Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (12): 2968-2975    DOI: 10.3866/PKU.WHXB201609194
ARTICLE     
Synthesis of a Novel D-π-A-π-A Organic Sensitizer and Its Application in a Dye-Sensitized Solar Cell and Dye-Sensitized Photocatalytic H2 Production
An XIAO1,Hui LU1,Yang ZHAO1,Geng-Geng LUO1,2,*()
1 College of Materials Science and Engineering, Huaqiao University, Xiamen 361021, Fujian Province, P. R. China
2 State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou 350002, P. R. China
Download: HTML     PDF(1522KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

A novel metal-free D-π-A-π-A-based organic sensitizer OD2 featuring a N,N'-dimethylaniline unit as the donor residue, acetylene and benzene groups as π-spacer units, and benzothiadiazole and cyanoacrylic acid residues as acceptor units, was designed and synthesized. After the spectra and electrochemistry of the organic dye were investigated, it was applied in the development of solar energy conversion, including dyesensitized solar cell (DSSC) and dye-sensitized photocatalytic H2 production. For a typical device based on OD2, a maximum power conversion efficiency (η) of 4.40% was obtained under simulated AM 1.5 irradiation (100 mW·cm-2) with Jsc=10.58 mA·cm-2, Voc=630 mV and FF=0.65. In comparison, the efficiency of photocatalytic H2 production by OD2 sensitized Pt/TiO2 is low with a TON (turnover number)=140 and quantum efficiency for H2 conversion of water (ΦH2)=0.42% under visible light irradiation for 10 h with a 300 W Xe-lamp light source and 10% (volume fraction) aqueous triethanolamine (TEOA) at pH 7.0. The above results showed that OD2 has greater potential in the light-to-electricity conversion than light-to-fuel conversion.



Key wordsPhotoelectric property      Hydrogen production      Organic sensitizer      D-π-A-π-A configuration     
Received: 22 August 2016      Published: 19 September 2016
MSC2000:  O644  
Fund:  The project was supported by the National Natural Science Foundation of China(21201066);Natural Science Foundation of Fujian Province, China(2015J01053,2011J01047);and Program for New Century Excellent Talents in Fujian Province Universities, China(Z1525081)
Corresponding Authors: Geng-Geng LUO     E-mail: ggluo@hqu.edu.cn
Cite this article:

An XIAO,Hui LU,Yang ZHAO,Geng-Geng LUO. Synthesis of a Novel D-π-A-π-A Organic Sensitizer and Its Application in a Dye-Sensitized Solar Cell and Dye-Sensitized Photocatalytic H2 Production. Acta Physico-Chimica Sinca, 2016, 32(12): 2968-2975.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609194     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I12/2968

Fig 1 Molecular structures of N,N′-dimethylaniline-functionalized dyes OD1 and OD2
Fig 2 Synthetic route of organic dye OD2 THF: tetrahydrofuran; TEA: triethylamine2971
Fig 3 UV-Vis absorption spectra of OD1 and OD2 (a) in DMF solution and (b) adsorbed on TiO2 films ε: molar extinction coefficient
Dye Eox/V EHOMO/eV E0-0/eV ELUMO/eV
OD1 1.05 -5.45 2.29 -3.16
OD2 0.94 -5.34 1.79 -3.55
Table 1 Electrochemical properties of organic dyes OD1 and OD2
Fig 4 Calculated HOMO and LUMO orbital energylevel diagrams of OD1 and OD2 CB: conduction band; TEOA: triethanolamine
Dye μg μg(xyz) μe Ue(xyz) μeg
OD1 9.30 8.06 13.36 12.54 4.48
4.63 4.61
0 0
OD2 12.11 10.56 29.68 28.75 18.27
5.63 7.24
1.88 1.46
Table 2 Difference dipole calculations for ground state andexcited state of the dyes OD1 and OD2 in units of Debye
Fig 5 Vertical excitation wavelengths and oscillatorstrengths of absorption spectra for the dyes OD1 and OD2
