Please wait a minute...
Acta Physico-Chimica Sinca  2016, Vol. 32 Issue (12): 2905-2912    DOI: 10.3866/PKU.WHXB201609201
ARTICLE     
Effect of Se Doping on the Electronic Band Structure and Optical Absorption Properties of Single Layer MoS2
Gang LI,Min-Qiang CHEN,Shi-Xiong ZHAO,Peng-Wei LI,Jie HU,Sheng-Bo SANG,Jing-Jing HOU*()
Download: HTML     PDF(1239KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Based on the first principles method of density functional theory, the band structure and optical absorption properties of single-layered MoS2 doped with Se were calculated. Additionally, its effect on the properties of water splitting was analyzed. The calculations showed that the intrinsic MoS2 monolayer has a direct band gap structure with a value of 1.740 eV. The bottom edge of the conduction band was 0.43 eV above the reduction potential of H+/H2, while the top edge of the valence band was only 0.08 eV below the oxidation potential of O2/H2O. The results indicated that the intrinsic MoS2 monolayer has the potential for the photocatalytic decomposition of water when exposed to visible light. However, as the values of the oxidation and reduction processes were not balanced, the water splitting efficiency of a single-layer MoS2 photocatalyst would be low. When the MoS2 layer was doped with Se the band gap decreased to 1.727 eV, while the corresponding optical absorption spectrum was almost unchanged, and the formation energy of the system was relatively low. These results indicated that single-layered MoS2 should be thermally stabile following doping with Se. Significantly, the bottom edge of the conduction band decreased to 0.253 eV above reduction potential of H+/H2, while the top edge of the valence band increased to 0.244 eV below the oxidation potential of O2/H2O. Thus, the oxidation and reduction processes were balanced, and the water splitting efficiency of single-layered MoS2 should be greatly improved when exposed to visible light.



Key wordsSingle layer MoS2      Doping      Photocatalytic splitting of water      First principles     
Received: 07 June 2016      Published: 20 September 2016
MSC2000:  O641  
  O646  
  O649  
Fund:  The project was supported by the National Natural Science Foundation of China(61674113,51622507,61471255);Natural Science Foundation ofShanxi Province, China(2014011019-1,20141001021-2,2016011040);Research Project Supported by Shanxi Scholarship Council, China(2013-036);Fund Program for the Scientific Activities of Selected Returned Overseas Professionals in Shanxi Province, China([2013]251);TechnologyFoundation for Selected Overseas Chinese Scholar, Ministry of Personnel of China([2014]240);and Scientific and Technologial InnovationPrograms of Higher Education Institutions in Shanxi Province, China(2016138)
Corresponding Authors: Jing-Jing HOU     E-mail: sangshengbo@tyut.edu.cn
Cite this article:

Gang LI,Min-Qiang CHEN,Shi-Xiong ZHAO,Peng-Wei LI,Jie HU,Sheng-Bo SANG,Jing-Jing HOU. Effect of Se Doping on the Electronic Band Structure and Optical Absorption Properties of Single Layer MoS2. Acta Physico-Chimica Sinca, 2016, 32(12): 2905-2912.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609201     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I12/2905

Fig 1 Single-layer MoS2 structure diagram (a) undoped,(b) Se doped
Type dMo-x/nm θMo―X―Mo/(°)
Mo—S Mo—Se Mo —S—Mo Mo—Se—Mo
undoped 2.413 - 82.529 -
Se doped 2.410 2.54 82.797 78.660
Table 1 Optimized lattice parameter of undoped and Se doped system
Fig 2 Isosurface of the electron localization function inthe (110) plane The contour interval is 0.1. color online
Fig 3 Band structure of monolayer MoS2 calculated by PBE (a) and HSE06 (b) methods The vacuum level is taken as zero reference.
Fig 4 Band structure of Se-doped monolayer MoS2 calculated by PBE methods The vacuum level is taken as zero reference. PBE: Predew-Burke-Ernzerhof
Fig 5 VBM and CBM of undoped and Se doped monolayer MoS2 The vacuum level is taken as zero reference. VBM: valence band maximum; CBM: conduction band minimum
Fig 6 Schematic diagram of the structure of TDOS and PDOS of undoped (a) and Se doped (b) TDOS: total density of states; PDOS: partial density of states.color online
