Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(1)>> 40-62     doi: 10.3866/PKU.WHXB201609192         中文摘要
Determining 3D Molecular Conformations with Ultrafast Multiple-Dimensional Vibrational Spectroscopy
CHEN Hai-Long2, BIAN Hong-Tao3, ZHENG Jun-Rong1
1 Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China;
2 Beijing National Laboratory for Condensed Matter Physics and CAS Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China;
3 School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi'an 710119, P. R. China
Full text: PDF (2920KB) HTML Export: BibTeX | EndNote (RIS)

In recent years, ultrafast multiple-dimensional vibrational spectroscopy has been widely applied to studies of molecular structures and ultrafast dynamics in various condensed phases, and is expected to become a new generation of routine analytical tool for determining microstructures and ultrafast behaviors in molecular systems. In this review, we introduce in detail a method of determining three-dimensional (3D) molecular conformations with ultrafast multiple-dimensional vibrational spectroscopy. The introduction of our research follows two directions:(1) obtaining relative spatial orientations of different groups in a molecular system and finally determining molecular conformations by measuring cross angles of vibrational transition dipole moments; and (2) exploring the nature of vibrational energy transfers and determining molecular distances with experimentally measured vibrational energy transfer rates.



Keywords: Multiple-dimensional vibrational spectroscopy   Ultrafast spectroscopy   2D infrared spectroscopy   Molecular conformation   Vibrational energy transfer  
Received: 2016-07-22 Accepted: 2016-09-16 Publication Date (Web): 2016-09-19
Corresponding Authors: ZHENG Jun-Rong Email: junrong@pku.edu.cn

Fund: The project was supported by the AFOSR YIPAward, USA (FA9550-11-1-0070) and an AFOSR MURI grant, USA (FA9550-15-1-0022), theWelch Foundation, USA (C-1752), NSF USA (CHE-1503865), ACS PRF, USA, Packard fellowship, USA, and Sloan fellowship, USA.

Cite this article: CHEN Hai-Long, BIAN Hong-Tao, ZHENG Jun-Rong. Determining 3D Molecular Conformations with Ultrafast Multiple-Dimensional Vibrational Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017,33 (1): 40-62.    doi: 10.3866/PKU.WHXB201609192

(1) Cahoon, J. F.; Sawyer, K. R.; Schlegel, J. P.; Harris, C. B.Science 2008, 319, 1820. doi: 10.1126/science.1154041
(2) Kolano, C.; Helbing, J.; Kozinski, M.; Sander, W.; Hamm, P.Nature 2006, 444, 469. doi: 10.1038/nature05352
(3) Bredenbeck, J.; Helbing, J.; Hamm, P. J. Am. Chem. Soc. 2004, 126, 990. doi: 10.1021/ja0380190
(4) Hamm, P.; Lim, M.; Degrado, W. F.; Hochstrasser, R. M.J. Chem. Phys. 2000, 112, 1907. doi: 10.1063/1.480772
(5) Bredenbeck, J.; Ghosh, A.; Smits, M.; Bonn, M. J. Am. Chem. Soc. 2008, 130, 2152. doi: 10.1021/ja710099c5
(6) Asbury, J. B.; Steinel, T.; Stromberg, C.; Gaffney, K. J.; Piletic, I. R.; Goun, A.; Fayer, M. D. Phys. Rev. Lett. 2003, 91, 237402. doi: 10.1103/PhysRevLett.91.2374026.
(7) Zheng, J.; Kwak, K.; Fayer, M. D. Acc. Chem. Res. 2007, 40, 75. doi: 10.1021/ar068010d
(8) Shim, S. H.; Strasfeld, D. B.; Ling, Y. L.; Zanni, M. T. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 14197. doi: 10.1073pnas.0700804104
(9) Khalil, M.; Demirdoven, N.; Tokmakoff, A. J. Phys. Chem. A 2003, 107, 5258. doi: 10.1021/jp0219247
(10) Asplund, M. C.; Zanni, M. T.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 2000, 97, 8219. doi: 10.1073pnas.140227997
(11) Tanimura, Y.; Mukamel, S. J. Chem. Phys. 1993, 99, 9496. doi: 10.1063/1.465484
(12) Mukamel, S. Principles of Nonlinear Optical Spectroscopy; Oxford University Press: New York, 1995.
