Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (1): 149-164    DOI: 10.3866/PKU.WHXB201609143
REVIEW     
Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis
Cui-Juan XUAN,Jie WANG,Jing ZHU(),De-Li WANG*
Download: HTML     PDF(2321KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Metal organic frameworks (MOFs) have attracted tremendous attention in electrochemical energy storage and conversion because of their large surface area, high porosity, ordered structure and the tailorability of the structure. In this paper, the unique advantages of synthesizing electrocatalysts from MOFs are introduced. Then, the latest research progress of MOFs derived electrocatalysts in electrochemical energy conversion is mainly summarized. Finally, the application prospects, opportunities and challenges of MOF-based materials are briefly presented to provide an outlook for future research directions.



Key wordsMetal organic frameworks      Electrocatalysis      Oxygen reduction reaction      Oxygen evolution reaction      Hydrogen evolution reaction     
Received: 25 July 2016      Published: 14 September 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21306060);the National Natural Science Foundation of China(21573083)
Corresponding Authors: De-Li WANG     E-mail: wangdl81125@hust.edu.cn
Cite this article:

Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis. Acta Physico-Chimica Sinca, 2017, 33(1): 149-164.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609143     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/149

Fig 1 Schematic illustration of some MOF-based nanostructures (a) porous Co-N-C nano-polyhedron and its STEM image15; (b) hybrid Co3O4-carbon porous nanowire arrays and the SEM image18; (c) nickel sulfide nanoframes and its TEM image20; (d) Co3O4/NiCo2O4 double-shelled nanocages and its TEM image19; (e) hierarchical Fe2O3 microboxes and the TEM image21; (f) Co@Co3O4@C core@bishell nanoparticles (NPs) encapsulated into a highly ordered porous carbon matrix and its TEM image16
Fig 2 (a) Schematic illustration of the synthesis procedure for hybrids of nitrogen-doped graphitic porous carbon (NGPC) and carbon nanotubes (NCNT)36; (b) comparative cyclic voltammograms of NGPC/NCNT-900 and Pt/C36; (c) illustration of synthesis of Co-N-C-x15; polarization curves of Co-N-C-x in (d) 0.1 mol?L-1 KOH, (e) 0.1 mol?L-1 HClO4, and (f) 0.1 mol?L-1 pH=7 phosphate respectively15