Fig 7 Undoped and Se doped optical spectrum diagram
1 Ayari A. ; Cobas E. ; Ogundadegbe O. ; Fuhrer M. S. J. Appl. Phys. 2007, 101, 014507.
2 Paskach Y. J. ; Schrader G. L. ; McCarley R. E. J. Catal. 2002, 211, 285.
3 Muratore C. ; Voevodin A. A. Surf. Coat. Technol. 2006, 201, 4125.
4 Frame F. A., Osterloh, F. E. J. Phys. Chem. C 2010, 114, 10628.
5 Huang M. ; Cho K. J. Phys. Chem. C 2009, 113, 5238.
6 Homyonfer M. ; Alperson B. ; Rosenberg Y. J. Am. Chem. Soc. 1997, 119, 2693.
7 Rapport L. ; Bilik Y. ; Feldman Y. ; Homyonfer M. ; Cohen S.R. ; Tenne R. Nature 1997, 387, 791.
8 Radisavljevic B. ; Radenovic A. ; Brivio J. ; Giacometti V. ; Kis A. Nat. Nanotechnol 2011, 6, 147.
9 Dominko R. ; Arcon D. ; Mrzel A. ; Zorko A. ; Cevc P. ; Venturini P. ; Gaberscek M. ; Remskar M. ; Mihailovic D. Adv. Mater 2002, 14, 1531.
10 Kin F. ; Chang G. L. ; Tony F. H. Phys. Rev. Lett. 2010, 105, 136805.
11 Novoselov K. S. ; Jiang D. ; Schedin F. ; Booth T. ; Khotkevich V. V. ; Morozov S. V. ; Geim A. K. Proc. Natl. Acad. Sci. 2005, 102, 10451.
12 Kang J. ; Tongay S. ; Zhou J. ; Li J. ; Wu J. Q. Appl. Phys. Lett. 2013, 102, 012111.
13 Kibsgaard J. ; Chen Z. ; Reinecke B. N. ; Jaramillo T. F. Nat. Mater. 2012, 11, 963.
14 Huang C. J. ; Chen C. ; Zhang M.W. ; Lin L. H. ; Ye X. X. ; Lin S. ; Antonietti M. ; Wang X. C. Nat. Commun. 2015, 6, 7698.
15 Giordano F. ; Abate A. ; Baena J. P. C. ; Saliba M. ; Matsui T. ; Im S. H. ; Zakeeruddin S. M. ; Nazeeruddin M. K. ; Hagfeldt A. ; Gr?etzel M. Nat. Commun. 2016, 7, 10379.
16 Lu R. F. ; Li F. ; Salafranca J. ; Kan E. ; Xiao C. Y. ; Deng K. M. Phys. Chem. Chem. Phys 2014, 16, 4299.
17 Zhang J. ; Xu Q. ; Feng Z. C. ; Li M. J. ; Li C. Angew. Chem. Int. Ed. 2008, 47 (9), 1766.
18 Wang W. Z. ; Huang X.W. ; W S. ; Zhou Y. X. ; Wang L. J. ; Shi H. L. ; Liang Y. J. ; Zou B. Appl. Catal. B 2013, 134, 293.
19 Wang X. ; Xu Q. ; Li M. R. ; Shen S. ; Wang X. L. ; Wang Y.C. ; Feng Z. C. ; Shi J. Y. ; Han H. X. ; Li C. Angew. Chem. Int. Ed. 2012, 51 (52), 13089.
20 Li R. G. ; Zhang F. X. ; Wang D. E. ; Yang J. X. ; Li M. R. ; Zhu J. ; Han H. X. ; Li C. Nat. Commun. 2013, 4, 1432.
21 Chen S. S. ; Shen S. ; Liu G. J. ; Qi Y. ; Zhang F. X. ; Li C. Angew. Chem. Int. Ed. 2015, 54 (10), 3047.
22 Li R. G. ; Han H. X. ; Zhang F. X. ; Wang D. ; Li C. Energy. Environ. Sci. 2014, 7, 1369.
23 Chen S. S. ; Qi Y. ; Hisatomi T. ; Ding Q. ; Asai T. ; Li Z. ; Ma S. S. K. ; Zhang F. X. ; Domen K. ; Li C. Angew. Chem. Int. Ed. 2015, 54, 8498.
24 Zhang X. R. ; Meng Z. S. ; Rao D.W. ; Wang Y. H. ; Shi Q. ; Liu Y. Z. ; Wu H. P. ; Deng K. M. ; Liu H. Y. ; Lu R. F. Energy Environ. Sci. 2016, 9, 841.
