Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 198-210    DOI: 10.3866/PKU.WHXB201609191
REVIEW     
Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment
Meng SUN1,3,Jing-Hong LI2,*()
1 Key Laboratory of Drinking Water Science and Technology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, P. R. China
2 Department of Chemistry, Beijing Key Laboratory for Microanalytical Methods and Instrumentation, Tsinghua University, Beijing 100084, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(4918KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Developing highly efficient electrode catalysts with the four-electron oxygen reduction pathway has remained a research hotspot in fuel cell research. However, the pursuit of novel electrode catalysts possessing the specific two-electron reduction route for water treatment is challenging. In this review, we focus on recent progress in electrocatalytic treatment of refractory pollutants in water by palladium (Pd)-based noble metal electrodes. We highlight:(i) the degradation and mineralization of organic pollutants through electrocatalytic oxidation derived from the combination of Fe2+ and H2O2, which can be in-situ synthesized by Pd based electrodes; (ii) electrocatalytic reduction transformation from toxic organic pollutants and inorganic salts to harmless products by Pd-based electrodes; and (iii) removal of heavy metals by redox conversion via Pd-based electrodes. The future opportunities and prospects of applying noble metal nanocatalysts in water treatment are discussed.



Key wordsElectrocatalysis      Oxygen reduction      Electrode material      Water treatment     
Received: 18 July 2016      Published: 19 September 2016
MSC2000:  O646  
Fund:  National Key Research and Development Program of China(2016YFA0203101);National Key Basic Researc Program of China(2013CB934004);National Natural Science Foundation of China(51572139)
Corresponding Authors: Jing-Hong LI     E-mail: jhli@mail.tsinghua.edu.cn
Cite this article:

Meng SUN,Jing-Hong LI. Recent Progress on Palladium-Based Oxygen Reduction Reaction Electrodes for Water Treatment. Acta Phys. -Chim. Sin., 2017, 33(1): 198-210.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609191     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/198

Fig 1 Reaction pathways that lead to Pd nanostructures with different morphologies8
Fig 2 (a) Scanning electron microscopy (SEM) and transmission electron microscopy (TEM) images of large quantity of Pd handsprings13; (b) SEM images of Pd nanorods14
Fig 3 (a) Schematic representation of focused ion/electron beam induced deposition techniques8; (b) effect of laser and UV on the structural formation of palladium nanoparticles36
Fig 4 (a) Schematic representation of oxygen reduction to H2O2 on Pdbased catalysts; (b) partial kinetic current density to H2O2 as a function of the applied potential, corrected for mass transport losses; (c) thermodynamics volcanic figure of H2O2 synthesis on noble metal and their alloys59 For Fig.(c), potential required to reach 1 mA·cm-2 of kinetic current density to H2O2 on polycrystalline catalysts as a function of the calculated HOO* binding energy. The solid lines represent the theoretical Sabatier volcano.
Fig 5 (a) Scheme of efficient electrocatalytic oxidation degradation of RhB using Pd/C particle electrodes; (b) repeated experiments on the electrocatalytic generation of H2O2 and (c) the degradation of RhB by Pd/C particle electrodes62; (d) proposed mechanisms on electrocatalytic oxidation degradation of phenol by Pd/Fe3O4 particle electrodes61
Fig 6 (a) X-ray diffraction (XRD) patterns of CNTs, Pd/CNTs, Au/CNTs, and 1% Au0.5 Pd0.5/CNTs; (b) TEM images of Au0.5Pd0.5/CNTs, the inset shows its high resolution transmission electron microscopy (HRTEM) image; (c) CV curves of CNTs, Pd/CNTs, and Au0.5Pd0.5/CNTs, scan rate: 50 mV·s-1; (d) production of ·OH from different nanocatalysts by ESR; (e) proposed mechanism in AuPd/CNTs catalytic degradation of organic pollutants63 ESR: electron spin resonance. color online
Fig 7 (a) Mechanisms for electrochemical generation of Fe2+ from an iron cathode for Pd-catalytic transformation of MTBE in groundwater65; (b) mechanisms for TCE degradation in the presence of Fe (Ⅱ)62; (c) scheme of electrolytic manipulation of persulfate reactivity for trichloroethylene degradation66; (d) scheme of electrochemically induced dual reactive barriers for transformation of TCE and nitrate in groundwater68 MTBE: methyl tert-butyl ether; TCE: trichloroethylene
Fig 8 (a) TEM image of AuPd/CNTs; (b) redox conversion of Cr (Ⅵ) and As (Ⅲ) in the presence of AuPd/CNTs; (c) hyperfine EPR spectra of active free radicals detected in different electrocatalysis conditions; (d) proposed mechanism of simultaneous transformation of Cr (Ⅵ) and As (Ⅲ) under AuPd/CNTs electrocatalysis; (e) density functional theory calculations of the intermediate reactions in the redox conversion of Cr (Ⅵ) and As (Ⅲ)77
