ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2016,Vol.32>> Issue(12)>> 2898-2904     doi: 10.3866/PKU.WHXB201609142         中文摘要
Reaction Mechanism of Criegee Intermediate CH3CHOO with H2O and the Acid Catalytic Effect
GAO Zhi-Fang, ZHOU Li-Ting, WANG Wei-Na, LIU Feng-Yi, WANG Wen-Liang
School of Chemistry and Chemical Engineering, Shaanxi Normal University, Key Laboratory for Macromolecular Science of Shaanxi Province, Xi'an 710119, P. R. China
Full text: PDF (1812KB) HTML Export: BibTeX | EndNote (RIS) Supporting Info

The catalytic effect of H2O and six kinds of organic acids (e.g., formic acid) on the reaction of CH3CHOO with H2O is studied at the CCSD(T)//B3LYP/6-311+G(d,p) level. The results reveal that two possible channels exist as the double proton transfer and addition, of which the latter dominates for the non-catalytic reactions. For the additions, the OH of water is added to the α-C of CH3CHOO, and the H atoms migrate to the end oxygen atoms. Catalysts such as H2O and organic acid can form a hydrogen-bonded complex with CH3CHOO, which promotes the H transfer and thus significantly reduces the elementary reaction energy barrier and apparent activation energy when compared with that of the non-catalytic reaction. The catalytic effect is proportional to the strength of the organic acids. For example, for the formation of syn-HAHP catalyzed by H2O (pKa=15.7), formic acid (pKa=3.75) and oxalic acid (pKa=1.23), the energy barrier is reduced from 69.12 to 40.78, 18.88 and 10.61 kJ·mol-1, respectively. In addition, the non-catalytic reaction has a positive activation energy, whereas the catalytic reactions have an negative apparent activation energy.

Keywords: Criegee intermediate   CH3CHOO   Acid catalysis   Addition reaction  
Received: 2016-07-18 Accepted: 2016-09-13 Publication Date (Web): 2016-09-14
Corresponding Authors: WANG Wen-Liang Email:

Fund: The project was supported by the National Natural Science Foundation of China (21473108, 21473107), Fundamental Research Funds for Shaanxi Innovative Team of Key Science and Technology, China (2013KCT-17), and Fundamental Research Funds for the Central Universities, China (JK201601005).

Cite this article: GAO Zhi-Fang, ZHOU Li-Ting, WANG Wei-Na, LIU Feng-Yi, WANG Wen-Liang. Reaction Mechanism of Criegee Intermediate CH3CHOO with H2O and the Acid Catalytic Effect[J]. Acta Phys. -Chim. Sin., 2016,32 (12): 2898-2904.    doi: 10.3866/PKU.WHXB201609142

