Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (12): 2898-2904    DOI: 10.3866/PKU.WHXB201609142
ARTICLE     
Reaction Mechanism of Criegee Intermediate CH3CHOO with H2O and the Acid Catalytic Effect
Zhi-Fang GAO,Li-Ting ZHOU,Wei-Na WANG,Feng-Yi LIU,Wen-Liang WANG*()
Download: HTML     PDF(1812KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The catalytic effect of H2O and six kinds of organic acids (e.g., formic acid) on the reaction of CH3CHOO with H2O is studied at the CCSD(T)//B3LYP/6-311+G(d,p) level. The results reveal that two possible channels exist as the double proton transfer and addition, of which the latter dominates for the non-catalytic reactions. For the additions, the OH of water is added to the α-C of CH3CHOO, and the H atoms migrate to the end oxygen atoms. Catalysts such as H2O and organic acid can form a hydrogen-bonded complex with CH3CHOO, which promotes the H transfer and thus significantly reduces the elementary reaction energy barrier and apparent activation energy when compared with that of the non-catalytic reaction. The catalytic effect is proportional to the strength of the organic acids. For example, for the formation of syn-HAHP catalyzed by H2O (pKa=15.7), formic acid (pKa=3.75) and oxalic acid (pKa=1.23), the energy barrier is reduced from 69.12 to 40.78, 18.88 and 10.61 kJ·mol-1, respectively. In addition, the non-catalytic reaction has a positive activation energy, whereas the catalytic reactions have an negative apparent activation energy.



Key wordsCriegee intermediate      CH3CHOO      Acid catalysis      Addition reaction     
Received: 18 July 2016      Published: 14 September 2016
MSC2000:  O643.1  
Fund:  The project was supported by the National Natural Science Foundation of China(21473108,21473107);Fundamental Research Funds for ShaanxiInnovative Team of Key Science and Technology, China(2013KCT-17);and Fundamental Research Funds for the Central Universities, China(JK201601005)
Corresponding Authors: Wen-Liang WANG     E-mail: wlwang@snnu.edu.cn
Cite this article:

Zhi-Fang GAO,Li-Ting ZHOU,Wei-Na WANG,Feng-Yi LIU,Wen-Liang WANG. Reaction Mechanism of Criegee Intermediate CH3CHOO with H2O and the Acid Catalytic Effect. Acta Physico-Chimica Sinca, 2016, 32(12): 2898-2904.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609142     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I12/2898

Fig示意图1 Diagram of reaction mechanism for ozonolysis of alkenes forming carbonyl compound andthe subsequent reaction with H2O
Fig 1 Potential energy surface of CH3CHOO + H2O reaction at the CCSD(T)//B3LYP/6-311+G(d,p) level energy in kJ?mol-1; anti-: anti-CH3CHOO,syn-: syn-CH3CHOO
Fig 2 Potential energy surface of the addition reaction for CH3CHOO + H2O assisted bywater at the CCSD(T)//B3LYP/6-311+G(d,p) level energy in kJ?mol-1,bond distance in nm,angle in degree
Fig 3 Potential energy surface of the addition reaction for CH3CHOO + H2O assisted byformic acid at the CCSD(T)//B3LYP/6-311+G(d,p) level energy in kJ?mol-1,bond distance in nm,angle in degree
Fig 4 Structures of transition state obtained at B3LYP/6-311+G(d,p) level bond distance in nm,angle in degree
Catalytic pKa Ebar/(kJ·mol-1) Eapp/(kJ·mol-1)
syn- anti- syn- anti-
non-catalytic - 69.12 43.87 39.98 10.36
H2O 15.7 40.78 31.14 -27.33 -43.78
CH3CH2COOH 4.87 20.55 13.23 -73.41 -84.70
CH3COOH 4.75 19.22 13.73 -74.65 -86.22
HCOOH 3.75 18.88 12.62 -76.15 -89.23
CH2ClCOOH 2.86 16.24 9.05 -88.02 -101.54
CH2FCOOH 2.59 15.03 9.11 -85.71 -98.79
(COOH)2 1.23 10.61 4.52 -95.45 -109.02
Table 1 Elementary reaction energy barrier (Ebar) andapparent activation energy (Eapp) of the naked reaction andcatalytic reaction at the CCSD(T)//B3LYP/6-311+G(d,p) level
Fig 5 Potential energy profiles of CH3CHOO + H2O in the presence of catalysts color online