1 Shao M. H. ; Chang Q.W. ; Dodelet J. P. ; Chenitz R. Chem. Rev 2016, 116, 3594.
2 Liu M. M. ; Zhang R. Z. ; Chen W. Chem. Rev 2014, 114, 5117.
3 Chlistunoff J. J.Phys. Chem. C 2011, 115, 6496.
4 Levy N. ; Mahammed A. ; Kosa M. ; Major D. T. ; Gross Z. ; Elbaz L. Angew. Chem. Int. Ed 2015, 54, 14080.
5 Zheng Y. R. ; Gao M. R. ; Li H. H. ; Gao Q. ; Arshad M. N. ; Albar H. A. ; Sobahi T. R. ; Yu S. H. Sci. China. Mater 2015, 58, 179.
6 Brillas E. ; Sirés I. ; Oturan M. A. Chem. Rev 2009, 109, 6570.
7 Luo L. X. ; Shen S. Y. ; Zhu F. J. ; Zhang J. L. Acta Phys. -Chim. Sin 2016, 32, 337.
7 罗柳轩; 沈水云; 朱凤鹃; 章俊良. 物理化学学报, 2016, 32, 337.
8 Chen A. ; Ostrom C. Chem. Rev 2015, 115, 11999.
9 Zhang H. ; Jin M. ; Xiong Y. ; Lim B. ; Xia Y. Accounts Chem. Res 2013, 46, 1783.
10 Zhu C. ; Zeng J. ; Lu P. ; Chlistunoff J. ; Gu Z. ; Xia Y. Chemistry 2013, 19, 5127.
11 Yarulin A. E. ; Crespo-Quesada R. M. ; Egorova E. V. ; Kiwi-Minsker L. L. Kinet. Catal 2012, 53, 253.
12 Jin M. ; Zhang H. ; Xie Z. ; Xia Y. Energ. Environ Sci 2012, 5, 6352.
13 Liu L. ; Yoo S. H. ; Lee S. A. ; Park S. Nano Lett 2011, 11, 3979.
14 Tian N. ; Zhou Z. Y. ; Sun S. G. Chem. Commun 2009, 12, 1502.
15 Cui C. H. ; Yu J.W. ; Li H. H. ; Gao M. R. ; Liang H.W. ; Yu S.H. ACS Nano 2011, 5, 4211.
16 Adams B. D. ; Asmussen R. M. ; Ostrom C. K. ; Chen A. C. J.Phys. Chem. C 2014, 118, 29903.
17 Semaltianos N. G. ; Petkov P. ; Scholz S. ; Guetaz L. J.Colloid Interface Sci 2013, 402, 307.
18 Jukk K. ; Alexeyeva N. ; Sarapuu A. ; Ritslaid P. ; Kozlova J. ; Sammelselg V. ; Tammeveski K. Int. J.Hydrog. Energy 2013, 38, 3614.
19 Adams B. D. ; Wu G. ; Nigro S. ; Chen A. J.Am. Chem. Soc 2009, 131, 6930.
20 Gu L. ; Luo N. ; Miley G. H. J. Power Sources 2007, 173, 77.
21 Spencer J. A. ; Rosenberg S. G. ; Barclay M. ; Wu Y. C. ; McElwee-White L. ; Fairbrother D. H. Appl. Phys. A-Mater 2014, 117, 1631.
