ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(1)>> 28-39     doi: 10.3866/PKU.WHXB201609213         中文摘要
Applications of Graphitic Nanomaterial's Optical Properties in Biochemical Sensing
XU Yi-Ting1, CHEN Long2, CHEN Zhuo1
1 State Key Laboratory of Cheme/Biosensing and Chemometric, Hunan University, Changsha 410006, P. R. China;
2 Faculty of Science and Technology, University of Macau, Macao 999078, P. R. China
Full text: PDF (3877KB) HTML Export: BibTeX | EndNote (RIS)

Graphitic nanomaterials, which possess unique optical properties, have attracted significant attention in biochemical sensing. Herein, we summarize and discuss recent progress of such materials as optical probes, photothermal materials and signal transduction substrates for biosensing applications. The most attractive optical property of graphitic nanomaterials is their strong and unique Raman signals. As a Raman probe, these nanomaterials have remarkable applications, especially in detecting complex biological samples, quantitative surface enhanced Raman scattering (SERS) detection and detection under extreme conditions. Besides Raman, the unique intrinsic fluorescence emission of single-walled carbon nanotubes (SWNTs) in the long wavelength and second near-infrared window (NIR-II window, 1000-1700 nm) has facilitated deep-tissue high-resolution fluorescence imaging in vivo. Additionally, graphitic nanomaterials have efficient photothermal conversion capability. Together with the large surface area, graphitic nanomaterials are used in photothermal synergy therapy for cancer treatment. Furthermore, because of their particular physical and chemical properties, graphitic nanomaterials are established as an efficient signal transduction substrate, which can quench an excited chromophore and photosensitizer, showing high selectivity and sensitivity in biosensing and nanomedicine.

Keywords: Graphitic nanomaterial   Biochemical sensing   Raman probe   Molecular detection   Photothermal therapy  
Received: 2016-06-15 Accepted: 2016-09-20 Publication Date (Web): 2016-09-21
Corresponding Authors: CHEN Long, CHEN Zhuo Email:;

Fund: The project was supported by the National Key Basic Research Program of China (973) (2013CB932702), National Natural Science Foundation of China (21522501), and Science and Technology Development Fund of Macao S.A.R, China (FDCT, 067/2014/A).

Cite this article: XU Yi-Ting, CHEN Long, CHEN Zhuo. Applications of Graphitic Nanomaterial's Optical Properties in Biochemical Sensing[J]. Acta Phys. -Chim. Sin., 2017,33 (1): 28-39.    doi: 10.3866/PKU.WHXB201609213