Fig 6 Current-potential (J-V) curves for the organic dyes OD1 and OD2
Dye Jsc/(mA?cm-2) Voc/mV FF η/%a
OD1 6.70 670 0.64 2.82
OD2 10.58 630 0.65 4.40
Table 3 Photovoltaic performance of DSSCs based on dyes OD1 and OD2
Dye Dye loading amount/(μmol?mg-1) n(H2)/μmola TONb
OD1 0.14 15 6
OD2 0.15 340 140
Table 4 Visible-light photocatalytic performance of dyes OD1 and OD2 on Pt-TiO2
1 Yu Z. ; Li F. ; Sun L. Energy Environ. Sci. 2015, 8 (3), 760.
2 Vos J. G. ; Kelly J. M. Dalton Trans 2006, (41)
3 Zhang X. ; Veikko U. ; Mao J. ; Cai P. ; Peng T. Chem. Eur. J. 2012, 18 (38)
4 Luo H. ; Song W. ; Hoertz P. G. ; Hanson K. ; Ghosh R. ; Rangan S. ; Brennaman M. K. ; Concepcion J. J. ; Binsteas R.A. ; Bartynski R. A. ; Lopez R. ; Mayer T. J. Chem. Mater. 2013, 25 (2), 122.
5 Kim B. G. ; Chung K. ; Kim J. Chem. Eur. J. 2013, 19 (17), 5220.
6 Lee S. H. ; Park Y. ; Wee K. R. ; Son H. J. ; Cho D.W. ; Pac C. ; Choi W. ; Kang S. O. Org. Lett. 2010, 12 (3), 460.
7 Kloo L. Chem. Commun. 2013, 49 (59), 6580.
8 Watanabe M. ; Hagiwara H. ; Iribe A. ; Ogata Y. ; Shiomi K. ; Staykov A. ; Ida S. ; Tanaka K. ; Ishihara T. J. Mater. Chem. A 2014, 2 (32), 12952.
9 Cecconi B. ; Manfredi N. ; Ruffo R. ; Montini T. ; RomeroOca?a I. ; Fornasiero P. ; Abbotto A. ChemSusChem 2015, 8 (24), 4216.
10 Narayanaswamy K. ; Tiwari A. ; Mondal K. ; Pal U. ; Niveditha S. ; Bhanuprakash K. ; Singh S. P. Phys. Chem. Chem. Phys. 2015, 17, 13710.
11 Watanabe M. ; Hagiwara H. ; Ogata Y. ; Staykov A. ; Bishop S.R. ; Perry N. H. ; Chang Y. J. ; Ida S. ; Tanaka K. ; Ishihara T. J. Mater. Chem. A 2015, 3 (43), 21713.
12 Zhang X. ; Peng T. ; Song S. J. Mater. Chem. A 2016, 4 (7), 2365.
13 Hou L. M. ; Wen Z. ; Li Y. X. ; Hu H. Y. ; Kan Y. H. ; Su Z. M. Acta Phys. -Chim. Sin 2015, 31, 1504.
13 侯丽梅; 温智; 李银祥; 胡华友; 阚玉和; 苏忠民. 物理化学学报, 2015, 31, 1504.
14 Wu Y. ; Zhu W. Chem. Soc. Rev 2013, 42 (5), 2039.
15 Li X. ; Zheng Z. ; Jiang W. ; Wu W. ; Wang Z. ; Tian H. Chem. Commun 2015, 51 (17), 3590.
16 Lan T. ; Lu X. ; Zhang L. ; Chen Y. ; Zhou G. ; Wang Z. J. Mater. Chem. A 2015, 3 (38), 9869.
17 Ying W. ; Yang J. ; Wielopolski M. ; Moehl T. ; Moser J. ; Comte P. ; Hua J. ; Zakeeruddin S. M. ; Tian H. ; Gr?tzel M. Chem. Sci. 2014, 5 (1), 206.
18 Liu X. ; Li Y. X. ; Peng S. Q. ; Lai H. Acta Phys. -Chim. Sin 2015, 31, 612.
18 刘兴; 李越湘; 彭绍琴; 赖华. 物理化学学报, 2015, 31, 612.
19 Li X. ; Cui S. ; Wang D. ; Zhou Y. ; Zhou H. ; Hu Y. ; Liu J. ; Long Y. ; Wu W. ; Hua J. ; Tian H. ChemSusChem 2014, 7 (10), 2879.
20 Das S. ; Jana A. ; Ramanathan V. ; Chakraborty T. ; Ghosh S. ; Das P. K. ; Bharadwaj P. K. J. Organometal. Chem 2006, 691 (11), 2512.
21 Luo G. G. ; Lu. H% Wang Y. H. ; Dong J. ; Zhao Y. ; Wu R. B. Dyes and Pigments 2016, 134, 498.
22 Zhang J. ; Xu Q. ; Feng Z. ; Li M. Li. C. Angew. Chem. Int. Ed 2008, 47, 1766.
23 Luo G. G. ; Lu H. ; Zhang X. L. ; Dai J. C. ; Wu J. H. ; Wu J. J. Phys. Chem. Chem. Phys 2015, 17, 9716.
24 Zhang X. ; Kitao O. ; Zhou H. ; Tamiaki H. ; Sasaki S. J. Phys. Chem. C 2009, 113 (18), 7954.
25 Rolczynski B. S. ; Szarko J. M. ; Son H. J. ; Liang Y. Y. ; Yu L.P. ; Chen L. X. J. Am. Chem. Soc. 2012, 134 (9), 4142.