22 Bhuvana T. ; Kulkarni G. U. ACS Nano 2008, 2, 457.
23 Muniz-Miranda M. ; Gellini C. ; Canton P. ; Marsili P. ; Giorgetti E. J. Alloy. Compd 2014, 615, S352.
24 Kim J. ; Reddy D. A. ; Ma R. ; Kim T. K. Solid State Sci 2014, 37, 96.
25 Kuai L. ; Yu X. ; Wang S. ; Sang Y. ; Geng B. Langmuir 2012, 28, 7168.
26 Xu H. ; Tong Y. X. ; Li G. R. Acta Phys. -Chim. Sin 2016, 32, 2171.
26 许瀚; 童叶翔; 李高仁. 物理化学学报, 2016, 32, 2171.
27 Kang W. ; Li H. ; Yan Y. ; Xiao P. ; Zhu L. ; Tang K. ; Zhu Y. ; Qian Y. J.Phys. Chem. C 2011, 115, 6250.
28 Ji Y. G. ; Wu L. ; Fan Q. H. Acta Chim. Sin 2014, 72, 798.
28 季益刚; 吴磊; 范青华. 化学学报, 2014, 72, 798.
29 Chen C. C. ; Lin C. L. ; Chen L. C. Electrochim. Acta 2015, 152, 408.
30 Feng Q. C. ; Wang W. Y. ; Cheong W. C. ; Wang D. S. ; Peng Q. ; Li J. P. ; Chen C. ; Li Y. D. Sci. China Mater 2015, 58, 936.
31 Ye J. S. ; Chen C.W. ; Lee C. L. Sensor. Actuat. B-Chem 2015, 208, 569.
32 Ojani R. ; Abkar Z. ; Hasheminejad E. ; Raoof J. B. Int. J.Hydrog. Energy 2014, 39, 7788.
33 Spencer J. A. ; Rosenberg S. G. ; Barclay M. ; Wu Y. C. ; McElwee-White L. ; Howard Fairbrother D. Appl. Phys. A 2014, 117, 1631.
34 Barzola-Quiquia J. ; Schulze S. ; Esquinazi P. Nanotechnology 2009, 20, 165704.
35 Torrisi L. ; Caridi F. ; Giuffrida L. Nucl. Instrum. Meth. B 2010, 268, 2285.
36 Mortazavi S. Z. ; Parvin P. ; Reyhani A. ; Golikand A. N. ; Mirershadi S. J.Phys. Chem. C 2011, 115, 5049.
37 Sun L. M. ; Zhang C. ; Bao Y. R. ; Li H. X. J.Electrochem 2014, 20, 56.
37 孙丽美; 张铖; 包英荣; 李宏霞. 电化学, 2014, 20, 56.
