) has two main drug binding sites termed Site I and Site II. Most small molecules like ibuprofen (a well-known anti-inflammatory drug) bind to Site II preferentially. In this study, molecular simulation methods were used to investigate the dynamic binding process of ibuprofen to Site II. A system of 50 ibuprofen molecules distributed randomly around HSA was constructed. After a 50-ns molecular dynamics simulation, one ibuprofen molecule bound stably to Site II. Based on trajectory analysis of this ibuprofen molecule, the binding process of ibuprofen onto Site II can be divided into four phases:(i) long-range attraction; (ii) adjustment on the surface; (iii) entering to Site II pocket; and (iv) stable binding at Site II. After evaluating van der Waals' and electrostatic interaction energies during the binding process, it was found that the initial major driving force involves electrostatic attractions. Subsequently, ibuprofen locks between two polar regions on the surface near Site II and then moves to Site II. Ibuprofen then enters the pocket of Site II by combinatorial effects of polar and hydrophobic residues nearby the entrance of Site II. Electrostatic and hydrophobic interactions form the stable binding of ibuprofen in Site II. The molecular surface near Site II was observed to change significantly during binding, which indicates an induced fit mechanism. The binding mode obtained with molecular simulations is consistent with the crystal structure of the ibuprofen-HSA complex. The results show that molecular simulations would help to evaluate the dynamic binding processes of small molecules to proteins and improve our understanding of the binding mechanisms at the molecular level.



Key wordsHuman serum albumin      Site II      Ibuprofen      Dynamic binding      Molecular simulation     
Received: 25 May 2016      Published: 13 September 2016
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21476198);the National Natural Science Foundation of China(21276228);the National Natural Science Foundation of China(21576233)
Corresponding Authors: Dong-Qiang LIN     E-mail: lindq@zju.edu.cn
Cite this article:

Shi-Wen XU,Dong-Qiang LIN,Shan-Jing YAO. Molecular Simulations on Dynamic Binding of Ibuprofen onto Site II of Human Serum Albumin: One Potential Way Analysis. Acta Physico-Chimica Sinca, 2016, 32(11): 2811-2818.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609131     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2811

Fig 1 HSA (a), ibuprofen (b), and the ibuprofen-HSA binding (c)
Fig 2 Distance between ibuprofen and the center of Site Ⅱ and the interaction energies of ibuprofen on to Site Ⅱ of HSA color online
Fig 3 Isopotential surface of HSA at pH 7.4 and the position of ibuprofen molecule at different simulation time The red triangle mesh represents for the electrostatic potential of -0.2kT/e, and blue for 0.2kT/e. color online
Fig 4 Comparition on the electrostatic interaction energies of two polar regions
Fig 5 Binding modes of ibuprofen on the surface of HSA at 6 ns (a) and 16 ns (b)
Fig 6 Electrostatic interaction energies of three key residues at the binding phase Ⅲ
Fig 7 Binding modes of ibuprofen on the entrance of site Ⅱ at the binding phase Ⅲ (16.5 ns (a), 17.3 ns (b), and 18 ns (c)) Hydrogen bonds are in yellow (color online).
Fig 8 Comparison on the binding modes of ibuprofen on site Ⅱ of HSA (a) simulation at 30 ns; (b) crystal structure of 2BXG. Same key polar residues are in blue and same hydrophobic residues in orange. The different top-10 residues are in pink. color online
1 Sudlow G. ; Birkett D. J. ; Wade D. N. Mol. Pharmacol. 1975, 11 (6), 824.
2 He X. M. ; Carter D. C. Nature 1992, 358 (6683), 209.
3 Ghuman J. ; Zunszain P. A. ; Petitpas I. ; Bhattacharya A. A. ; Otagiri M. ; Curry S. J. Mol. Biol. 2005, 353 (1), 38.
4 Bradley J. D. ; Brandt K. D. ; Katz B. P. ; Kalasinski L. A. ; Ryan S. I. New Engl. J. Med. 1991, 325 (2), 87.
5 Xu S.W. ; Lin D. Q. ; Yao S. J. Acta Phys. -Chim. Sin. 2016, 32 (7), 1819.
5 徐诗文; 林东强; 姚善泾. 物理化学学报, 2016, 32 (7), 1819.