(13) Khalil, M.; Demirdoven, N.; Tokmakoff, A. Phys. Rev. Lett. 2003, 90, 047401(4). doi: 10.1103/PhysRevLett.90.047401
(14) Golonzka, O.; Khalil, M.; Demirdoven, N.; Tokmakoff, A.Phys. Rev. Lett. 2001, 86, 2154. doi: 10.1103PhysRevLett.86.2154
(15) Rubtsov, I. V.; Kumar, K.; Hochstrasser, R. M. Chem. Phys. Lett. 2005, 402, 439. doi: 10.1016/j.cplett.2004.12.08315
(16) Zanni, M. T.; Gnanakaran, S.; Stenger, J.; Hochstrasser, R. M.J. Phys. Chem. B 2001, 105, 6520. doi: 10.1021/jp0100093
(17) Cervetto, V.; Helbing, J.; Bredenbeck, J.; Hamm, P. J. Chem. Phys. 2004, 121, 5935. doi: 10.1063/1.1778163
(18) Sanda, F.; Mukamel, S. J. Chem. Phys. 2006, 125, 014507. doi: 10.1063/1.2205367
(19) Wang, J. P.; Chen, J. X.; Hochstrasser, R. M. J. Phys. Chem. B 2006, 110, 7545. doi: 10.1021/jp057564f
(20) Maekawa, H.; Formaggio, F.; Toniolo, C.; Ge, N. H. J. Am. Chem. Soc. 2008, 130, 6556. doi: 10.1021/ja8007165
(21) Mukherjee, P.; Kass, I.; Arkin, I.; Zanni, M. T. Proc. Natl. Acad. Sci. U. S. A. 2006, 103, 3528. doi: 10.1073pnas.0508833103
(22) Maekawa, H.; Toniolo, C.; Moretto, A.; Broxterman, Q. B.; Ge, N. H. J. Phys. Chem. B 2006, 110, 5834. doi: 10.1021jp057472q
(23) Baiz, C. R.; Nee, M. J.; McCanne, R.; Kubarych, K. J. Opt. Lett. 2008, 33, 2533. doi: 10.1364/OL.33.002533
(24) Zheng, J.; Kwac, K.; Xie, J.; Fayer, M. D. Science 2006, 313, 1951. doi: 10.1126/science.1132178
(25) Zheng, J. R.; Fayer, M. D. J. Am. Chem. Soc. 2007, 129, 4328. doi: 10.1021/ja067760f
(26) Zheng, J.; Kwak, K.; Asbury, J. B.; Chen, X.; Piletic, I.; Fayer, M. D. Science 2005, 309, 1338. doi: 10.1126/science.1116213
(27) Zhao, W.; Wright, J. C. Phys. Rev. Lett. 2000, 84, 1411. doi: 10.1103/PhysRevLett.84.1411
(28) Wright, J. C. Int. Rev. Phys. Chem. 2002, 21, 185. doi: 10.108001442350210124506
(29) Pakoulev, A. V.; Rickard, M. A.; Meyer, K. A.; Kornau, K.; Mathew, N. A.; Thompson, D. E.; Wright, J. C. J. Phys. Chem. A 2006, 110, 3352. doi: 10.1021/jp057339y
(30) Moilanen, D. E.; Wong, D.; Rosenfeld, D. E.; Fenn, E. E.; Fayer, M. D. Proc. Natl. Acad. Sci. U. S. A. 2009, 106, 375. doi: 10.1073/pnas.0811489106
(31) Asbury, J. B.; Steinel, T.; Stromberg, C.; Corcelli, S. A.; Lawrence, C. P.; Skinner, J. L.; Fayer, M. D. J. Phys. Chem. A 2004, 108, 1107. doi: 10.1021/jp036266k
(32) Steinel, T.; Asbury, J. B.; Corcelli, S. A.; Lawrence, C. P.; Skinner, J. L.; Fayer, M. D. Chem. Phys. Lett. 2004, 386, 295. doi: 10.1016/j.cplett.2004.01.042
(33) Loparo, J. J.; Roberts, S. T.; Nicodemus, R. A.; Tokmakoff, A.Chem. Phys. 2007, 341, 218. doi: 10.1016/j.chemphys.2007.06.056