1 Johnson D. ; Marston G. Chem. Soc. Rev. 2008, 37 (27), 699.
2 Kroll J. H. ; Sahay S. R. ; Anderson J. G. J. Phys. Chem. A 2001, 105 (18), 4446.
3 Gao Z. F. ; Wang W. N. ; Ma Q. ; Liu F. Y. ; Wang W. L. Chem. J. Chin. Univ. 2016, 37 (3), 513.
3 高志芳; 王渭娜; 马倩; 刘峰毅; 王文亮. 高等学校化学学报, 2016, 37 (3), 513.
4 Qi B. ; Chao Y. T. Acta Chim. Sin 2007, 65 (19), 2117.
4 齐斌; 晁余涛. 化学学报, 2007, 65 (19), 2117.
5 Gab S. ; Hellpointner E. ; Turner W. V. ; Korte F. Nature 1985, 316, 535.
6 Neeb P. ; Sauer F. ; Horie O. ; Moortgat G. K. Atmos. Environ 1997, 31, 1417.
7 Wolff S. ; Boddenberg A. ; Thamm J. ; Turner W. ; Gab V. S. Atmos. Environ 1997, 31, 2965.
8 Paulson S. E. ; Chung M. Y. ; Hasson A. S. J. Phys. Chem. A 1999, 103 (41), 8125.
9 Anglada J. M. ; Aplincourt P. ; Boll J. M. ; Cremer D. ChemPhysChem 2002, 3, 215.
10 Zhu, C. Q.; Manoj, K.; Zhong, J.; Li, L.; Joseph, S. F.; Zeng, X.C. J. Am. Chem. Soc. 2016, doi: 10.1021/jacs.6b04338
11 Monod A. ; Chebbi A. ; Durand-Jolibois R. ; Carlier P. Atmos. Environ. 2000, 34 (29), 5283.
12 Rieche A. ; Meister R. Berichte Der Deutschen Chemischen Gesellschaft 1935, 68 (8), 1465.
13 Neeb P. ; Sauer F. ; Horie O. Atmos. Environ. 1997, 31 (10), 1417.
14 Sauer F. ; Schafer C. ; Neeb P. ; Horie O. ; Horie G. K. Atmos. Environ. 1999, 33 (2), 229.
15 Hewitt C. N. ; Kok G. L. J. Atmos. Chem. 1991, 12 (12), 181.
16 Hazra K. ; Sinha A. J. Am. Chem. Soc. 2011, 133 (43), 17444.
17 Ryzhkov A. B. ; Ariya P. A. Phys. Chem. Chem. Phys. 2004, 6 (21), 5042.
18 Hazra M. K. ; Francisco J. S. ; Sinha A. J. Phys. Chem. A 2013, 117 (46), 11704.
19 Louie M. K. ; Francisco J. S. ; Verdicchio M. ; Klippenstein S.J. ; Sinha A. J. Phys. Chem. A 2015, 119 (19), 4347.
20 Rypkema H. A. ; Sinha A. ; Francisco J. S. J. Phys. Chem. A 2015, 119 (19), 4581.
21 Liu J. J. ; Fang S. ; Bing Q. M. ; Tao F. M. ; Liu J. Y. Comput. Theor. Chem. 2015, 1076, 11.
22 Li H.W. ; Fang Y. ; Kidwell N. M. ; Beames J. M. ; Lester M. I. J. Phys. Chem. A 2015, 119 (30), 8328.
23 Kettner M. ; Karton A. ; McKinley A. J. ; Wild D. A. Chem. Phys. Lett. 2015, 621, 193.
24 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision C.01; Gaussian Inc.: Wallingford, CT, 2009.