Fig 3 (a) Schematic diagram of the preparation process for the metal/CoNC catalysts54; (b) schematic illustration of formation of the carbon nanostructures at different temperatures55; (c) ORR polarization curves of CoNC, Ni/CoNC, and Pt/C catalysts54; polarization curves of various samples in (d) 0.5 mol?L-1 H2SO4 and (e) 0.1 mol?L-1 KOH respectively55
Fig 4 (a) Schematic diagram of synthesis of Co9S8@CNST catalysts66; (b) SEM image of Co9S8@CNS90066; (c) ORR polarization curves of various samples66; (d) schematic illustration of the formation process of Co-C@Co9S8 DSNCs67; (e) TEM image of Co-C@Co9S8 DSNCs67; (f) ORR polarization curves of Co-C@Co9S8 DSNCs and Pt/C67 DPEA: double-phase encapsulation approach; GIMC: guest-induced morphology control. color online
Fig 5 (a) Schematic illustration for the formation process of Co3O4 microframes73; (b) SEM image of Co3O4 microframes73; (c) LSV curves of Co3O4 microframes and Co3O4 microcubics73; (d) schematic illustration of preparation process of Co3O4/NiCo2O4 DSNCs19; (e) TEM image of Co3O4/NiCo2O4 DSNCs19; (f) LSV curves of Co3O4/ NiCo2O4 DSNCs and Co3O4 NCs19 PBA: Prussian blue analogue; LSV: linear sweep voltammetry
Fig 6 (a) Illustration of synthesis of Co-P/NC nanopolyhedrons75; (b) LSV curves of Co-P/NC, Co/NC and IrO2 75; (c) schematic illustration of the formation process of Co3O4C-NA18; (d) LSV curves of various samples18 color online
Fig 7 (a) Volcano plot between i0 and DFT-calculated ΔGH* under assumption of a Langmuir adsorption model84; LSV curves of various samples in (b) 0.5 mol?L-1 H2SO4 and (c) 1 mol?L-1 KOH, respectively86; (d) schematic illustration of the formation process of NiS nanoframes20; (e) LSV curves of annealed NiS nanoframes with different size and pure Ni foam20 color online
Fig 8 (a) Schematic illustration of the synthesis procedure for porous MoCx nano-octahedrons104; (b, c) TEM images of MoCx nano-octahedrons104; LSV curves of MoCx nano-octahedrons in (d) 0.5 mol?L-1 H2SO4 and (e) 1 mol?L-1 KOH, respectively104; (f) I-t curves of MoCx nano-octahedrons in 0.5 mol?L-1 H2SO4 and 1 mol?L-1 KOH, respectively104 insets in Fig. 8(f): TEM images (left) and selected area electron diffraction (SAED) pattern (right) after 5000 potential sweeps in 0.5 mol?L-1 H2SO4
1 James S. L. Chem. Soc. Rev 2003, 32, 276.
2 Yaghi O. M. ; Li G. ; Li H. Nature 1995, 378, 703.
3 Yaghi O. ; Li H. J.Am. Chem. Soc 1995, 117, 10401.
4 Meek S. T. ; Greathouse J. A. ; Allendorf M. D. Adv. Mater 2011, 23, 249.
5 Millward A. R. ; Yaghi O. M. J.Am. Chem. Soc 2005, 127, 17998.
6 Rodenas T. ; Luz I. ; Prieto G. ; Seoane B. ; Miro H. ; Corma A. ; Kapteijn F. ; i Xamena F. X. L. ; Gascon J. Nat. Mater 2015, 14, 48.