26 Wang P. ; Zakeeruddin S. M. ; Moser J. E. ; Gr?tzel M. J. Phys. Chem. B 2003, 107 (48), 13280.
[1] Xin-Lei WANG,Kui MA,Li-Hong GUO,Tong DING,Qing-Peng CHENG,Ye TIAN,Xin-Gang LI. Catalytic Performance for Hydrogen Production through Steam Reforming of Dimethyl Ether over Silica Supported Copper Catalysts Synthesized by Ammonia Evaporation Method[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1699-1708.
[2] Chi ZHANG,Zhi-Jiao WU,Jian-Jun LIU,Ling-Yu PIAO. Preparation of MoS2/TiO2 Composite Catalyst and Its Photocatalytic Hydrogen Production Activity under UV Irradiation[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1492-1498.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 590-601.
[4] Li-Xia SANG,Jia LIN,Hao GE,Lei LEI. Dynamic Analysis of Carbon Dots/KOH Electrolyte Interface by IMPS/IMVS[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2454-2462.
[5] Cheng-Xiong DANG,Hao-Bo YANG,Hao YU,Hong-Juan WANG,Feng PENG. CexNi0.5La0.5-xO Catalysts for Hydrogen Production by Oxidative Steam Reforming of Glycerol: Influence of the Ce-to-La Ratio[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1527-1533.
[6] Xiao-Qing LU,Zi-Gang ZHAO,Ke LI,Shu-Xian WEI,Yuan-Yuan QU,Yong-Qiang NIU,Xue-Feng LIU. First-Principles Investigation of the Structural and Photoelectronic Properties of CH3NH3PbxSn1-xI3 Mixed Perovskites[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1439-1445.
[7] WANG Hao, SONG Ling-Jun, LI Xing-Hu, YUE Li-Meng. Hydrogen Production from Partial Oxidation of Methane by Dielectric Barrier Discharge Plasma Reforming[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1406-1412.
[8] LIU Xing, LI Yue-Xiang, PENG Shao-Qin, LAI Hua. Progress in Visible-Light Photocatalytic Hydrogen Production by Dye Sensitization[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 612-626.
[9] SHEN Wei, TIAN Wen-Wen, QI Zheng-Jian, SUN Yue-Ming. Photoelectric Properties of Novel Amide-Functionalized Ir(III) Complexes[J]. Acta Physico-Chimica Sinca, 2015, 31(11): 2174-2182.
[10] HAO Xue-Liang, ZHAO Jin-Ge, GAO Jian-Rong, HAN Liang. Synthesis and Photoelectric Properties of Carbazole Sensitizing Dyes Based on a Benzoic Acid Acceptor[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1977-1984.
[11] LIN Cai-Fang, CHEN Xiao-Ping, CHEN Shu, SHANGGUAN Wen-Feng. Preparation of NiS-Modified Cd1-xZnxS by a Hydrothermal Method and Its Use for the Efficient Photocatalytic H2 Evolution[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 153-158.
[12] ZHAO Jian, ZHOU Wei, MA Jian-Xin. Effect of CO2 Pretreatment Operation Conditions on the Catalytic Performance and Structure of Ni-Co Bimetallic Catalyst[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1325-1331.
[13] LING Huan-Huan, LI Nan, YANG Fan, JI Xin, XIA Yong, CAO Du, QI Zheng-Jian. Photoelectric Properties of Novel Substituted 2-Phenyl-1H-imidazole[4,5-f][1,10]phenanthrene Ruthenium(II) Complexes[J]. Acta Physico-Chimica Sinca, 2013, 29(11): 2465-2474.
[14] LI Bo, LÜ Gong Xuan. Highly Active and Stable Catalyst for Visible Light Hydrogen Production Based on Oxidative Quenching of Eosin Y[J]. Acta Physico-Chimica Sinca, 2013, 29(08): 1778-1784.
[15] ZHAO Jian, ZHOU Wei, XU Jun-Ke, MA Jian-Xin. Effect of Pretreatment Routes on the Performance and Structure of Ni-Co Bimetallic Catalysts[J]. Acta Physico-Chimica Sinca, 2013, 29(04): 806-812.