(1) Johnson, D.; Marston, G. Chem. Soc. Rev. 2008, 37 (27), 699. doi: 10.1039/b704260b
(2) Kroll, J. H.; Sahay, S. R.; Anderson, J. G. J. Phys. Chem. A 2001, 105 (18), 4446. doi: 10.1021/acs.jpca.5b07295
(3) Gao, Z. F.; Wang, W. N.; Ma, Q.; Liu, F. Y.; Wang, W. L. Chem. J. Chin. Univ. 2016, 37 (3), 513. [高志芳, 王渭娜, 马倩, 刘峰毅, 王文亮. 高等学校化学学报, 2016, 37 (3), 513.] doi: 10.7503/cjcu20150742
(4) Qi, B.; Chao, Y. T. Acta Chim. Sin. 2007, 65 (19), 2117. [齐斌, 晁余涛. 化学学报, 2007, 65 (19), 2117.]
(5) Gab, S.; Hellpointner, E.; Turner, W. V.; Korte, F. Nature 1985, 316, 535. doi: 10.1038/318080a0
(6) Neeb, P.; Sauer, F.; Horie, O.; Moortgat, G. K. Atmos. Environ. 1997, 31, 1417. doi: 10.1016/S1352-2310(96)00322-6
(7) Wolff, S.; Boddenberg, A.; Thamm, J.; Turner, W.; Gab, V. S.Atmos. Environ. 1997, 31, 2965. doi: 10.1016/S1352-2310(97)00114-3
(8) Paulson, S. E.; Chung, M. Y.; Hasson, A. S. J. Phys. Chem. A 1999, 103 (41), 8125. doi: 10.1021/jp991995e
(9) Anglada, J. M.; Aplincourt, P.; Boll, J. M.; Cremer, D.ChemPhysChem 2002, 3, 215. doi: 10.1002/1439-7641 (20020215)3: 2<215:: AID-CPHC215>3.0.CO: 2-3
(10) Zhu, C. Q.; Manoj, K.; Zhong, J.; Li, L.; Joseph, S. F.; Zeng, X.C. J. Am. Chem. Soc. 2016, doi: 10.1021/jacs.6b04338
(11) Monod, A.; Chebbi, A.; Durand-Jolibois, R.; Carlier, P. Atmos. Environ. 2000, 34 (29), 5283. doi: 10.1016/S1352-2310(00)00191-6
(12) Rieche, A.; Meister, R. Berichte Der Deutschen Chemischen Gesellschaft 1935, 68 (8), 1465. doi: 10.1002/cber.19350680809
(13) Neeb, P.; Sauer, F.; Horie, O. Atmos. Environ. 1997, 31 (10), 1417. doi: 10.1016/S1352-2310(96)00322-6
(14) Sauer, F.; Schafer, C.; Neeb, P.; Horie, O.; Horie, G. K. Atmos. Environ. 1999, 33 (2), 229. doi: 10.1016/S1352-2310(98)00152-6
(15) Hewitt, C. N.; Kok, G. L. J. Atmos. Chem. 1991, 12 (12), 181. doi: 10.1007/BF00115779
(16) Hazra, K.; Sinha, A. J. Am. Chem. Soc. 2011, 133 (43), 17444. doi: 120.1021/ja207393v
(17) Ryzhkov, A. B.; Ariya, P. A. Phys. Chem. Chem. Phys. 2004, 6 (21), 5042. doi: 10.1039/B408414D
(18) Hazra, M. K.; Francisco, J. S.; Sinha, A. J. Phys. Chem. A 2013, 117 (46), 11704. doi: 10.1021/jp4008043
(19) Louie, M. K.; Francisco, J. S.; Verdicchio, M.; Klippenstein, S.J.; Sinha, A. J. Phys. Chem. A 2015, 119 (19), 4347. doi: 10.1021/jp5076725
(20) Rypkema, H. A.; Sinha, A.; Francisco, J. S. J. Phys. Chem. A 2015, 119 (19), 4581. doi: 10.1021/jp510704j
(21) Liu, J. J.; Fang, S.; Bing, Q. M.; Tao, F. M.; Liu, J. Y. Comput. Theor. Chem. 2015, 1076, 11. doi: 10.1016/j.comptc.2015.11.015
(22) Li, H.W.; Fang, Y.; Kidwell, N. M.; Beames, J. M.; Lester, M. I.J. Phys. Chem. A 2015, 119 (30), 8328. doi: 10.1021/acs.jpca.5b05352
(23) Kettner, M.; Karton, A.; McKinley, A. J.; Wild, D. A. Chem. Phys. Lett. 2015, 621, 193. doi: 10.1016/j.cplett.2014.12.037
(24) Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, 2009.
(25) Sheps, L.; Scully, A. M.; Au, K. Phys. Chem. Chem. Phys. 2014, 16, 26701. doi: 10.1039/c4cp04408h
(26) Lee, T. J.; Taylor, P. R. Int. J. Quantum Chem. 2009, 36 (S23), 199. doi: 10.1002/qua.560360824
(27) Rienstra-Kiracofe, J. C.; Allen, W. D.; Schaefer, H. F., Ⅲ. J. Phys. Chem. A 2000, 104 (44), 9823. doi: 10.1021/jp001041k
(28) Robert, J. B.; John, R. B.; Joseph, S. F. J. Phys. Chem. A 2012, 116, 4712. doi: 10.1021/jp3025107
(29) Hazra, M. K.; Sinha, A. J. Am. Chem. Soc. 2011, 133, 17444. doi: 10.1021/ja207393v
(30) Javier, G.; Josep, M. A.; Robert, J. B.; Joseph, S. F. J. Am. Chem. Soc. 2011, 133, 3345. doi: 10.1021/ja100976b
(31) Herb, J.; Nadykto, A. B.; Yu, F. Chem. Phys. Lett. 2011, 518, 7. doi: 10.1016/j.cplett.2011.10.035