(34) Loparo, J. J.; Roberts, S. T.; Tokmakoff, A. J. Chem. Phys. 2006, 125, 194522. doi: 10.1063/1.2382896
(35) Fecko, C. J.; Eaves, J. D.; Loparo, J. J.; Tokmakoff, A.; Geissler, P. L. Science 2003, 301, 1698. doi: 10.1126science.1087251
(36) Cowan, M. L.; Bruner, B. D.; Huse, N.; Dwyer, J. R.; Chugh, B.; Nibbering, E. T. J.; Elsaesser, T.; Miller, R. J. D. Nature 2005, 434, 199. doi: 10.1038/nature03383
(37) Cervetto, V.; Hamm, P.; Helbing, J. J. Phys. Chem. B 2008, 112, 8398. doi: 10.1021/jp801166q
(38) Kozinski, M.; Garrett-Roe, S.; Hamm, P. J. Phys. Chem. B 2008, 112, 7645. doi: 10.1021/jp8005734
(39) Finkelstein, I. J.; Zheng, J. R.; Ishikawa, H.; Kim, S.; Kwak, K.; Fayer, M. D. Phys. Chem. Chem. Phys. 2007, 9, 1533. doi: 10.1039/B618158A
(40) Finkelstein, I. J.; Ishikawa, H.; Kim, S.; Massari, A. M.; Fayer, M. D. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 2637. doi: 10.1073/pnas.0610027104
(41) Treuffet, J.; Kubarych, K. J.; Lambry, J. C.; Pilet, E.; Masson, J. B.; Martin, J. L.; Vos, M. H.; Joffre, M.; Alexandrou, A.Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 15705. doi: 10.1073pnas.0703279104
(42) Ishikawa, H.; Kwak, K.; Chung, J. K.; Kim, S.; Fayer, M. D.Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 8619. doi: 10.1073pnas.0803764105
(43) Ganim, Z.; Chung, H. S.; Smith, A.W.; Deflores, L. P.; Jones, K. C.; Tokmakoff, A. Acc. Chem. Res. 2008, 41, 432. doi: 10.1021/ar700188n
(44) DeCamp, M. F.; DeFlores, L.; McCracken, J. M.; Tokmakoff, A.; Kwac, K.; Cho, M. J. Phys. Chem. B 2005, 109, 11016. doi: 10.1021/jp050257p
(45) Fang, C.; Bauman, J. D.; Das, K.; Remorino, A.; Arnold, E.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 2008, 105, 1472. doi: 10.1073/pnas.0709320104
(46) Mukherjee, P.; Kass, I.; Arkin, I. T.; Zanni, M. T. J. Phys. Chem. B 2006, 110, 24740. doi: 10.1021/jp0640530
(47) Woutersen, S.; Mu, Y.; Stock, G.; Hamm, P. Chem. Phys. 2001, 266, 137. doi: 10.1016/S0301-0104(01)00224-5
(48) Kim, Y. S.; Hochstrasser, R. M. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 11185. doi: 10.1073/pnas.0504865102
(49) Zheng, J.; Kwak, K.; Chen, X.; Asbury, J. B.; Fayer, M. D.J. Am. Chem. Soc. 2006, 128, 2977. doi: 10.1021/ja0570584
(50) Zheng, J.; Fayer, M. D. J. Phys. Chem. B 2008, 112, 10221. doi: 10.1021/jp804087v
(51) Khalil, M.; Demirdoven, N.; Tokmakoff, A. J. Chem. Phys. 2004, 121, 362. doi: 10.1063/1.1756870
(52) Zheng, J.; Kwak, K.; Steinel, T.; Asbury, J. B.; Chen, X.; Xie, J.; Fayer, M. D. J. Chem. Phys. 2005, 123, 164301. doi: 10.1063/1.2071967