(1) Prasuhn, D. E.; Feltz, A.; Blanco-Canosa, J. B.; Susumu, K.; Stewart, M. H.; Mei, B. C.; Yakovlev, A. V.; Loukou, C.; Mallet, J. M.; Oheim, M. ACS Nano 2010, 4 (9), 5487. doi: 10.1021nn1016132
(2) Zhang, C. Y.; Hu, J. Anal. Chem. 2010, 82 (5), 1921. doi: 10.1021/ac9026675
(3) Ho, J. A.; Chang, H. C.; Shih, N. Y.; Wu, L. C.; Chang, Y. F.; Chen, C. C.; Chou, C. Anal. Chem. 2010, 82 (14), 5944. doi: 10.1021/ac1001959
(4) Mayer, K. M.; Lee, S.; Liao, H.; Rostro, B. C.; Fuentes, A.; Scully, P. T.; Nehl, C. L.; Hafner, J. H. ACS Nano 2008, 2 (4), 687. doi: 10.1021/nn7003734
(5) Zheng, G.; Patolsky, F.; Cui, Y.; Wang, W. U.; Lieber, C. M.Nat. Biotechnol. 2005, 23 (10), 1294. doi: 10.1038/nbt1138
(6) Baughman, R. H.; Zakhidov, A. A.; de Heer, W. A. Science 2002, 297 (5582), 787. 10.1126/science.1060928
(7) Kroto, H. W.; Heath, J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E. Nature 1985, 318 (6042), 162.
(8) Ghosh, S.; Calizo, I.; Teweldebrhan, D.; Pokatilov, E.; Nika, D.; Balandin, A.; Bao, W.; Miao, F.; Lau, C. N. Appl. Phys. Lett. 2008, 92 (15), 151911. doi: 10.1063/1.2907977
(9) Novoselov, K.; Jiang, D.; Schedin, F.; Booth, T.; Khotkevich, V.; Morozov, S.; Geim, A. Proc. Natl. Acad. Sci. U. S. A. 2005, 102 (30), 10451. doi: 10.1073/pnas.0502848102
(10) Liu, Q.; Guo, B.; Rao, Z.; Zhang, B.; Gong, J. R. Nano Lett. 2013, 13 (6), 2436. doi: 10.1021/nl400368v
(11) Qian, J.; Wang, D.; Cai, F. H.; Xi, W.; Peng, L.; Zhu, Z. F.; He, H.; Hu, M. L.; He, S. Angew. Chem. Int. Ed. 2012, 51 (42), 10570. doi: 10.1002/anie.201206107
(12) Liu, Z.; Robinson, J. T.; Tabakman, S. M.; Yang, K.; Dai, H.Mater. Today 2011, 14 (7), 316. doi: 10.1016/S1369-7021(11)70161-4
(13) Liu, Z.; Tabakman, S.; Welsher, K.; Dai, H. Nano Res. 2009, 2 (2), 85. doi: 10.1007/s12274-009-9009-8
(14) Wang, H.; Dai, H. Chem. Soc. Rev. 2013, 42 (7), 3088. doi: 10.1039/C2CS35307E
(15) Dresselhaus, M.; Dresselhaus, G.; Jorio, A.; Souza-Filho, A.; Saito, R. Carbon 2002, 40 (12), doi: 2043.10.1016/S0008-6223(02)00066-0
(16) Saha, K.; Agasti, S. S.; Kim, C.; Li, X.; Rotello, V. M. Chem. Rev. 2012, 112 (5), 2739.
(17) Lin, X. M.; Cui, Y.; Xu, Y. H.; Ren, B.; Tian, Z. Q. Anal. Bioanal. Chem. 2009, 394 (7), 1729. doi: 10.1007/s00216-009-2761-5
(18) Natan, M. J. Faraday Discuss. 2006, 132, 321. doi: 10.1039B601494C
(19) Welsher, K.; Sherlock, S. P.; Dai, H. Proc. Natl. Acad. Sci. U. S. A. 2011, 108 (22), 8943. doi: 10.1073/pnas.1014501108
(20) Hong, G.; Diao, S.; Antaris, A. L.; Dai, H. Chem. Rev. 2015, 115 (19). doi: 10.1021/acs.chemrev.5b00008
(21) Maeda, H.; Wu, J.; Sawa, T.; Matsumura, Y.; Hori, K.J. Controlled Release 2000, 65 (1), 271. doi: 10.1016/S0168-3659(99)00248-5
(22) Zhao, W.; Karp, J. M. Nat. Mater. 2009, 8 (6), 453. doi: 10.1038nmat2463
(23) Li, H.; Martin, R. B.; Harruff, B. A.; Carino, R. A.; Allard, L. F.; Sun, Y. P. Adv. Mater. 2004, 16 (11), 896. doi: 10.1002adma.200306288
(24) Shah, N. B.; Dong, J.; Bischof, J. C. Mol. Pharm. 2011, 8 (1), 176. doi: 10.1021/mp1002587
(25) Chao, W.; Ma, X.; Ye, S.; Liang, C.; Kai, Y.; Liang, G.; Li, C.; Li, Y.; Zhuang, L. Adv. Funct. Mater. 2012, 22 (11), 2363. doi: 10.1002/adfm.201200133
(26) Song, Z. L.; Chen, Z.; Bian, X.; Zhou, L.Y.; Ding, D.; Liang, H.; Zou, Y. X.; Wang, S. S.; Chen, L.; Yang, C. J. Am. Chem. Soc. 2014, 136 (39), 13558. doi: 10.1021/ja507368z
