Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (12): 2826-2840    DOI: 10.3866/PKU.WHXB201609141
REVIEW     
Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization
Dan LIU,Yan-Yan HU,Chao ZENG,De-Yu QU*()
Download: HTML     PDF(1717KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Ordered mesoporous carbon materials (OMCs) have potentially broad applications in many fields, such as adsorption, separation, catalysis, and energy storage/conversion. Compared with the elaborate hardtemplate strategy, the soft-template approach, which is based on the self-assembly between amphiphilic block copolymers and polymerizable precursors (e.g., phenolic resins), is a more effective and efficient method for the synthesis of OMCs. In this review, the mechanism and characteristics for three main soft-template methods, i.e., solvent evaporation-induced self-assembly synthesis, aqueous cooperative self-assembly synthesis and solvent-free synthesis, are discussed and compared. In addition, a few highlights of recent progress, including application of novel carbon precursors, structural modification and functionalization of OMCs, are outlined. Finally, we summarize the crucial issues to be addressed in developing the synthesis methodology of OMCs.



Key wordsOrdered mesoporous material      Porous carbon      Block copolymer      Soft template      Self-assembly     
Received: 24 June 2016      Published: 14 September 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(21401145,11474226)
Corresponding Authors: De-Yu QU     E-mail: deyuquwuhan@163.com
Cite this article:

Dan LIU,Yan-Yan HU,Chao ZENG,De-Yu QU. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization. Acta Phys. -Chim. Sin., 2016, 32(12): 2826-2840.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609141     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I12/2826

Fig 1 Schematic illustration for preparation of ordered mesoporous resins and carbons via solvent evaporation-induced self-assembly (EISA)[24] PEO: poly ethylene oxide; PPO: poly propylene oxide; La: lamellar mesophases
Fig 2 Schematic illustration for synthesis of ordered mesoporous carbons by using resorcinol/hexamine as a precursor pair[39]
Fig 3 Fiber like ordered mesoporous carbons synthesized in strongly acidic aqueous media[52] (a) photographs of as-made polymer powder and the corresponding carbon powder (inset); (b,c) photographs of polymer monolith and the corresponding carbon monolith prepared by a simple vacuum filtration treatment; (d-f) SEM images of carbon powder with different magnification
Fig 4 Schematic illustration for solvent-free synthesis of ordered mesoporous carbons[55]
Fig 5 Schematic illustration for aqueous synthesis of mesoporous carbons by self-assembly of tannin and F127 [65]
Fig 6 Schematic illustration for synthesis of ordered mesoporous/macroporous materials by a combined soft-and hard-template method[78] 3DOM: three-dimensional ordered mesoporous
Fig 7 Schematic illustration for triconstituent co-assembly to hierarchically ordered mesoporous carbon and silica materials[79] TEOS: tetraethyl orthosilicate
Fig 8 Schematic illustration for synthesis of hierarchically ordered micro-/mesoporous carbons by self-assembly of POSS and block copolymers[83] OAPS: octa(aminophenyl)silsesquioxane; THF: tetrahydrofuran; EISA: evaporation-induced self-assembly; POSS: polyhedral oligosilsesquioxane
Fig 9 Bonding configurations for nitrogen element in carbon lattice[92]
Fig 10 Formation of nitrogen-doped mesoporous carbon nanospheres[96]
1 Ryoo R. ; Joo S. H. ; Jun S. J. Phys. Chem. B 1999, 103, 7743.
2 Lee J. ; Yoon S. ; Hyeon T. ; Oh S. M. ; Kim K. B. Chem. Commun. 1999, 2177
3 Kim T.W. ; Park I. S. ; Ryoo R. Angew. Chem. Int. Edit. 2003, 42, 4375.
4 Ma Z. X. ; Kyotani T. ; Tomita A. Chem. Commun. 2000, 2365
5 Kim K. ; Lee T. ; Kwon Y. ; Seo Y. ; Song J. ; Park J. K. ; Lee H. ; Park J. Y. ; Ihee H. ; Cho S. J. ; Ryoo R. Nature 2016, 535, 131.
6 Yu J. S. ; Kang S. ; Yoon S. B. ; Chai G. J. Am. Chem. Soc. 2002, 124, 9382.
7 Yang H. F. ; Zhao D. Y. J. Mater. Chem. 2005, 15, 1217.
8 Liang C. ; Hong K. ; Guiochon G. A. ; Mays J.W. ; Dai S. Angew. Chem. Int. Edit. 2004, 43, 5785.
9 Tanaka S. ; Nishiyama N. ; Egashira Y. ; Ueyama K. Chem. Commun. 2005, 2125
10 Meng Y. ; Gu D. ; Zhang F. ; Shi Y. ; Yang H. ; Li Z. ; Yu C. ; Tu B. ; Zhao D. Angew. Chem. Int. Edit. 2005, 44, 7053.