6 Gustafsson S. S. ; Vrang L. ; Terelius Y. ; Danielson U. H. Anal. Biochem. 2011, 409 (2), 163.
7 Yang F. ; Zhang Y. ; Liang H. Int. J. Mol. Sci. 2014, 15 (3), 3580.
8 Varshney A. ; Sen P. ; Ahmad E. ; Rehan M. ; Subbarao N. ; Khan R. H. Chirality 2010, 22 (1), 77.
9 Aghaee, E.; Ghasemi, J. B.; Manouchehri, F.; Balalaie, S. 2014, 20 (10), 1. doi: 10.1007/s00894-014-2446-7
10 Guo Q. L. ; Pan L. L. ; Yang L. Y. ; He H. ; Zhang Y. Z. ; Liu Y. Acta Phys. -Chim. Sin. 2016, 32 (1), 274.
10 郭清莲; 潘凌立; 杨立云; 何欢; 张业中; 刘义. 物理化学学报, 2016, 32 (1), 274.
11 Wu S. G. ; Gao X. T. ; Li Q. ; Liao J. ; Xu C. G. Acta Phys. -Chim. Sin. 2015, 31 (9), 1803.
11 伍绍贵; 高晓彤; 李权; 廖杰; 徐成刚. 物理化学学报, 2015, 31 (9), 1803.
12 Zhang J.W. ; Zhou J. G. ; Lü H. ; Huang Q. Acta Phys. -Chim. Sin. 2015, 31 (6), 1169.
12 张俊威; 周峻岗; 吕红; 黄强. 物理化学学报, 2015, 31 (6), 1169.
13 Anandakrishnan R. ; Aguilar B. ; Onufriev A. V. Nucl. Acids Res. 2012, 40 (W1)
14 Discovery Studio 3.0; Accelrys Inc.: San Diego, CA.
15 Mayo S. L. ; Olafson B. D. ; Goddard W. A. J. Phys. Chem. 1990, 94 (26), 8897.
16 MarvinSketchv 5.3.2; ChemAxon Ltd.: Hungary.
17 Martinez L. ; Andrade R. ; Birgin E. G. ; Martinez J. M. J. Comput. Chem. 2009, 30 (13), 2157.
18 Pronk S. ; Pall S. ; Schulz R. ; Larsson P. ; Bjelkmar P. ; Apostolov R. ; Shirts M. R. ; Smith J. C. ; Kasson P. M. ; Vander Spoel D. Bioinformatics 2013, 29 (7), 845.
19 Berendsen H. J. C. ; Postma J. P. M. ; van Gunsteren W. F. ; Hermans J. Intermolecular Forces Springer Netherlands: Jerusalem, Israel 1981, 11, pp 331- 342.
20 Bussi G. ; Donadio D. ; Parrinello M. J. Chem. Phys. 2007, 126 (1), 014101.
21 Parrinello M. ; Rahman A. J. Appl. Phys. 1981, 52 (12), 7182.
22 Darden T. ; York D. ; Pedersen L. J. Chem. Phys. 1993, 98 (12), 10089.
23 Ryckaert J. P. ; Ciccotti G. ; Berendsen H. J. C. J. Comput. Phys. 1977, 23 (3), 327.
24 Rehman M. T. ; Shamsi H. ; Khan A. U. Mol. Pharm. 2014, 11 (6), 1785.
25 Dantas D. S. ; Oliveira J. I. N. ; Neto J. X. L. ; Costa R. F. D. ; Bezerra E. M. ; Freire V. N. ; Caetano W. S. E. ; Fulco U. L. ; Albuquerque E. L. RSC Adv. 2015, 5 (61), 49439.