25 Sheps L. ; Scully A. M. ; Au K. Phys. Chem. Chem. Phys. 2014, 16, 26701.
26 Lee T. J. ; Taylor P. R. Int. J. Quantum Chem. 2009, 36
27 Rienstra-Kiracofe J. C. ; Allen W. D. ; Schaefer ; H. F. ; Ⅲ J. Phys. Chem. A 2000, 104 (44), 9823.
28 Robert J. B. ; John R. B. ; Joseph S. F. J. Phys. Chem. A 2012, 116, 4712.
29 Hazra M. K. ; Sinha A. J. Am. Chem. Soc. 2011, 133, 17444.
30 Javier G. ; Josep M. A. ; Robert J. B. ; Joseph S. F. J. Am. Chem. Soc. 2011, 133, 3345.
31 Herb J. ; Nadykto A. B. ; Yu F. Chem. Phys. Lett. 2011, 518, 7.
[1] Zunwei ZHU,Qiaofeng YANG,Zhenzhen XU,Dongxia ZHAO,Hongjun FAN,Zhongzhi YANG. Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 519-527.
[2] ZENG Xiao-Lan, WANG Yan. Mechanism and Regioselectivity of Addition Reactions of CH3OH to Germasilenes[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1699-1707.
[3] HOU Ruo-Bing, TANG Zong-Xiang, FAN You-Jun, YI Xiang-Hui, WANG Bei-Bei, SUN Yan-Li. Radicals Created fromthe Reactions of 2’-Deoxyadenosine-5’-monophosphate with Hydroxyl Radical[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1937-1944.
[4] WANG Yan, ZENG Xiao-Lan. 1,2- and 1,4-Addition Reactions between Silabenzenes and HX (X=F, OH, NH2)[J]. Acta Physico-Chimica Sinca, 2012, 28(12): 2831-2838.
[5] HOU Ruo-Bing, SUN Yan-Li, WANG Bei-Bei. One-Electron Redox Characteristics of One-Hydroxyl Radical Adducts of A-T Base Pairs[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 73-77.
[6] HOU Ruo-Bing; LI Wei-Wei; YI Xiang-Hui. Molecular Geometries and Electronic Structures of Adducts between 2’-Deoxycytidine-5’-monophosphate Acid and Hydroxyl Radical[J]. Acta Physico-Chimica Sinca, 2009, 25(02): 291-298.
[7] Geng Zhi-Yuan;Wang Yong-Cheng;Wang Han-Qing. Quantum Chemistry Study on Cycloaddition Reaction of Germylene X2Ge (X=H, CH3, F, Cl, Br) and Ethylene[J]. Acta Physico-Chimica Sinca, 2004, 20(12): 1417-1422.
[8] Wang Yong;Li Hao-Ran;Wang Cong-Min;Xu Ying-Jie;Han Shi-Jun. Quantum Chemistry Study on the Cycloaddition Reaction of Dibromocarbene and Formaldehyde[J]. Acta Physico-Chimica Sinca, 2004, 20(11): 1339-1344.
[9] Hua Rui-Mao. Homogeneous Catalytic Activation of Hetero-Carbon Bond and Its Addition to Alkynes[J]. Acta Physico-Chimica Sinca, 2004, 20(08S): 989-994.
[10] Lu Xiu-Hui, Wang Yi-Xuan, Deng Cong-Hao. Theoretical Study on the Cycloaddition Reaction of Dichlorocarbene and Formaldehyde[J]. Acta Physico-Chimica Sinca, 1998, 14(09): 784-788.
[11] Lu Xiu-Hui, Wang Yi-Xuan, Deng Cong-Hao. A Theoretical Study on the Cycloaddition Reaction of Silylene and Ethylene[J]. Acta Physico-Chimica Sinca, 1998, 14(04): 332-336.
[12] Wang Gui-Chang, Pan Yin-Ming, Cai Zun-Sheng, Zhao Xue-Zhuang. Theoretical Study of the Reactivity of the Addition of Radicals to Fluoro-ethylenes[J]. Acta Physico-Chimica Sinca, 1998, 14(02): 127-130.
[13] Zhang Lin-Yang,Zhang Jia-Mu,W.Fuss. The Effect of Light Intensity on the Photoinduced BrC2F4Br+C2F4 Telomerization Reaction[J]. Acta Physico-Chimica Sinca, 1995, 11(04): 308-314.
[14] Ma Si-Yu; Ding Yan-Bo; Fu Xiao-Yuan. Theoretical Studies on the 1,2-Cycloaddition Reaction of Singlet Molecular Oxygen (1O2) with Imidazole[J]. Acta Physico-Chimica Sinca, 1992, 8(02): 181-185.