(53) Naraharisetty, S. R. G.; Kasyanenko, V. M.; Rubtsov, I. V.J. Chem. Phys. 2008, 128, 104502. doi: 10.1063/1.2842071
(54) Naraharisetty, S. R. G.; Kurochkin, D. V.; Rubtsov, I. V. Chem. Phys. Lett. 2007, 437, 262. doi: 10.1016/j.cplett.2007.02.020
(55) Nee, M. J.; Baiz, C. R.; Anna, J. M.; McCanne, R.; Kubarych, K. J. J. Chem. Phys. 2008, 129, 084503. doi: 10.10631.2969900
(56) Barbour, L.W.; Hegadorn, M.; Asbury, J. B. J. Am. Chem. Soc. 2007, 129, 15884. doi: 10.1021/ja074657x
(57) Barbour, L.W.; Hegadorn, M.; Asbury, J. B. J. Phys. Chem. B 2006, 110, 24281. doi: 10.1021/jp065639p
(58) Chen, H.; Zhang, Q.; Guo, X.; Wen, X.; Li, J.; Zhuang, W.; Zheng, J. J. Phys. Chem. A 2015, 119, 669. doi: 10.1021jp511651t
(59) Chen, H.; Wen, X.; Li, J.; Zheng, J. J. Phys. Chem. A 2014, 118, 2463. doi: 10.1021/jp500586h
(60) Chen, H.; Wen, X.; Guo, X. Phys. Chem. Chem. Phys. 2014, 16, 13995. doi: 10.1039/C4CP01300J
(61) Chen, H.; Bian, H.; Li, J.; Wen, X.; Zheng, J. Int. Rev. Phys. Chem. 2012, 31, 469. doi: 10.1080/0144235X.2012.733116
(62) Chen, H.; Bian, H.; Li, J.; Wen, X.; Zheng, J. J. Phys. Chem. A 2013, 117, 6052. doi: 10.1021/jp312604v
(63) Chen, H.; Bian, H.; Li, J.; Guo, X.; Wen, X.; Zheng, J. J. Phys. Chem. B 2013, 117, 15614. doi: 10.1021/jp406232k
(64) Chen, H.; Zhang, Y.; Li, J.; Liu, H.; Jiang, D. E.; Zheng, J.
J. Phys. Chem. A 2013, 117, 8407. doi: 10.1021/jp406304c
(65) Chen, H.; Bian, H.; Li, J.; Wen, X.; Zhang, Q.; Zhuang, W.; Zheng, J. J. Phys. Chem. B 2015, 119, 4333. doi: 10.1021jp512320a
(66) Bian, H.; Chen, H.; Li, J.; Wen, X.; Zheng, J. J. Phys. Chem. A 2011, 115, 11657. doi: 10.1021/jp206937u
(67) Bian, H.; Chen, H.; Zhang, Q.; Li, J.; Wen, X.; Zhuang, W.; Zheng, J. J. Phys. Chem. B 2013, 117, 7972. doi: 10.1021jp4016646
(68) Bian, H.; Li, J.; Chen, H.; Yuan, K.; Wen, X.; Li, Y.; Sun, Z.; Zheng, J. J. Phys. Chem. C 2012, 116, 7913. doi: 10.1021jp300970p
(69) Bian, H.; Li, J.; Wen, X.; Sun, Z.; Song, J.; Zhuang, W.; Zheng, J. J. Phys. Chem. A 2011, 115, 3357. doi: 10.1021/jp200516p
(70) Bian, H.; Li, J.; Wen, X.; Zheng, J. R. J. Chem. Phys. 2010, 132, 184505. doi: 10.1063/1.3429170
(71) Bian, H.; Li, J.; Zhang, Q.; Chen, H.; Zhuang, W.; Gao, Y. Q.; Zheng, J. J. Phys. Chem. B 2012, 116, 14426. doi: 10.1021jp310153n
(72) Bian, H.; Wen, X.; Li, J.; Chen, H.; Han, S.; Sun, X.; Song, J.; Zhuang, W.; Zheng, J. Proc. Nat. Acad. Sci. U. S. A. 2011, 108, 4737. doi: 10.1073/pnas.1019565108
(73) Li, J.; Bian, H.; Chen, H.; Wen, X.; Hoang, B.; Zheng, J.J. Phys. Chem. B 2012, 117, 4274. doi: 10.1021/jp3053373