[1] Bangzhi WEI,Zhiyong GUO,Fan WANG,Aimin HUANG,Lin MA. Effects of Polyethyleneimine on the Conformation and Binding Capability of Human Serum Albumin[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 185-193.
[2] Wei-Guo DAI,Dan-Nong HE. Selective Photoelectrochemical Oxidation of Chiral Ibuprofen Enantiomers[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 960-967.
[3] Ai-Jing LI,Wei XIE,Ming WANG,Si-Chuan XU. Molecular Dynamics of Dopamine to Transmit through Molecular Channels within D3R[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 927-940.
[4] Yi WANG,Nan-Fang JIA,Sheng-Li QI,Guo-Feng TIAN,De-Zhen WU. Synthesis, Characterization and Memory Performance of Naphthalimides Containing Various Electron-Withdrawing Moieties[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2227-2236.
[5] XU Shi-Wen, LIN Dong-Qiang, YAO Shan-Jing. Evaluation of Molecular Binding Modes on Site II of Human Serum Albumin[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1819-1828.
[6] Xiao-Long LIU,Xiao-Xia LI,Song HAN,Xian-Jie QIAO,Bei-Jing ZHONG,Li GUO. Initial Reaction Mechanism of RP-3 High Temperature Oxidation Simulated with ReaxFF MD[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1424-1433.
[7] CUI Da-Chao, REN Wei-Tong, LI Wen-Fei, WANG Wei. Metadynamics Simulations of Mg2+ Transfer in the Late Stage of the Adenylate Kinase Catalytic Cycle[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 429-435.
[8] LU Xiang, CHEN Xun, WANG Ya-Shun, TAN Yuan-Yuan, GAOMU Zi-Yuan. Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2523-2530.
[9] GUO Qing-Lian, PAN Ling-Li, YANG Li-Yun, HE Huan, ZHANG Ye-Zhong, LIU Yi. Thermodynamics of the Interaction of Imidacloprid with Human Serum Albumin[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 274-282.
[10] ZHAO Meng-Yao, YANG Xue-Ping, YANG Xiao-Ning. Molecular Dynamics Simulation of Water Molecules in Confined Slit Pores of Graphene[J]. Acta Physico-Chimica Sinca, 2015, 31(8): 1489-1498.
[11] WU Xuan-Jun, ZHAO Peng, FANG Ji-Min, WANG Jie, LIU Bao-Shun, CAI Wei-Quan. Simulation on the Hydrogen Storage Properties of New Doping Porous Aromatic Frameworks[J]. Acta Physico-Chimica Sinca, 2014, 30(11): 2043-2054.
[12] HE Wen-Ying, YAO Xiao-Jun, HUA Ying-Jie, HUANG Guo-Lei, WU Xiu-Li, LI Xiao-Bao, HAN Chang-Ri, SONG Xiao-Ping . Effect of Kolavenic Acid on the Structure of Human Serum Albumin[J]. Acta Physico-Chimica Sinca, 2014, 30(11): 2142-2148.
[13] BIAN Fu-Yong, ZHANG Ji-Wei, WANG Dan, XU Si-Chuan. Molecular Dynamics Simulation of the Permeation of Methyldopa through POPC Phospholipid Bilayer Membrane[J]. Acta Physico-Chimica Sinca, 2014, 30(10): 1947-1956.
[14] LIU Yuan, LONG Mei, XIE Meng-Xia. Mechanism of Interaction between Chrysin and Different Configurations of Human Serum Albumin[J]. Acta Physico-Chimica Sinca, 2013, 29(12): 2647-2654.
[15] HUANG Yong-Qi, KANG Xue, XIA Bing, LIU Zhi-Rong. Mechanism of 3D Domain Swapping for Mpro-C: Clues from Molecular Simulations[J]. Acta Physico-Chimica Sinca, 2012, 28(10): 2411-2417.