38 Nguyen T. T. ; Pan C. J. ; Liu J. Y. ; Chou H. L. ; Rick J. ; Su W.N. ; Hwang B. J. J. Power Sources 2014, 251, 393.
39 Lee Y.W. ; Kim M. ; Kim Z. H. ; Han S.W. J.Am. Chem. Soc 2009, 131, 17036.
40 Xu J. ; Wilson A. R. ; Rathmell A. R. ; Howe J. ; Chi M. ; Wiley B. J. ACS Nano 2011, 5, 6119.
41 Choi S. ; Jeong H. ; Choi K. H. ; Song J. Y. ; Kim J. ACS Applied Materials & Interfaces 2014, 6, 3002.
42 Yang D. ; Carpena-Nú?ez J. ; Fonseca L. F. ; Biaggi-Labiosa A. ; Hunter G.W. Sci. Rep 2014, 4, 3773.
43 Robert C.M. ; Evan U. ; Cao G. Z. Sci. China Mater 2015, 58, 715.
44 Plowman B. J. ; Bhargava S. K. ; O'Mullane A. P. Analyst 2011, 136, 5107.
45 Shih Z. Y. ; Wang C.W. ; Xu G. ; Chang H. T. J.Mater. Chem. A 2013, 1, 4773.
46 Yang L. ; Hu C. ; Wang J. ; Yang Z. ; Guo Y. ; Bai Z. ; Wang K. Chem. Commun 2011, 47, 8581.
47 Cernohorsky O. ; Zdansky K. ; Zavadil J. ; Kacerovsky P. ; Piksova K. Nanoscale Res. Lett 2011, 6, 410.
48 Choudhary V. R. ; Samanta C. ; Choudhary T. V. Appl. Catal. AGen 2006, 308, 128.
49 Choudhary V. R. ; Samanta C. ; Jana P. Appl. Catal. A-Gen 2007, 332, 70.
50 Deguchi T. ; Iwamoto M. J.Phys. Chem. C 2013, 117, 18540.
51 Li J. ; Ishihara T. ; Yoshizawa K. J.Phys. Chem. C 2011, 115, 25359.
52 Li J. ; Staykov A. ; Ishihara T. ; Yoshizawa K. J.Phys. Chem. C 2011, 115, 7392.
53 Li G. ; Han J. ; Wang H. ; Zhu X. ; Ge Q. ACS Catal 2015, 5, 2009.
54 Sheth P. A. ; Neurock M. ; Smith C. M. J.Phys. Chem. B 2003, 107, 2009.
55 Ham H. C. ; Hwang G. S. ; Han J. ; Nam S.W. ; Lim T. H. J.Phys. Chem. C 2009, 113, 12943.
56 Huang Y. ; Ferhan A. R. ; Dandapat A. ; Yoon C. S. ; Song J. E. ; Cho E. C. ; Kim D. H. J.Phys. Chem. C 2015, 119, 26164.
57 Jirkovsky J. S. ; Panas I. ; Ahlberg E. ; Halasa M. ; Romani S. ; Schiffrin D. J. J.Am. Chem. Soc 2011, 133, 19432.
58 Jin X. ; Dang L. ; Lohrman J. ; Subramaniam B. ; Ren S. ; Chaudhari R. V. ACS Nano 2013, 7, 1309.
59 Verdaguer-Casadevall A. ; Deiana D. ; Karamad M. ; Siahrostami S. ; Malacrida P. ; Hansen T.W. ; Rossmeisl J. ; Chorkendorff I. ; Stephens I. E. L. Nano Lett 2014, 14, 1603.
60 Yuan S. ; Fan Y. ; Zhang Y. ; Tong M. ; Liao P. Environ. Sci. Technol 2011, 45, 8514.
61 Luo M. ; Yuan S. ; Tong M. ; Liao P. ; Xie W. ; Xu X. Water Res 2014, 48, 190.
62 Yuan S. ; Mao X. ; Alshawabkeh A. N. Environ. Sci. Technol 2012, 46, 3398.
63 Sun M. ; Zhang G. ; Liu Y. ; Liu H. ; Qu J. ; Li J. Chem. Eur. J 2015, 21, 7611.
64 Qin Y. ; Sun M. ; Liu H. ; Qu J. Electrochim. Acta 2015, 186, 328.
65 Liao P. ; Yuan S. ; Chen M. ; Tong M. ; Xie W. ; Zhang P. Environ. Sci. Technol 2013, 47, 7918.
66 Yuan S. ; Liao P. ; Alshawabkeh A. N. Environ. Sci. Technol 2014, 48, 656.
67 Yuan S. ; Chen M. ; Mao X. ; Alshawabkeh A. N. Water Res 2013, 47, 269.
68 Mao X. ; Yuan S. ; Fallahpour N. ; Ciblak A. ; Howard J. ; Padilla I. ; Loch-Caruso R. ; Alshawabkeh A. N. Environ. Sci. Technol 2012, 46, 12003.