11 Liang C. ; Li Z. ; Dai S. Angew. Chem. Int. Edit. 2008, 47, 3696.
12 Wan Y. ; Shi Y. ; Zhao D. Chem. Mater. 2008, 20, 932.
13 Zhai Y. ; Dou Y. ; Zhao D. ; Fulvio P. F. ; Mayes R. T. ; Dai S. Adv. Mater. 2011, 23, 4828.
14 Chuenchom L. ; Kraehnert R. ; Smarsly B. M. Soft Matter 2012, 8, 10801.
15 Deng Y. ; Wei J. ; Sun Z. ; Zhao D. Chem. Soc. Rev. 2013, 42, 4054.
16 Fang B. ; Kim J. H. ; Kim M. S. ; Yu J. S. Acc. Chem. Res. 2013, 46, 1397.
17 Ma T. Y. ; Liu L. ; Yuan Z. Y. Chem. Soc. Rev. 2013, 42, 3977.
18 Liu J. ; Wickramaratne N. P. ; Qiao S. Z. ; Jaroniec M. Nat. Mater. 2015, 14, 763.
19 Xin W. ; Song Y. H. RSC Adv. 2015, 5, 83239.
20 Moriguchi I. ; Ozono A. ; Mikuriya K. ; Teraoka Y. ; Kagawa S. ; Kodama M. Chem. Lett. 1999, 1171
21 Lee K. T. ; Oh S. M. Chem. Commun. 2002, 2722
22 Li Z. J. ; Yan W. F. ; Dai S. Carbon 2004, 42, 767.
23 Nishiyama N. ; Zheng T. ; Yamane Y. ; Egashira Y. ; Ueyama K. Carbon 2005, 43, 269.
24 Meng Y. ; Gu D. ; Zhang F. ; Shi Y. ; Cheng L. ; Feng D. ; Wu Z. ; Chen Z. ; Wan Y. ; Stein A. ; Zhao D. Chem. Mater. 2006, 18, 4447.
25 Lu Y. F. ; Ganguli R. ; Drewien C. A. ; Anderson M. T. ; Brinker C. J. ; Gong W. L. ; Guo Y. X. ; Soyez H. ; Dunn B. ; Huang M. H. ; Zink J. I. Nature 1997, 389, 364.
26 Yang P. D. ; Zhao D. Y. ; Margolese D. I. ; Chmelka B. F. ; Stucky G. D. Nature 1998, 396, 152.
27 Wang X. ; Liang C. ; Dai S. Langmuir 2008, 24, 7500.
28 Wan Y. ; Zhao D. Chem. Rev. 2007, 107, 2821.
29 Schuster J. ; Kohn R. ; Doblinger M. ; Keilbach A. ; Amenitsch H. ; Bein T. J. Am. Chem. Soc. 2012, 134, 11136.
30 Zhang F. ; Meng Y. ; Gu D. ; Yan Y. ; Yu C. ; Tu B. ; Zhao D. J. Am. Chem. Soc. 2005, 127, 13508.
31 Zhang F. Q. ; Meng Y. ; Gu D. ; Yan Y. ; Chen Z. X. ; Tu B. ; Zhao D. Y. Chem. Mater. 2006, 18, 5279.
32 Zhang F. ; Gu D. ; Yu T. ; Zhang F. ; Xie S. ; Zhang L. ; Deng Y. ; Wan Y. ; Tu B. ; Zhao D. J. Am. Chem. Soc. 2007, 129, 7746.
33 Gu D. ; Bongard H. ; Meng Y. ; Miyasaka K. ; Terasaki O. ; Zhang F. ; Deng Y. ; Wu Z. ; Feng D. ; Fang Y. ; Tu B. ; Schuth F. ; Zhao D. Chem. Mater. 2010, 22, 4828.