(27) Lai, X. F.; Zou, Y. X.; Wang, S. S.; Zheng, M. J.; Hu, X. X.; Liang, H.; Xu, Y. T.; Wang, X.W.; Ding, D.; Chen, L. Anal. Chem. 2016, 88 (10), 5385. doi: 10.1021/acs.analchem.6b00714
(28) Hao, Q.; Wang, B.; Bossard, J. A.; Kiraly, B.; Zeng, Y.; Chiang, I. K.; Jensen, L.; Werner, D. H.; Huang, T. J. J. Phys. Chem. C 2012, 116 (13), 7249. doi: 10.1021/jp209821g
(29) Ma, X.; Qu, Q.; Zhao, Y.; Luo, Z.; Zhao, Y.; Ng, K.W.; Zhao, Y.J. Mater. Chem. B 2013, 1 (47), 6495. doi: 10.1039C3TB21385D
(30) Zou, Y.; Chen, L.; Song, Z.; Ding, D.; Chen, Y.; Xu, Y.; Wang, S.; Lai, X.; Zhang, Y.; Sun, Y.; Chen, Z.; Tan, W. Nano Res. 2016, 9 (5), 1418. doi: 10.1007/s12274-016-1037-6
(31) Shen, W.; Lin, X.; Jiang, C.; Li, C.; Lin, H.; Huang, J.; Wang, S.; Liu, G.; Yan, X.; Zhong, Q. Angew. Chem. Int. Ed. 2015, 54 (25), 7308. doi: 10.1002/ange.201502171
(32) Bian, X.; Song, Z. L.; Qian, Y.; Gao, W.; Cheng, Z. Q.; Chen, L.; Liang, H.; Ding, D.; Nie, X. K.; Chen, Z. Sci. Rep. 2014, 4, 1. doi: 10.1038/srep06093
(33) Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Katsnelson, M. I.; Grigorieva, I. V.; Dubonos, S. V.; Firsov, A.A. Nature 2005, 438 (7065), 197. doi: 10.1038/nature04233
(34) Zhao, X. H.; Kong, R. M.; Zhang, X. B.; Meng, H. M.; Liu, W.N.; Tan, W.; Shen, G. L.; Yu, R. Q. Anal. Chem. 2011, 83 (13), 5062. doi: 10.1021/ac200843x
(35) Tu, X.; Manohar, S.; Jagota, A.; Zheng, M. Nature 2009, 460 (7252), 250. doi: 10.1038/nature08116
(36) Wang, S.; Humphreys, E. S.; Chung, S. Y.; Delduco, D. F.; Lustig, S. R.; Wang, H.; Parker, K. N.; Rizzo, N.W.; Subramoney, S.; Chiang, Y. M. Nat. Mater. 2003, 2 (3), 196. doi: 10.1038/nmat833
(37) Zheng, M.; Jagota, A.; Semke, E. D.; Diner, B. A.; McLean, R.S.; Lustig, S. R.; Richardson, R. E.; Tassi, N. G. Nat. Mater. 2003, 2 (5), 338. doi: 10.1038/nmat877
(38) Kam, N.W. S.; Jessop, T. C.; Wender, P. A.; Dai, H. J. Am. Chem. Soc. 2004, 126 (22), 6850. doi: 10.1021/ja0486059
(39) Zhu, Z.; Yang, R.; You, M.; Zhang, X.; Wu, Y.; Tan, W. Anal. Bioanal. Chem. 2010, 396 (1), 73. doi: 10.1007/s00216-009-3192-z
(40) Lu, C. H.; Li, J.; Lin, M. H.; Wang, Y.W.; Yang, H. H.; Chen, X.; Chen, G. N. Angew. Chem. Int. Ed. 2010, 49 (45), 8454. doi: 10.1002/ange.201002822
(41) Song, Z. L.; Zhao, X. H.; Liu, W. N.; Ding, D.; Bian, X.; Liang, H.; Zhang, X. B.; Chen, Z.; Tan, W. Small 2013, 9 (6), 951. doi: 10.1002/smll.201201975
(42) Liu, M.; Yin, X.; Ulinavila, E.; Geng, B.; Zentgraf, T.; Ju, L.; Wang, F.; Zhang, X. Nature 2011, 474 (7349), 64. doi: 10.1038nature10067
(43) Dolmans, D. E.; Fukumura, D.; Jain, R. K. Nat. Rev. Cancer 2003, 3 (5), 380. doi: 10.1038/nrc1071
(44) Lebedkin, S.; Kareev, I.; Hennrich, F.; Kappes, M. M. J. Phys. Chem. C 2008, 112 (42), 16236. doi: 10.1021/jp802754
(45) Calzavara, P. P.; Venturini, M.; Sala, R. J. Eur. Acad. Dermatol. Venereol. 2007, 21 (3), 293. doi: 10.1111/j.1468-3083.2006.01902.x
(46) Triesscheijn, M.; Baas, P.; Schellens, J. H.; Stewart, F. A.Oncologist 2006, 11 (9), 1034. doi: 10.1634/theoncologist.11-9-1034
(47) Cho, E. S.; Hong, S.W.; Jo, W. H. Macromol. Rapid Commun. 2008, 29 (22), 1798. doi: 10.1002/marc.200800457

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top