(74) Li, J.; Bian, H.; Wen, X.; Chen, H.; Yuan, K.; Zheng, J.J. Phys. Chem. B 2012, 116, 12284. doi: 10.1021/jp306369w
(75) Shen, Y.; Wu, T.; Jiang, B.; Deng, G.; Li, J.; Chen, H.; Guo, X.; Ge, C.; Chen, Y.; Hong, J. J. Phys. Chem. B 2015, 119, 9893. doi: 10.1021/acs.jpcb.5b04530
(76) Tian, P.; Keusters, D.; Suzaki, Y.; Warren, W. S. Science 2003, 300, 1553. doi: 10.1126/science.1083433
(77) DeFlores, L. P.; Ganim, Z.; Nicodemus, R. A.; Tokmakoff, A.J. Am. Chem. Soc. 2009, 131, 3385. doi: 10.1021/ja8094922
(78) Haleblian, J.; McCrone, W. J. Pharm. Sci. 1969, 58, 911. doi: 10.1002/jps.2600580802
(79) Haleblian, J. K. J. Pharm. Sci. 1975, 64, 1269. doi: 10.1002jps.2600640805
(80) Borka, L.; Haleblian, J. K. Acta Pharm. Jugosl. 1990, 40, 71.
(81) Weissenhorn, W.; Dessen, A.; Calder, L.; Harrison, S.; Skehel, J.; Wiley, D. Mol. Membr. Biol 1999, 16, 3. doi: 10.1080096876899294706
(82) Gibbons, D. L.; Vaney, M. C.; Roussel, A.; Vigouroux, A.; Reilly, B.; Lepault, J.; Kielian, M.; Rey, F. A. Nature 2004, 427, 320. doi: 10.1038/nature02239
(83) Ernst, R. R.; Bodenhausen, G.; Wokaun, A. Nuclear Magnetic Resonance in One and Two Dimensions; Oxford UniversityPress: Oxford, U. K., 1987.
(84) Bifulco, G.; Dambruoso, P.; Gomez-Paloma, L.; Riccio, R.Chem. Rev. 2007, 107, 3744. doi: 10.1021/cr030733c
(85) DeFlores, L. P.; Nicodemus, R. A.; Tokmakoff, A. Opt. Lett. 2007, 32, 2966. doi: 10.1364/OL.32.002966
(86) Shim, S. H.; Strasfeld, D. B.; Zanni, M. T. Opt. Express. 2006, 14, 13120. doi: 10.1364/OE.14.013120
(87) Shim, S. H.; Strasfeld, D. B.; Fulmer, E. C.; Zanni, M. T. Opt. Lett. 2006, 31, 838. doi: 10.1364/OL.31.000838
(88) Shim, S. H.; Zanni, M. T. Phys. Chem. Chem. Phys. 2009, 11, 748. doi: 10.1039/B813817F
(89) Xiong, W.; Zanni, M. T. Opt. Lett. 2008, 33, 1371. doi: 10.1364/OL.33.001371
(90) Zheng, J. Ultrafast Chemical Exchange Spectroscopy; VDMVerlag: Saarbrücken, Germany, 2008.
(91) Asbury, J. B.; Steinel, T.; Fayer, M. D. J. Lumin. 2004, 107, 271. doi: 10.1016/j.jlumin.2003.12.035
(92) Calabrese, C.; Stingel, A. M.; Shen, L.; Petersen, P. B. Opt. Lett. 2012, 37, 2265. doi: 10.1364/OL.37.002265
(93) Petersen, P. B.; Tokmakoff, A. Opt. Lett. 2010, 35, 1962. doi: 10.1364/OL.35.001962
(94) Gattermann, L. Ber. Dtsch. Chem. Ges. 1885, 18, 1482. doi: 10.1002/cber.188501801319
(95) Moore, J. C.; Yeadon, A.; Palmer, R. A. J. Chem. Crystallogr. 1983, 13, 279. doi: 10.1007/BF01158908
(96) Fayer, M. D. Ultrafast Infrared and Raman Spectroscopy; Marcel Dekker, Inc: New York, Basel, 2001; Vol. 26.