34 Lu A. H. ; Spliethoff B. ; Schuth F. Chem. Mater. 2008, 20, 5314.
35 Huang Y. ; Cai H. ; Feng D. ; Gu D. ; Deng Y. ; Tu B. ; Wang H. ; Webley P. A. ; Zhao D. Chem. Commun. 2008, 2641
36 Liu F. J. ; Li C. J. ; Ren L. M. ; Meng X. J. ; Zhang H. ; Xiao F. S. J. Mater. Chem. 2009, 19, 7921.
37 Fang Y. ; Gu D. ; Zou Y. ; Wu Z. ; Li F. ; Che R. ; Deng Y. ; Tu B. ; Zhao D. Angew. Chem. Int. Edit. 2010, 49, 7987.
38 Sun Q. ; Zhang X. Q. ; Han F. ; Li W. C. ; Lu A. H. J. Mater. Chem. 2012, 22, 17049.
39 Liu D. ; Lei J. H. ; Guo L. P. ; Qu D. Y. ; Li Y. ; Su B. L. Carbon 2012, 50, 476.
40 Durairaj R. B. Resorcinol Chemistry, Technology and Applications; Springer-Verlag: New York 2005.
41 Al-Muhtaseb S. A. ; Ritter J. A. Adv. Mater. 2003, 15, 101.
42 Vayssieres L. ; Keis K. ; Hagfeldt A. ; Lindquist S. E. Chem. Mater. 2001, 13, 4395.
43 Liu D. ; Zheng D. ; Wang L. L. ; Qu D. Y. ; Xie Z. Z. ; Lei J.H. ; Guo L. P. ; Deng B. H. ; Xiao L. ; Qu D. Y. J. Phys. Chem. C 2014, 118, 2370.
44 Liu D. ; Lei J. H. ; Guo L. P. ; Deng K. J. Carbon 2011, 49, 2113.
45 Liu D. ; Zeng C. ; Qu D. ; Tang H. ; Li Y. ; Su B. L. ; Qu D. J. Power Sources 2016, 321, 143.
46 Wang J. ; Liu H. Y. ; Diao J. Y. ; Gu X. M. ; Wang H. H. ; Rong J. F. ; Zong B. N. ; Su D. S. J. Mater. Chem. A 2015, 3, 2305.
47 Wang J. ; Liu H. ; Gu X. ; Wang H. ; Su D. S. Chem. Commun. 2014, 50, 9182.
48 Wang G. H. ; Cao Z. ; Gu D. ; Pfander N. ; Swertz A. C. ; Spliethoff B. ; Bongard H. J. ; Weidenthaler C. ; Schmidt W. ; Rinaldi R. ; Schuth F. Angew. Chem. Int. Edit. 2016, 55, 8850.
49 Shen G. ; Sun X. ; Zhang H. ; Liu Y. ; Zhang J. ; Meka A. ; Zhou L. ; Yu C. J. Mater. Chem. A 2015, 3, 24041.
50 Dong X. ; Zhao X. ; Wang L. ; Zhang M. RSC Adv. 2016, 6, 48870.
51 Lu W. J. ; Liu M. X. ; Miao L. ; Zhu D. Z. ; Wang X. ; Duan H. ; Wang Z.W. ; Li L. C. ; Xu Z. J. ; Gan L. H. ; Chen L. W.Electrochim. Acta 2016, 205, 132.
52 Liu D. ; Xia L. J. ; Qu D. Y. ; Lei J. H. ; Li Y. ; Su B. L. J. Mater. Chem. A 2013, 1, 15447.
53 Ren L. ; Wu Q. ; Yang C. ; Zhu L. ; Li C. ; Zhang P. ; Zhang H. ; Meng X. ; Xiao F. S. J. Am. Chem. Soc. 2012, 134, 15173.