25 Wang J. J. ; Guan Z. Y. ; Huang J. ; Li Q. X. ; Yang J. L. J. Mater. Chem. A 2014, 2 (21), 7960.
26 Xu M. ; Da P. M. ; Wu H. Y. ; Zhao D. Y. ; Zheng G. F. Nano Lett. 2012, 12, 1503.
27 Yuan J. H. ; Gao B. ; Wang W. ; Wang J. F. Acta Phys. -Chim. Sin. 2015, 31 (7), 1302.
27 袁俊辉; 高博; 汪文; 王嘉赋. 物理化学学报, 2015, 31 (7), 1302.
28 Guo L. ; Hu G. ; Zhang S. T. Acta Phys. -Chim. Sin. 2012, 28 (12), 2845.
28 郭雷; 胡舸; 张胜涛. 物理化学学报, 2012, 28 (12), 2845.
29 Wu M. S. ; Xu B. ; Liu G. ; Ouyang C. Y. Acta Phys. Sin. 2013, 62, 37103.
29 吴木生; 徐波; 刘刚; 欧阳楚英. 物理学报, 2013, 62, 37103.
30 Serpone N. J. Phys. Chem. B 2006, 110, 24287.
31 Ren X. P. ; Ma Q. ; Fan H. B. ; Pang L. Q. ; Zhang Y. X. ; Yao Y. ; Ren X. D. ; Liu S. Z. Chem. Commun. 2015, 51, 15997.
32 Kresse G. ; Hafner J. Phys. Rev. B 1993, 47, 558.
33 Blochl P. E. Phys. Rev. B 1994, 50, 17953.
34 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
35 Lin Q. ; Chen Y. X. ; Wu J. B. ; Kong Z. M. Acta Phys. Sin. 2011, 60 (9), 97103.
35 林琦; 陈余行; 吴建宝; 孔宗敏. 物理学报, 2011, 60 (9), 97103.
36 Wilson J. A. ; Yoffe A. D. Adv. Phys. 1969, 18, 193.
37 Li Y. F. ; Zhou Z. ; Zhang S. B. ; Chen Z. F. J. Am. Chem. Soc 2008, 130, 16739.
38 Kam K. K. ; Parkinson B. A. J. Phys. Chem. 1982, 86, 463.
39 Tang Z. R. ; Yin X. ; Zhang Y. H. ; Xu Y. J. Inorg. Chem. 2013, 52, 11758.
40 Qu Y. Q. ; Duan X. F. Chem. Soc. Rev. 2013, 42, 2568.
41 Kudo A. ; Miseki Y. Chem. Soc. Rev. 2009, 38, 253.
42 Li Y. G. ; Li Y. L. ; Araujo C. M. ; Luo W. ; Ahuja R. Catal. Sci. Technol. 2013, 3, 2214.
43 Yal??n Y. ; K?l?? M. ; ??nar Z. Appl. Catal. B: Environ. 2010, 99, 469.
44 Banisharif A. ; Khodadadi A. A. ; Mortazavi Y. ; Firooz A. A. ; Beheshtian J. ; Agah S. ; Menbari S. Appl. Catal. B 2015, 165, 209.
45 Yang Y. Q. ; Zhang R. R. ; Li J. B. ; Lin S. W. Nanoscale Res. Lett. 2014, 9, 46.
46 Yang K. S. ; Dai Y. ; Huang B. ; Whangbo M. H. Chem. Mater. 2008, 20, 6528.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[3] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1781-1788.
[4] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[5] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1297-1309.
[6] Jiao LI,Zhong CHEN. First-Principles Study on the Electronic and Photocatalytic Properties of Ag3XO4 (X = P, As, V)[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 941-948.
[7] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 573-581.
[8] Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 295-304.
[9] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2133-2145.
[10] LI Yuan-Yuan, ZHAO Xin-Xin, MI Yi-Ming, SUN Gai-Li, WU Jian-Bao, WANG Li-Li. Effect of Y on the Properties of Graphene for Hydrogen Storage[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1658-1665.
[11] Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1473-1481.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1056-1061.
[13] WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 536-542.
[14] WANG Yan-Qing, LI Long, NIE Lin-Hui, LI Nan-Nan, SHI Cheng-Wu. Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2724-2730.
[15] SU Neil-Qiang, CHEN Jun, XU Xin, ZHANG Dong-H.. Quantum Reaction Dynamics Based on a New Generation Density Functional and Neural Network Potential Energy Surfaces[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 119-130.