(97) Lakowicz, J. Principles of Fluorescence Spectroscopy, 3rd ed.; Springer: New York, 2006.
(98) Murray, C. B.; Kagan, C. R.; Bawendi, M. G. Annu. Rev. Mater. Sci. 2000, 30, 545. doi: 10.1146/annurev.matsci.30.1.545
(99) Penn, S. G.; He, L.; Natan, M. J. Curr. Opin. Chem. Biol. 2003, 7, 609. doi: 10.1016/j.cbpa.2003.08.013
(100) Bell, A. T. Science 2003, 299, 1688. doi: 10.1126science.1083671
(101) Park, S. J.; Taton, T. A.; Mirkin, C. A. Science 2002, 295, 1503. doi: 10.1126/science.1067003
(102) Sperling, R. A.; Rivera gil, P.; Zhang, F.; Zanella, M.; Parak, W. J. Chem. Soc. Rev. 2008, 37, 1896. doi: 10.1039/b712170a
(103) Ghosh, P.; Han, G.; De, M.; Kim, C. K.; Rotello, V. M. Adv. Drug Deliv. Rev. 2008, 60, 1307. doi: 10.1016/j.addr.2008.03.016
(104) Huang, X. H.; Jain, P. K.; El-Sayed, I. H.; El-Sayed, M. A.Nanomedicine 2007, 2, 681. doi: 10.2217/17435889.2.5.681
(105) Maxwell, D. J.; Taylor, J. R.; Nie, S. M. J. Am. Chem. Soc. 2002, 124, 9606. doi: 10.1021/ja025814p
(106) Shukla, N.; Bartel, M. A.; Gellman, A. J. J. Am. Chem. Soc. 2010, 132, 8575. doi: 10.1021/ja908219h
(107) Pissuwan, D.; Valenzuela, S. M.; Cortie, M. B. Trends Biotechnol. 2006, 24, 62. doi: 10.1016/j.tibtech.2005.12.004
(108) Jin, Q.; Rodriguez, J. A.; Li, C. Z.; Darici, Y.; Tao, N. J. Surf. Sci. 1999, 425, 101. doi: 10.1016/s0039-6028(99)00195-8
(109) Daniel, M. C.; Astruc, D. Chem. Rev. 2004, 104, 293. doi: 10.1021/cr030698+
(110) Valden, M.; Lai, X.; Goodman, D.W. Science 1998, 281, 1647. doi: 10.1126/science.281.5383.1647
(111) Paulus, P. M.; Goossens, A.; Thiel, R. C.; van der Kraan, A. M.; Schmid, G.; de Jongh, L. J. Phys. Rev. B 2001, 64, 205418. doi: 10.1103/PhysRevB.64.205418
(112) Nahler, N. H.; White, J. D.; Larue, J.; Auerbach, D. J.; Wodtke, A. M. Science 2008, 321, 1191. doi: 10.1126/science.1160040
(113) Wodtke, A. M.; Matsiev, D.; Auerbach, D. J. Prog. Surf. Sci. 2008, 83, 167. doi: 10.1016/j.progsurf.2008.02.001
(114) Andersson, S.; Pendry, J. B. Phys. Rev. Lett. 1979, 43, 363. doi: 10.1103/PhysRevLett.43.363
(115) Li, J.; Qian, H.; Chen, H.; Zhao, Z.; Yuan, K.; Chen, G.; Miranda, A.; Guo, X.; Chen, Y.; Zheng, N. Nat. Commun. 2016, 7, 10749. doi: 10.1038/ncomms10749
(116) Van Gunsteren, W.; Berendsen, H. J. Mol. Biol. 1984, 176, 559. doi: 10.1016/0022-2836(84)90177-3
(117) Skrynnikov, N. R.; Goto, N. K.; Yang, D.; Choy, W. Y.; Tolman, J. R.; Mueller, G. A.; Kay, L. E. J. Mol. Biol. 2000, 295, 1265. doi: 10.1006/jmbi.1999.3430
(118) Kurochkin, D. V.; Naraharisetty, S. R. G.; Rubtsov, I. V. Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 14209. doi: 10.1073pnas.0700560104
(119) Rubtsov, I. V. Acc. Chem. Res. 2009, 42, 1385. doi: 10.1021ar900008p
(120) Kasyanenko, V. M.; Tesar, S. L.; Rubtsov, G. I.; Burin, A. L.; Rubtsov, I. V. J. Phys. Chem. B 2011, 115, 11063. doi: 10.1021jp2066315
(121) Förster, T. Ann. Phys. 1948, 437, 55. doi: 10.1002andp.19484370105
(122) Scholes, G. D. Annu. Rev. Phys. Chem. 2003, 54, 57. doi: 10.1146/annurev.physchem.54.011002.103746
(123) Bian, H. T.; Wen, X.W.; Li, J. B.; Zheng, J. R. J. Chem. Phys. 2010, 133, 034505. doi: 03450510.1063/1.3458825
(124) Hong, X. Y.; Chen, S.; Dlott, D. D. J. Phys. Chem. 1995, 99, 9102. doi: 10.1021/j100022a023
(125) Laubereau, A.; Kirschner, L.; Kaiser, W. Opt. Commun. 1973, 9, 182.
