Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (11): 2709-2716    DOI: 10.3866/PKU.WHXB201609132
ARTICLE     
An Improvement of the SAM Dispersion Correction in the APF-D Density Functional Method for Studying Intermolecular Interactions
Yu HE1,2,Yi-Bo WANG1,2,*()
1 Key Laboratory of High Performance Computational Chemistry, Guiyang 550025, P. R. China
2 Network and Information Center of Guizhou University, Guiyang 550025, P. R. China
Download: HTML     PDF(4224KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Austin-Petersson-Frisch (APF) is a new hybrid density functional method that combines B3PW91 and PBE0. APF-D provides an additional empirical dispersion correction method based on a spherical atom model (SAM), which is different from the Grimme's empirical dispersion correction method. APF-D accurately describes the binding energy and the potential energy surfaces of complexes of noble gas atoms and small hydrocarbon dimers. However, APF-D is not accepted as a standard method to study intermolecular interactions because the results often show a large deviation from the normal range when using the APF-D method to calculate the binding energy of hydrogen bonded complexes, C-H…π and ππ interactions. Our research identified that such a deviation arises from some long-range dispersion that has been double counted by the APF function and the SAM dispersion correction. Therefore, we propose an improved APF-D method, termed APF-D*. By taking advantage of ζ, which is independent of SAM dispersion, we were able to solve effectively the problem of excessive dispersion compensation in APF-D. By comparing the results from S66 and L7 benchmark sets, we find that APF-D* greatly improved the precision of calculations over the traditional APF-D method. The overall accuracy of APF-D* was found to be comparable to or better than current leading DFT methods, such as B3LYP-D3 and ωB97X-D. However, both B3LYP-D3 and ωB97X-D have a much larger computational cost than APF-D*. We believe that APF-D* is a better method to calculate of the intermolecular energy of large molecules.



Key wordsDFT-D      APF functional      SAM dispersion correction     
Received: 11 July 2016      Published: 13 September 2016
MSC2000:  O641  
Fund:  the Natural Science Foundation of Guizhou Province, China(20082116)
Corresponding Authors: Yi-Bo WANG     E-mail: ybw@gzu.edu.cn
Cite this article:

Yu HE,Yi-Bo WANG. An Improvement of the SAM Dispersion Correction in the APF-D Density Functional Method for Studying Intermolecular Interactions. Acta Physico-Chimica Sinca, 2016, 32(11): 2709-2716.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609132     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I11/2709