7 Taylor K. M. ; Rieter W. J. ; Lin W. J.Am. Chem. Soc 2008, 130, 14358.
8 Hu Z. ; Deibert B. J. ; Li J. Chem. Soc. Rev 2014, 43, 5815.
9 Lee J. ; Farha O. K. ; Roberts J. ; Scheidt K. A. ; Nguyen S.T. ; Hupp J. T. Chem. Soc. Rev 2009, 38, 1450.
10 Rosi N. L. ; Eckert J. ; Eddaoudi M. ; Vodak D. T. ; Kim J. ; O'Keeffe M. ; Yaghi O. M. Science 2003, 300, 1127.
11 Chen B. ; Xiang S. ; Qian G. Acc. Chem. Res 2010, 43, 1115.
12 Wu Z. ; Wang J. ; Han L. ; Lin R. ; Liu H. ; Xin H. L. ; Wang D. Nanoscale 2016, 8, 4681.
13 Xia B. Y. ; Yan Y. ; Li N. ; Wu H. B. ; Lou X.W. D. ; Wang X. Nat. Energy 2016, 1, 15006.
14 Morozan A. ; Jaouen F. Energy Environ. Sci 2012, 5, 9269.
15 You B. ; Jiang N. ; Sheng M. ; Drisdell W. S. ; Yano J. ; Sun Y. ACS Catal 2015, 5, 7068.
16 Xia W. ; Zou R. ; An L. ; Xia D. ; Guo S. Energy Environ. Sci 2015, 8, 568.
17 Wu D. ; Guo Z. ; Yin X. ; Pang Q. ; Tu B. ; Zhang L. ; Wang Y. G. ; Li Q. Adv. Mater 2014, 26, 3258.
18 Ma T. Y. ; Dai S. ; Jaroniec M. ; Qiao S. Z. J.Am. Chem. Soc 2014, 136, 13925.
19 Hu H. ; Guan B. ; Xia B. ; Lou X.W. J.Am. Chem. Soc 2015, 137, 5590.
20 Yu X. Y. ; Yu L. ; Wu H. B. ; Lou X.W. D. Angew. Chem. Int. Ed 2015, 54, 5331.
21 Zhang L. ; Wu H. B. ; Madhavi S. ; Hng H. H. ; Lou X.W. J.Am. Chem. Soc 2012, 134, 17388.
22 Wang L. ; Han Y. ; Feng X. ; Zhou J. ; Qi P. ; Wang B. Coord. Chem. Rev 2016, 307, 361.
23 Hu L. ; Chen Q. Nanoscale 2014, 6, 1236.
24 Dai L. ; Xue Y. ; Qu L. ; Choi H. J. ; Baek J. B. Chem. Rev 2015, 115, 4823.
25 Zou X. ; Zhang Y. Chem. Soc. Rev 2015, 44, 5148.
26 Burke M. S. ; Enman L. J. ; Batchellor A. S. ; Zou S. ; Boettcher S.W. Chem. Mater 2015, 27, 7549.
27 Tang C. ; Wang H. F. ; Zhu X. L. ; Li B. Q. ; Zhang Q. Part. Part. Syst. Charact. 2016.
28 Long J. R. ; Yaghi O. M. Chem. Soc. Rev 2009, 38, 1213.
29 Rowsell J. L. ; Yaghi O. M. Microporous Mesoporous Mat 2004, 73, 3.
30 Mahmood A. ; Guo W. ; Tabassum H. ; Zou R. Adv. Energy Mater 2016, 28, 6313.
31 Huang Z. F. ; Song J. ; Li K. ; Tahir M. ; Wang Y. T. ; Pan L. ; Wang L. ; Zhang X. ; Zou J. J. J.Am. Chem. Soc 2016, 138, 1359.
32 Wang D.W. ; Su D. Energy Environ. Sci 2014, 7, 576.
33 Wang J. ; Wu Z. X. ; Han L. L. ; Liu Y. Y. ; Guo J. P. ; Xin H.L. ; Wang D. L. Chin. Chem. Lett 2016, 27, 597.
34 Wang D. ; Xin H. L. ; Hovden R. ; Wang H. ; Yu Y. ; Muller D.A. ; DiSalvo F. J. ; Abru?a H. D. Nat. Mater 2013, 12, 81.
35 Wang J. ; Wu Z. ; Han L. ; Lin R. ; Xin H. L. ; Wang D. ChemCatChem 2016, 8, 736.
36 Zhang L. ; Wang X. ; Wang R. ; Hong M. Chem. Mater 2015, 27, 7610.
37 Zhang P. ; Sun F. ; Xiang Z. ; Shen Z. ; Yun J. ; Cao D. Energy Environ. Sci 2014, 7, 442.
38 Zhang L. ; Su Z. ; Jiang F. ; Yang L. ; Qian J. ; Zhou Y. ; Li W. ; Hong M. Nanoscale 2014, 6, 6590.
39 Zhong H. X. ; Wang J. ; Zhang Y.W. ; Xu W. L. ; Xing W. ; Xu D. ; Zhang Y. F. ; Zhang X. B. Angew. Chem. Int. Ed 2014, 53, 14235.
40 Ge L. ; Yang Y. ; Wang L. ; Zhou W. ; De Marco R. ; Chen Z. ; Zou J. ; Zhu Z. Carbon 2015, 82, 417.
41 Dai L. Acc. Chem. Res 2012, 46, 31.
42 Yu D. ; Nagelli E. ; Du F. ; Dai L. J.Phys. Chem. Lett 2010, 1, 2165.
43 Li J. S. ; Li S. L. ; Tang Y. J. ; Li K. ; Zhou L. ; Kong N. ; Lan Y. Q. ; Bao J. C. ; Dai Z. H. Sci. Rep 2014, 4, 5130.