69 Demoisson F. ; Mullet M. ; Humbert B. Environ. Sci. Technol 2005, 39, 8747.
70 Falayi T. ; Ntuli F. J.Ind. Eng. Chem 2014, 20, 1285.
71 Kimbrough D. E. ; Cohen Y. ; Winer A. M. ; Creelman L. ; MabuniC. Crit. Rev. Env. Sci. Tec 1999, 29, 1.
72 Rifkin E. ; Gwinn P. ; Bouwer E. Environ. Sci. Technol 2004, 38, 267A.
73 Scialdone O. ; D'Angelo A. ; De Lumè E. ; Galia A. Electrochim. Acta 2014, 137, 258.
74 Qian A. ; Liao P. ; Yuan S. ; Luo M. S. Water Res 2014, 48, 326.
75 O'Day P. A. ; Vlassopoulos D. ; Root R. ; Rivera N. Proc. Natl. Acad. Sci. U. S. A 2004, 101, 13703.
76 Kim D. H. ; Bokare A. D. ; Koo M. S. ; Choi W. Environ. Sci. Technol 2015, 49, 3506.
77 Sun M. ; Zhang G. ; Qin Y. ; Cao M. ; Liu Y. ; Li J. ; Qu J. ; Liu H. Environ. Sci. Technol 2015, 49, 9289.
78 Qian A. ; Yuan S. ; Zhang P. ; Tong M. Environ. Sci. Technol 2015, 49, 5689.
79 Wan D. ; Liu H. ; Zhao X. ; Qu J. ; Xiao S. ; Hou Y. J.Colloid Interface Sci 2009, 332, 151.
80 Li A. ; Zhao X. ; Hou Y. ; Liu H. ; Wu L. ; Qu J. Appl. Catal. BEnviron 2012, 111-112, 628.
81 Zhao X. ; Li A. ; Mao R. ; Liu H. ; Qu J. Water Res 2014, 51, 134.
82 Mao R. ; Zhao X. ; Lan H. ; Liu H. ; Qu J. Appl. Catal. BEnviron 2014, 160-161, 179.
83 Mao R. ; Zhao X. ; Qu J. Electrochim. Acta 2014, 132, 151.
84 Xie W. ; Yuan S. ; Mao X. ; Hu W. ; Liao P. ; Tong M. ; Alshawabkeh A. N. Water Res 2013, 47, 3573.
85 Wang J. ; Zhou J. ; Hu Y. ; Regier T. Energ. Environ. Sci 2013, 6, 926.
86 Ai Z. ; Xiao H. ; Mei T. ; Liu J. ; Zhang L. ; Deng K. ; Qiu J. J.Phys. Chem. C 2008, 112, 11929.
87 Fu L. J. ; Gao J. ; Zhang T. ; Cao Q. ; Yang L. C. ; Wu Y. P. ; Holze R. J.Power Sources 2007, 171, 904.
88 Zana A. ; Rüdiger C. ; Kunze-Liebh?user J. ; Granozzi G. ; Reeler N. E. A. ; Vosch T. ; Kirkensgaard J. J. K. ; Arenz M. Electrochim. Acta 2014, 139, 21.
89 Ishihara A. ; Tamura M. ; Ohgi Y. ; Matsumoto M. ; Matsuzawa K. ; Mitsushima S. ; Imai H. ; Ota K. I. J.Phys. Chem. C 2013, 117, 18837.
90 Liu Y. ; Shrestha S. ; Mustain W. E. ACS Catal 2012, 2, 456.
91 Neelgund G. M. ; Oki A. ; Luo Z. J.Colloid Interface Sci 2014, 430, 257.
92 Ma J. ; Liu R. ; Wang X. ; Liu Q. ; Chen Y. ; Valle R. P. ; Zuo Y.Y. ; Xia T. ; Liu S. ACS Nano 2015, 9, 10498.
93 Qu G. ; Liu S. ; Zhang S. ; Wang L. ; Wang X. ; Sun B. ; Yin N. ; Gao X. ; Xia T. ; Chen J. J. ; Jiang G. B. ACS Nano 2013, 7, 5732.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[2] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[3] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[4] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[5] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[6] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[7] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[8] Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.
[9] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[10] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.
[11] Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 149-164.
[12] Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17.
[13] Yong LU,Qing ZHAO,Jing LIANG,Zhan-Liang TAO,Jun CHEN. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1593-1603.
[14] Xiao ZHOU,Min-Qiang SUN,Geng-Chao WANG. Synthesis and Supercapacitance Performance of Graphene-Supported π-Conjugated Polymer Nanocomposite Electrode Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 975-982.
[15] Ya-Jie LI,Xing-Yuan NI,Jun SHEN,Dong LIU,Nian-Ping LIU,Xiao-Wei ZHOU. Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 493-502.