54 Lin J. B. ; Lin R. B. ; Cheng X. N. ; Zhang J. P. ; Chen X. M. Chem. Commun. 2011, 47, 9185.
55 Wang Q.W. ; Mu Y. J. ; Zhang W. L. ; Zhong L. S. ; Meng Y. ; Sun Y. H. RSC Adv. 2014, 4, 32113.
56 Zhang Z. ; Wang B. ; Zhu C. ; Gao P. ; Tang Z. ; Sun N. ; Wei W. ; Sun Y. J. Mater. Chem. A 2015, 3, 23990.
57 Zhu J. H. ; Yang J. ; Miao R. R. ; Yao Z. Q. ; Zhuang X. D. ; Feng X. L. J. Mater. Chem. A 2016, 4, 2286.
58 Zhang Z. ; Zhu C. ; Sun N. ; Wang H. ; Tang Z. ; Wei W. ; Sun Y. J. Phys. Chem. C 2015, 119, 9302.
59 Hu B. ; Wang K. ; Wu L. ; Yu S. H. ; Antonietti M. ; Titirici M. M. Adv. Mater. 2010, 22, 813.
60 Titirici M. M. ; White R. J. ; Falco C. ; Sevilla M. Energy Environ. Sci. 2012, 5, 6796.
61 Kubo S. ; White R. J. ; Yoshizawa N. ; Antonietti M. ; Titirici M. M. Chem. Mater. 2011, 23, 4882.
62 Feng S. ; Li W. ; Wang J. ; Song Y. ; Elzatahry A. A. ; Xia Y. ; Zhao D. Nanoscale 2014, 6, 14657.
63 Xu F. ; Chen Y. ; Tang M. ; Wang H. ; Deng J. ; Wang Y. ACS Sustain. Chem. Eng. 2016, 4, 4473.
64 Schlienger S. ; Graff A. L. ; Celzard A. ; Parmentier J. Green Chem. 2012, 14, 313.
65 Braghiroli F. L. ; Fierro V. ; Parmentier J. ; Pasc A. ; Celzard A. Green Chem. 2016, 18, 3265.
66 To J.W. ; He J. ; Mei J. ; Haghpanah R. ; Chen Z. ; Kurosawa T. ; Chen S. ; Bae W. G. ; Pan L. ; Tok J. B. ; Wilcox J. ; Bao Z. J. Am. Chem. Soc. 2016, 138, 1001.
67 Lv Y. Y. ; Zhang F. ; Dou Y. Q. ; Zhai Y. P. ; Wang J. X. ; Liu H. J. ; Xia Y. Y. ; Tu B. ; Zhao D. Y. J. Mater. Chem. 2012, 22, 93.
68 Jin J. ; Tanaka S. ; Egashira Y. ; Nishiyama N. Carbon 2010, 48, 1985.
69 Hao G. P. ; Li W. C. ; Wang S. A. ; Wang G. H. ; Qi L. ; Lu A. H. Carbon 2011, 49, 3762.
70 Wang X. Q. ; Liu C. G. ; Neff D. ; Fulvio P. F. ; Mayes R. T. ; Zhamu A. ; Fang Q. ; Chen G. R. ; Meyer H. M. ; Jang B. Z. ; Dai S. J. Mater. Chem. A 2013, 1, 7920.
71 Wang X. Q. ; Lee J. S. ; Zhu Q. ; Liu J. ; Wang Y. ; Dai S. Chem. Mater. 2010, 22, 2178.
72 Huang K. ; Chai S. H. ; Mayes R. T. ; Tan S. ; Jones C.W. ; Dai S. Microporous Mesoporous Mat. 2016, 230, 100.
73 Li N.W. ; Zheng M. B. ; Feng S. Q. ; Lu H. L. ; Zhao B. ; Zheng J. F. ; Zhang S. T. ; Ji G. B. ; Cao J. M. J. Phys. Chem. C 2013, 117, 8784.
74 Wang Z. ; Stein A. Chem. Mater. 2008, 20, 1029.
75 Xue C. F. ; Tu B. ; Zhao D. Y. Nano Res. 2009, 2, 242.
76 Steinhart M. ; Liang C. D. ; Lynn G.W. ; Gosele U. ; Dai S. Chem. Mater. 2007, 19, 2383.
77 Liu H. J. ; Wang X. M. ; Cui W. J. ; Dou Y. Q. ; Zhao D. Y. ; Xia Y. Y. J. Mater. Chem. 2010, 20, 4223.
78 Petkovich N. D. ; Stein A. Chem. Soc. Rev. 2013, 42, 3721.
79 Liu R. ; Shi Y. ; Wan Y. ; Meng Y. ; Zhang F. ; Gu D. ; Chen Z. ; Tu B. ; Zhao D. J. Am. Chem. Soc. 2006, 128, 11652.
80 Tripathi P. K. ; Liu M. ; Zhao Y. ; Ma X. ; Gan L. ; Noonan O. ; Yu C. J. Mater. Chem. A 2014, 2, 8534.
81 Yu T. ; Deng Y. H. ; Wang L. ; Liu R. L. ; Zhang L. J. ; Tu B. ; Zhao D. Y. Adv. Mater. 2007, 19, 2301.
82 Liu H. J. ; Wang J. ; Wang C. X. ; Xia Y. Y. Adv. Energy Mater. 2011, 1, 1101.
83 Liu D. ; Cheng G. ; Zhao H. ; Zeng C. ; Qu D. Y. ; Xiao L. ; Tang H. L. ; Deng Z. ; Li Y. ; Su B. L. Nano Energy 2016, 22, 255.