1. ZHANG Pei-Zhi, YE Mei-Jun, HU Wei-Lian, WU Jun.Kinetics of Acid-Catalyzed Smiles Rearrangement of 2,6-Dimethoxy-2-pyrimidinyloxy-N-arylbenzylamine Derivatives[J]. Acta Phys. -Chim. Sin., 2016,32(2): 422-428
2. ZENG Xiao-Lan, WANG Yan.Mechanism and Regioselectivity of Addition Reactions of CH3OH to Germasilenes[J]. Acta Phys. -Chim. Sin., 2015,31(9): 1699-1707
3. HOU Ruo-Bing, TANG Zong-Xiang, FAN You-Jun, YI Xiang-Hui, WANG Bei-Bei, SUN Yan-Li.Radicals Created fromthe Reactions of 2’-Deoxyadenosine-5’-monophosphate with Hydroxyl Radical[J]. Acta Phys. -Chim. Sin., 2013,29(09): 1937-1944
4. WANG Yan, ZENG Xiao-Lan.1,2- and 1,4-Addition Reactions between Silabenzenes and HX (X=F, OH, NH2)[J]. Acta Phys. -Chim. Sin., 2012,28(12): 2831-2838
5. ZHANG Ji-Chao, CHENG Xue-Li, CHENG Yu-Qiao, MENG Xiang-Hua, LIU Yong-Jun, LIU Cheng-Bu.Selectivity of [2+2] C=O Cycloaddition and α-H Cleavage of Carbonyl Compounds on Si(100) Surface[J]. Acta Phys. -Chim. Sin., 2012,28(08): 1849-1853
6. HOU Ruo-Bing, SUN Yan-Li, WANG Bei-Bei.One-Electron Redox Characteristics of One-Hydroxyl Radical Adducts of A-T Base Pairs[J]. Acta Phys. -Chim. Sin., 2012,28(01): 73-77
7. HOU Ruo-Bing; LI Wei-Wei; YI Xiang-Hui.Molecular Geometries and Electronic Structures of Adducts between 2’-Deoxycytidine-5’-monophosphate Acid and Hydroxyl Radical[J]. Acta Phys. -Chim. Sin., 2009,25(02): 291-298
8. CHEN Xiao-Yun;LIU Shou-Xin;CHEN Xi;SUN Cheng-Lin.Characterization and Activity of TiO2 /wAC Composite Photocatalyst Prepared by Acid Catalyzed Hydrolysis Method[J]. Acta Phys. -Chim. Sin., 2006,22(05): 517-522
9. Geng Zhi-Yuan;Wang Yong-Cheng;Wang Han-Qing.Quantum Chemistry Study on Cycloaddition Reaction of Germylene X2Ge (X=H, CH3, F, Cl, Br) and Ethylene[J]. Acta Phys. -Chim. Sin., 2004,20(12): 1417-1422
10. Wang Yong;Li Hao-Ran;Wang Cong-Min;Xu Ying-Jie;Han Shi-Jun.Quantum Chemistry Study on the Cycloaddition Reaction of Dibromocarbene and Formaldehyde[J]. Acta Phys. -Chim. Sin., 2004,20(11): 1339-1344
11. Hua Rui-Mao.Homogeneous Catalytic Activation of Hetero-Carbon Bond and Its Addition to Alkynes[J]. Acta Phys. -Chim. Sin., 2004,20(08S): 989-994
12. Lu Xiu-Hui, Liu Cheng-Bu, Deng Cong-Hao.Theoretical Study on Mechanism of Cycloaddition Reaction of Difluorosilylene with Formaldehyde[J]. Acta Phys. -Chim. Sin., 1999,15(01): 78-81
13. Lu Xiu-Hui, Wang Yi-Xuan, Deng Cong-Hao.Theoretical Study on the Cycloaddition Reaction of Dichlorocarbene and Formaldehyde[J]. Acta Phys. -Chim. Sin., 1998,14(09): 784-788
14. Lu Xiu-Hui, Wang Yi-Xuan, Deng Cong-Hao.A Theoretical Study on the Cycloaddition Reaction of Silylene and Ethylene[J]. Acta Phys. -Chim. Sin., 1998,14(04): 332-336
15. Wang Gui-Chang, Pan Yin-Ming, Cai Zun-Sheng, Zhao Xue-Zhuang.Theoretical Study of the Reactivity of the Addition of Radicals to Fluoro-ethylenes[J]. Acta Phys. -Chim. Sin., 1998,14(02): 127-130
16. Sheng Ying-Hong,Fang De-Cai,Fu Xiao-Yuan.Theoretical Study on the Mechanism of the Cycloaddition Reactions Between Methyleneketene and 5-methylene-1,3-dioxan-4,6-dione[J]. Acta Phys. -Chim. Sin., 1996,12(06): 496-501
17. Zhang Lin-Yang,Zhang Jia-Mu,W.Fuss.The Effect of Light Intensity on the Photoinduced BrC2F4Br+C2F4 Telomerization Reaction[J]. Acta Phys. -Chim. Sin., 1995,11(04): 308-314
18. Tang Yi; Hua Wei-Ming; Gao Zi.Pore Structure and Catalytic Behavior of Modified Y Zeolites[J]. Acta Phys. -Chim. Sin., 1992,8(05): 595-601
19. Ma Si-Yu; Ding Yan-Bo; Fu Xiao-Yuan.Theoretical Studies on the 1,2-Cycloaddition Reaction of Singlet Molecular Oxygen (1O2) with Imidazole[J]. Acta Phys. -Chim. Sin., 1992,8(02): 181-185
20. LI Shen-Hui, LI Jing, ZHENG An-Min, DENG Feng.Solid-State NMR Characterization of the Structure and Catalytic Reaction Mechanism of Solid Acid Catalysts[J]. Acta Phys. -Chim. Sin., 0,(): 0-0
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top