44 Zheng Y. ; Jiao Y. ; Jaroniec M. ; Jin Y. ; Qiao S. Z. Small 2012, 8, 3550.
45 Choi C. H. ; Park S. H. ; Woo S. I. ACS Nano 2012, 6, 7084.
46 Liang J. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Ed 2012, 51, 11496.
47 Xu J. ; Dong G. ; Jin C. ; Huang M. ; Guan L. ChemSusChem 2013, 6, 493.
48 Sevilla M. ; Fuertes A. B. Carbon 2006, 44, 468.
49 Wen Z. ; Ci S. ; Hou Y. ; Chen J. Angew. Chem. Int. Ed 2014, 53, 6496.
50 Su Q. ; Sun J. ; Wang J. ; Yang Z. ; Cheng W. ; Zhang S. Catal. Sci. Technol 2014, 4, 1556.
51 Gao S. ; Li G. D. ; Liu Y. ; Chen H. ; Feng L. L. ; Wang Y. ; Yang M. ; Wang D. ; Wang S. ; Zou X. Nanoscale 2015, 7, 2306.
52 Wu G. ; Santandreu A. ; Kellogg W. ; Gupta S. ; Ogoke O. ; Zhang H. ; Wang H. L. ; Dai L. Nano Energy 2016.
53 Chen Y. Z. ; Wang C. ; Wu Z. Y. ; Xiong Y. ; Xu Q. ; Yu S. H. ; Jiang H. L. Adv. Mater 2015, 27, 5010.
54 Tang H. ; Cai S. ; Xie S. ; Wang Z. ; Tong Y. ; Pan M. ; Lu X. Adv. Sci 2016, 3, 1500265.
55 Li Q. ; Xu P. ; Gao W. ; Ma S. ; Zhang G. ; Cao R. ; Cho J. ; Wang H. L. ; Wu G. Adv. Mater 2014, 26, 1378.
56 Li J. S. ; Li S. L. ; Tang Y. J. ; Han M. ; Dai Z. H. ; Bao J. C. ; Lan Y. Q. Chem. Commun 2015, 51, 2710.
57 Wen Z. ; Ci S. ; Zhang F. ; Feng X. ; Cui S. ; Mao S. ; Luo S. ; He Z. ; Chen J. Adv. Mater 2012, 24, 1399.
58 Wang X. ; Zhang H. ; Lin H. ; Gupta S. ; Wang C. ; Tao Z. ; Fu H. ; Wang T. ; Zheng J. ; Wu G. Nano Energy 2016, 25, 110.