(126) Laubereau, A.; Kaiser, W. Rev. Mod. Phys. 1978, 50, 607. doi: 10.1103/RevModPhys.50.607
(127) Woutersen, S.; Bakker, H. J. Nature 1999, 402, 507. doi: 10.1038/990058
(128) Gaffney, K. J.; Piletic, I. R.; Fayer, M. D. J. Chem. Phys. 2003, 118, 2270. doi: 10.1063/1.1534580
(129) Seifert, G.; Zurl, R.; Patzlaff, T.; Graener, H. J. Chem. Phys. 2000, 112, 6349. doi: 10.1063/1.481195
(130) Förster, T. Ann. Phys. Leipzig 1948, 2, 55.
(131) Petersen, K. A.; Fayer, M. D. J. Chem. Phys. 1986, 85, 4702. doi: 10.1063/1.451745
(132) Oxtoby, D.W. Adv. Chem. Phys. 1981, 47, 487.
(133) Knox, R. S.; van Amerongen, H. J. Phys. Chem. B 2002, 106, 5289. doi: 10.1021/jp013927+
(134) Skinner, J. Theor. Chem. Acc. 2011, 128, 147. doi: 10.1007s00214-010-0834-3
(135) Nitzan, A.; Mukamel, S.; Jortner, J. J. Chem. Phys. 1975, 63, 200. doi: (136) Rackovsky, S.; Silbey, R. Mol. Phys. 1973, 25, 61. doi: 10.1063/1.431045
(137) Leegwater, J. A. J. Phys. Chem. 1996, 100, 14403. doi: 10.1021/jp961448i
(138) Fayer, M. D. Elements of Quantum Mechanics; OxfordUniversity Press: New York, 2001.
(139) Kenkre, V. M.; Tokmakoff, A.; Fayer, M. D. J. Chem. Phys. 1994, 101, 10618. doi: 10.1063/1.467876
(140) Egorov, S.; Skinner, J. J. Chem. Phys. 1995, 103, 1533. doi: 10.1063/1.469775
(141) Holstein, T.; Lyo, S.; Orbach, R. Excitation Transfer inDisordered Systems. In Laser Spectroscopy of Solids; Springer: New York, 1986; pp 39-82.
(142) Dlott, D. D. Chem. Phys. 2001, 266, 149. doi: 10.1016/S0301-0104(01)00225-7
(143) Remorino, A.; Korendovych, I. V.; Wu, Y.; DeGrado, W. F.; Hochstrasser, R. M. Science 2011, 332, 1206. doi: 10.1126science.1202997
(144) Guo, X.; Chen, H.; Wen, X.; Zheng, J. J. Chem. Phys. 2015, 142, 212447. doi: 10.1063/1.4921573
(145) Chen, H.; Wen, X.; Zhang, J.; Wu, T.; Gong, Y.; Zhang, X.; Yuan, J.; Yi, C.; Lou, J.; Ajayan, P. M.; Zhang, G.; Zhuang, W.; Zheng, J. Nat. Commun. 2016, 7, 12512. doi: 10.1038ncomms12512

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top