84 Cordes D. B. ; Lickiss P. D. ; Rataboul F. Chem. Rev. 2010, 110, 2081.
85 Podyacheva O. Y. ; Ismagilov Z. R. Catal. Today 2015, 249, 12.
86 Guo D. ; Shibuya R. ; Akiba C. ; Saji S. ; Kondo T. ; Nakamura J. Science 2016, 351, 361.
87 Lin T. ; Chen I.W. ; Liu F. ; Yang C. ; Bi H. ; Xu F. ; Huang F. Science 2015, 350, 1508.
88 Deng Y. F. ; Xie Y. ; Zou K. X. ; Ji X. L. J. Mater. Chem. A 2016, 4, 1144.
89 Song J. ; Gordin M. L. ; Xu T. ; Chen S. ; Yu Z. ; Sohn H. ; Lu J. ; Ren Y. ; Duan Y. ; Wang D. Angew. Chem. Int. Edit. 2015, 54, 4325.
90 Peng H. J. ; Zhang Q. Angew. Chem. Int. Edit. 2015, 54, 11018.
91 Shen W. Z. ; Fan W. B. J. Mater. Chem. A 2013, 1, 999.
92 Jurewicz K. ; Babel K. ; Ziolkowski A. ; Wachowska H. Electrochim. Acta 2003, 48, 1491.
93 Wu Z. X. ; Webley P. A. ; Zhao D. Y. J. Mater. Chem. 2012, 22, 11379.
94 Wei J. ; Zhou D. ; Sun Z. ; Deng Y. ; Xia Y. ; Zhao D. Adv. Funct. Mater. 2013, 23, 2322.
95 Song Y. ; Li L. ; Wang Y. ; Wang C. ; Guo Z. ; Xia Y. ChemPhysChem 2014, 15, 2084.
96 Tang J. ; Liu J. ; Li C. ; Li Y. ; Tade M. O. ; Dai S. ; Yamauchi Y. Angew. Chem. Int. Edit. 2015, 54, 588.
97 Tang J. ; Liu J. ; Salunkhe R. R. ; Wang T. ; Yamauchi Y. Chem. Commun. 2016, 52, 505.
98 Zhu Y. P. ; Liu Y. ; Liu Y. P. ; Ren T. Z. ; Chen T. ; Yuan Z. Y. ChemCatChem 2015, 7, 2903.
99 Deng C. ; Zhong H. ; Li X. ; Yao L. ; Zhang H. Nanoscale 2016, 8, 1580.
100 Zhao X. ; Zhang Q. ; Zhang B. ; Chen C. M. ; Wang A. ; Zhang T. ; Su D. S. J. Mater. Chem. 2012, 22, 4963.
101 Kruk M. Acc. Chem. Res. 2012, 45, 1678.
[1] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[2] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[3] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1915-1922.
[4] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1520-1532.
[5] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[6] Hai-Kuan YANG. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 582-589.
[7] Zhen ZHANG,Wen-Jun XIE,Yi Isaac YANG,Geng SUN,Yi-Qin GAO. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 539-547.
[8] Yun-He WANG,Yuan QIN,Man YAO,Xu-Dong WANG,Shu-Ying LI,Dong WANG,Ting CHEN. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2255-2263.
[9] Wei-Ju HAO,Jun-Qi ZHANG,Ya-Zhuo SHANG,Shou-Hong XU,Hong-Lai LIU. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2628-2635.
[10] Juan YE,Kai SUN,Min-Long TAO,Yu-Bing TU,Zheng-Bo XIE,Ya-Li WANG,Shao-Jie HAO,Hua-Fang XIAO,Jun-Zhong WANG. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2593-2598.
[11] Chun-Yang LI,Long-Long GENG,Xu-Wei YANG,Shu-Jie WU,Wen-Xiang ZHANG,Gang LIU. Influence of the Surface Properties of Mesoporous Carbon on the Adsorption Removal of Ammonia under Low Concentration Conditions[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2599-2605.
[12] Xiu-Feng WANG,Li ZHANG,Ming-Hua LIU. supramolecular Gels: Structural Diversity and supramolecular Chirality[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 227-238.
[13] Gao-Chen GU,Na LI,Xue ZHANG,Shi-Min HOU,Yong-Feng WANG,Kai WU. Sierpiński Trangle Fractal Structures Investigated by STM[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 195-200.
[14] Hui-Yong WANG,Hong-Pei LI,Guo-Kai CUI,Zhi-Yong LI,Jian-Ji WANG. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 249-260.
[15] HAYIERBIEK Kulisong,Shu-Xian ZHAO,Yang YANG,Han ZENG. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1715-1726.