59 Ganesan P. ; Prabu M. ; Sanetuntikul J. ; Shanmugam S. ACS Catal 2015, 5, 3625.
60 Wang H. ; Liang Y. ; Li Y. ; Dai H. Angew. Chem. Int. Ed 2011, 50, 10969.
61 Mahmood N. ; Zhang C. ; Jiang J. ; Liu F. ; Hou Y. Chem. Eur. J 2013, 19, 5183.
62 Wu G. ; Chung H. T. ; Nelson M. ; Artyushkova K. ; More K.L. ; Johnston C. M. ; Zelenay P. ECS Trans 2011, 41, 1709.
63 Zhou Y. X. ; Yao H. B. ; Wang Y. ; Liu H. L. ; Gao M. R. ; Shen P. K. ; Yu S. H. Chem. Eur. J 2010, 16, 12000.
64 Bai F. ; Huang H. ; Hou C. ; Zhang P. New J.Chem 2016, 40, 1679.
65 Sidik R. A. ; Anderson A. B. J. Phys. Chem. B 2006, 110, 936.
66 Zhu Q. L. ; Xia W. ; Akita T. ; Zou R. ; Xu Q. Adv. Mater 2016, 28, 6391.
67 Hu H. ; Han L. ; Yu M. ; Wang Z. ; Lou X.W. D. Energy Environ. Sci 2016, 9, 107.
68 Feng J. X. ; Xu H. ; Dong Y. T. ; Ye S. H. ; Tong Y. X. ; Li G.R. Angew. Chem 2016, 128, 3758.
69 Zhou X. ; Shen X. ; Xia Z. ; Zhang Z. ; Li J. ; Ma Y. ; Qu Y. ACS Appl. Mater. Interfaces 2015, 7, 20322.
70 Li Y. ; Hasin P. ; Wu Y. Adv. Mater 2010, 22, 1926.
71 Rosen J. ; Hutchings G. S. ; Jiao F. J.Am. Chem. Soc 2013, 135, 4516.
72 Chaikittisilp W. ; Torad N. L. ; Li C. ; Imura M. ; Suzuki N. ; Ishihara S. ; Ariga K. ; Yamauchi Y. Chem. Eur. J 2014, 20, 4217.
73 Feng Y. ; Yu X. Y. ; Paik U. Chem. Commun 2016, 52, 6269.
74 Jiao L. ; Zhou Y. X. ; Jiang H. L. Chem. Sci 2016, 7, 1690.
75 You B. ; Jiang N. ; Sheng M. ; Gul S. ; Yano J. ; Sun Y. Chem. Mater 2015, 27, 7636.
76 Liu M. ; Li J. ACS Appl. Mater. Interfaces 2016, 8, 2158.
77 Yu X. Y. ; Feng Y. ; Guan B. ; Lou X.W. D. ; Paik U. Energy Environ. Sci 2016, 9, 1246.
78 Chen B. ; Li R. ; Ma G. ; Gou X. ; Zhu Y. ; Xia Y. Nanoscale 2015, 7, 20674.
79 Hou Y. ; Wen Z. ; Cui S. ; Ci S. ; Mao S. ; Chen J. Adv. Funct. Mater 2015, 25, 872.
80 Liu S. ; Zhang H. ; Zhao Q. ; Zhang X. ; Liu R. ; Ge X. ; Wang G. ; Zhao H. ; Cai W. Carbon 2016, 106, 74.
81 Zheng Y. ; Jiao Y. ; Jaroniec M. ; Qiao S. Z. Angew. Chem. Int. Ed 2015, 54, 52.
82 Chen W. F. ; Muckerman J. T. ; Fujita E. Chem. Commun 2013, 49, 8896.
83 Gong M. ; Wang D. Y. ; Chen C. C. ; Hwang B. J. ; Dai H. Nano Res 2016, 9, 28.
84 Jaramillo T. F. ; J?rgensen K. P. ; Bonde J. ; Nielsen J. H. ; Horch S. ; Chorkendorff I. Science 2007, 317, 100.
85 Zeng M. ; Li Y. J.Mater. Chem. A 2015, 3, 14942.
86 Hao J. ; Yang W. ; Zhang Z. ; Tang J. Nanoscale 2015, 7, 11055.
87 Xing Z. ; Liu Q. ; Asiri A. M. ; Sun X. Adv. Mater 2014, 26, 5702.
88 Deng C. ; Ding F. ; Li X. ; Guo Y. ; Ni W. ; Yan H. ; Sun K. ; Yan Y. M. J.Mater. Chem. A 2016, 4, 59.
89 Jiang N. ; You B. ; Sheng M. ; Sun Y. Angew. Chem. Int. Ed 2015, 54, 6251.
90 Popczun E. J. ; Read C. G. ; Roske C.W. ; Lewis N. S. ; Schaak R. E. Angew. Chem 2014, 126, 5531.
91 Huang Z. ; Chen Z. ; Chen Z. ; Lv C. ; Humphrey M. G. ; Zhang C. Nano Energy 2014, 9, 373.
92 Popczun E. J. ; Roske C.W. ; Read C. G. ; Crompton J. C. ; McEnaney J. M. ; Callejas J. F. ; Lewis N. S. ; Schaak R. E. J.Mater. Chem. A 2015, 3, 5420.