Fig 1 Sandwich, T-shaped, and parallel-displaced configurations of benzene-naphthalene complex
S T Pd
ΔEHF 21.74 6.36 23.71
ΔEAPF 11.04 0.67 11.75
ΔEAPF corr -10.70 -5.69 -11.96
ΔESAM disp -32.90 -21.16 -34.45
ΔEAPF-D disp -43.61 -26.84 -46.41
ΔECCSD(T) corr 16 -38.72 -24.25 -41.35
ΔEAPF-D* disp, ζ=0.86 -39.00 -23.88 -41.59
Table 1 Bind energy (kJ?mol-1) decompositions for different configurations of benzene-naphthalene complex using aug-cc-pVQZ basis set
Fig 3 Comparison of calculation precision of APF-D* and APF-D for different basis sets based on S66 data set
Fig 2 Correlation of resistance factor (ζ) and the bind energies of APF-D* method
Method MD/(kJ?mol-1) MAD/(kJ?mol-1) RMSD/(kJ?mol-1)
APF-D/6-311++G(2d, p) -2.80 2.81 3.27
APF-D/aug-cc-pVDZ -2.60 2.63 3.24
APF-D/aug-cc-pVTZ -2.48 2.51 3.19
APF-D/def2-QZVP -2.64 2.66 3.32
APF-D/def2-TZVPP -2.70 2.72 3.39
APF-D*/6-311++G(2d, p) -0.79 1.20 1.77
APF-D*/aug-cc-pVDZ -0.60 1.07 1.80
APF-D*/aug-cc-pVTZ -0.48 1.12 1.90
APF-D*/def2-QZVP -0.64 1.18 1.96
APF-D*/def2-TZVPP -0.69 1.21 2.03
ωB97X-D/6311++G(3df, 3pd) -1.27 1.39 1.88
B3LYP-D3/def2-QZVP -0.93 0.96 1.50
Table 2 Calculated errors of APF-D, APF-D*, ωB97X-D and B3LYP-D3 methods with respect to the benchmark CCSD(T)/CBS calculations on the S66 data set
Fig 4 Comparison of calculated precision of APF-D* and B3LYP-D3 with ωB97X-D based on S66 data set
ΔE(QCISD(T)/CBS)16 ΔE/(APF-D/BS1) APF-D*/BS1 ωB97X-D/BS2 B3LYP-D3/BS3 ΔE(M06-2X/BS3)27 ΔE(M06-2XD3/BS3)27
(kJ·mol-1) (kJ·mol-1) ΔE/(kJ·mol-1) Time/min ΔE/(kJ·mol-1) Time/min ΔE/(kJ·mol-1) Time/min (kJ·mol-1) (kJ·mol-1)
C2C2PD -101.85 -119.99 -98.92 102 -98.92 1080 -97.84 1683 -70.45 -85.92
C3A -76.05 -89.60 -74.84 205 -75.84 1603 -74.51 2527 -53.85 -66.73
C3GC -130.66 -154.36 -128.31 329 -127.69 1095 -128.52 3802 -99.01 -121.25
CBH -46.24 -57.15 -47.04 43 -58.70 264 -54.94 746 -19.69 -34.41
GCGCa -60.08 -73.54 -59.50 48 -61.84 231 -63.22 838 -48.46 -59.70
GGG -10.03 -13.04 -7.90 26 -8.57 138 -7.94 594 -2.72 -7.15
PHE -107.70 -112.43 -106.07 83 -107.12 522 -108.54 1108 -97.75 -107.16
MD/(kJ·mol-1) -12.50 1.42 -0.88 -0.42 20.11 7.19
MAD/(kJ·mol-1) 12.50 1.67 3.18 3.22 20.11 7.19
RMSD/(kJ·mol-1) 14.17 1.84 5.06 4.01 22.28 9.07
Table 3 Calculated errors of the studied methods with respect to the benchmark QCISD(T)/CBS calculations on the L7 data set
Fig 5 Dissociation energy curves of the Adenine-Thymine complex in the π-π stacked and Watson-Crick conformations using CCSD(T), APF-D, and APF-D* methods
1 Lewars, E. G. Computational Chemistry: Introduction to the Theory and Applications of Molecular and Quantum Mechanics; Kluwer Academic Publishers: Massachusetts, 2010; pp 5―6.
2 Zhao Y. ; Truhlar D. G. J. Chem. Theory Comput. 2005, 1, 415.
3 Xu X. ; Goddard W. A. J. Phys. Chem. A 2004, 108, 2305.
4 Frey J. A. ; Leutwyler S. Chim. Int. J. Chem 2005, 59, 511.
5 Rezac J. ; Hobza P. Chem. Rev. 2016, 116, 5038.
6 Grimme S. ; Hansen A. ; Brandenburg J. G. ; Bannwarth C. Chem. Rev 2016, 116 (SI), 5105.
7 Grimme S. ; Antony J. ; Ehrlich S. ; Krieg H. J. Chem. Phys. 2010, 132, 154104.
8 Chai J. D. ; Head-Gordon M. Phys. Chem. Chem. Phys. 2008, 10, 6615.
9 Burns L. A. ; Vázquez-Mayagoitia A. ; Sumpter B. G. ; Sherrill D. J. Chem. Phys. 2011, 134, 95.
10 Austin A. ; Petersson G. A. ; Frisch M. J. ; Dobek F. J. ; Scalmani G. ; Throssell K. J. Chem. Theory Comput. 2012, 8, 4989.
11 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision D.01; Gaussian Inc.:Wallingford CT, 2009.
12 Mardirossian N. ; Head-Gordon M. J. Chem. Phys. 2015, 142, A1113.
13 Mardirossian N. ; Head-Gordon M. J. Chem. Phys. 2016, 144, 214110.
14 Rezac J. ; Riley K. E. ; Hobza P. J. Chem. Theory Comput. 2011, 7, 2427.
15 Sedlak R. ; Janowski T. ; Pitonak M. ; Rezac J. ; Pulay P. ; Hobza P. J. Chem. Theory Comput 2013, 9, 3364.
16 Wang W. Z. ; Sun T. ; Zhang Y. ; Wang Y. B. J. Chem. Phys. 2015, 143, 4145.
17 Su P. ; Li H. J. Chem. Phys 2009, 131, 014102.
18 Jurecak P. ; Sponer J. ; Cemy J. ; Hobza P. Phys. Chem. Chem. Phys 2006, 8, 1985.
19 Takatani T. ; Hohenstein E. G. ; Malagoli M. ; Marshall M. S. ; Sherrill C. D. J. Chem. Phys 2010, 132, 1290.
20 Podeszwa R. ; Patkowski K. ; Szalewicz K. Phys. Chem. Chem. Phys. 2010, 12, 5974.
21 Carter D. J. ; Rohl A. L. J. Chem. Theory Comput. 2012, 8, 281.
22 Dunning T. H. J. Chem. Phys. 1989, 90, 1007.
23 Kendall R. A. ; Dunning T. H. ; Harrison R. J. J. Chem. Phys. 1992, 96, 6796.
24 Woon D. E. ; Dunning T. H. J. Chem. Phys. 1993, 98, 1358.
25 Weigend F. ; Ahlrichs R. Phys. Chem. Chem. Phys 2005, 7, 3297.
26 Boys S. F. ; Bernardi F. Mol. Phys 1970, 19, 553.
27 BEGDB online database, http://http://www.begdb.com/(accessed Mar 1, 2016).
[1] Yu HE,Yi-Bo WANG. B972-PFD: A High Accuracy Density Functional Method for Dispersion Correction[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1149-1159.