93 Han A. ; Jin S. ; Chen H. ; Ji H. ; Sun Z. ; Du P. J.Mater. Chem. A 2015, 3, 1941.
94 Wang X. ; Kolen'ko Y. V. ; Liu L. Chem. Commun 2015, 51, 6738.
95 Xu M. ; Han L. ; Han Y. ; Yu Y. ; Zhai J. ; Dong S. J.Mater. Chem. A 2015, 3, 21471.
96 Feng Y. ; Yu X. Y. ; Paik U. Chem. Commun 2016, 52, 1633.
97 Peng S. ; Li L. ; Han X. ; Sun W. ; Srinivasan M. ; Mhaisalkar S. G. ; Cheng F. ; Yan Q. ; Chen J. ; Ramakrishna S. Angew. Chem 2014, 126, 12802.
98 Ye G. ; Gong Y. ; Lin J. ; Li B. ; He Y. ; Pantelides S. T. ; Zhou W. ; Vajtai R. ; Ajayan P. M. Nano Lett 2016, 16, 1097.
99 Kong D. ; Cha J. J. ; Wang H. ; Lee H. R. ; Cui Y. Energy Environ. Sci 2013, 6, 3553.
100 Faber M. S. ; Lukowski M. A. ; Ding Q. ; Kaiser N. S. ; Jin S. J. Phys. Chem. C 2014, 118, 21347.
101 Bonde J. ; Moses P. G. ; Jaramillo T. F. ; N?rskov J. K. ; Chorkendorff I. Faraday Discuss 2009, 140, 219.
102 Staszak-Jirkovsky J. ; Malliakas C. D. ; Lopes P. P. ; Danilovic N. ; Kota S. S. ; Chang K. C. ; Genorio B. ; Strmcnik D. ; Stamenkovic V. R. ; Kanatzidis M. G. Nat. Mater 2016, 15, 197.
103 Weng Z. ; Liu W. ; Yin L. C. ; Fang R. ; Li M. ; Altman E. I. ; Fan Q. ; Li F. ; Cheng H. M. ; Wang H. Nano Lett 2015, 15, 7704.
104 Wu H. B. ; Xia B. Y. ; Yu L. ; Yu X. Y. ; Lou X.W. D. Nat. Commun 2015, 6, 6512.
105 Qin J. S. ; Du D. Y. ; Guan W. ; Bo X. J. ; Li Y. F. ; Guo L. P. ; Su Z. M. ; Wang Y. Y. ; Lan Y. Q. ; Zhou H. C. J.Am. Chem. Soc 2015, 137, 7169.
106 Dai X. ; Liu M. ; Li Z. ; Jin A. ; Ma Y. ; Huang X. ; Sun H. ; Wang H. ; Zhang X. J.Phys. Chem. C 2016, 120, 12539.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 361-376.
[2] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 22-35.
[3] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1811-1821.
[4] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[5] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1429-1435.
[6] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1366-1378.
[7] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[8] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[9] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[10] Pengfei CAO,Yang HU,Youwei ZHANG,Jing PENG,Maolin ZHAI. Radiation Induced Synthesis of Amorphous Molybdenum Sulfide/Reduced Graphene Oxide Nanocomposites for Efficient Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2542-2549.
[11] Shao-Zheng ZHANG,Jia LIU,Yan XIE,Yin-Ji LU,Lin LI,Liang LÜ,Jian-Hui YANG,Shi-Hao WEI. First-Principle Study of Hydrogen Evolution Activity for Two-dimensional M2XO2-2x(OH)2x (M=Ti, V; X=C, N)[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2022-2028.
[12] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 9-17.
[13] SUN Meng, LI Jing-Hong. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 198-210.
[14] CHANG Jin-Fa, XIAO Yao, LUO Zhao-Yan, GE Jun-Jie, LIU Chang-Peng, XING Wei. Recent Progress of Non-Noble Metal Catalysts in Water Electrolysis for Hydrogen Production[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1556-1592.
[15] WU Yu, LUO Jian. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2745-2752.