Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (1): 18-27    DOI: 10.3866/PKU.WHXB201609214
FEATURE ARTICLE     
Self-Roll-Up Technology for Micro-Energy Storage Devices
Sheng-Yi MIAO1,Xian-Fu WANG1,2,*(),Cheng-Lin YAN1,2,*()
1 College of Physics, Optoelectronics and Energy, Soochow University, Suzhou 215000, Jiangsu Province, P. R. China
2 Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215000, Jiangsu Province, P. R. China
Download: HTML     PDF(3126KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Micro-energy storage devices are suitable for use in a range of potential applications, such as wearable electronics and micro-self-powered sensors, and also provide an ideal platform to explore the inner relationship among the electrode structure, electron/ion conductivity and electrochemical kinetics. Self-roll-up technology is an approach to rearrange automatically two-dimensional membrane materials because of residual stress. Compared with the conventional micro-nano fabrication technique, the self-roll-up technology realizes the ordered array of two-dimensional membranes, offering an effective and convenient way to fabricate microenergy storage devices. In this article, we review the recent important progresses of the self-roll-up technology for micro-energy storage devices, including the theory of the self-roll-up technology, and self-roll-up electrodes and their energy storage properties. Importantly, we highlight the practical applications of the self-roll-up technology for fabrication of single tubular micro lithium-ion batteries and capacitor arrays. Finally, future challenges and important opportunities of the self-roll-up technology for micro-energy storage devices are summarized and prospected.



Key wordsSelf-roll-up technology      Energy storage      Micro-device      Lithium-ion battery      Micro-capacitor     
Received: 13 July 2016      Published: 21 September 2016
MSC2000:  O647  
Fund:  The project was supported by the National Natural Science Foundation of China(51402202)
Corresponding Authors: Xian-Fu WANG,Cheng-Lin YAN     E-mail: wangxianfu@suda.edu.cn;c.yan@suda.edu.cn
Cite this article:

Sheng-Yi MIAO,Xian-Fu WANG,Cheng-Lin YAN. Self-Roll-Up Technology for Micro-Energy Storage Devices. Acta Physico-Chimica Sinca, 2017, 33(1): 18-27.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609214     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/18

Fig 1 Application of the self-roll-up technology 1 (a) schematic diagram of rolling-up a membrane into a tube; optical images of rolled-up structures (b) Pt, (c) Pd/Fe/Pd, (d) TiO2, (e) ZnO, (f) Al2O3, (g) SixNy, (h) SixNy/Ag, and (i) diamond-like carbon; (j) SEM image of rolled-up SiO/SiO2 tubes array; (k) concept of on-chip integrated devices based on microbatteries
Fig 2 Fabrication of rolled-up tubes 12 (a) general method to create a nanotube (Method Ⅱ). After selective etching of the sacrificial layer, the thin top layer is wrapped up and folded back onto the sample surface, where it can bond to itself. At the position where the layer bends, a nanotube has formed; (b) specialized way to create a nanotube (Method Ⅱ). Once the bilayer is released by selective etching, the bilayer bends upwards, finally forming a nanotube after one complete revolution; (c) folded nanotubes fabricated according to method Ⅱ; (d) SiGe-based nanotube formed along the edge by method Ⅱ
Fig 3 Tubular Si/rGO electeode and its lithium-ion storage performance 21 (a) SEM image; (b) cross section image of a single rolled-up nanomembrane; (c) TEM image of a single rolled-up nanomembrane; (e) Si, (f) O, and (g) C elemental mapping images of (d) from EDX; (h) cycling performance at 3.0 A·g-1; (i) rate performance at current densities ranged from 0.3 to 15 A·g-1
ElectrodeInitial discharge capacityInitial CE/%StabilityReference
Si/rGO rolled-up nanomembranes2871 mAh·g-1 at 100 mA·g-163.301433 mAh·g-1 after 100 cycles 21
Ti@Si nanorod arrays2540 mAh·g-1 at 200 mA·g-176.301125 mAh·g-1 after 30 cycles 28
Si/Ti2O3/rGO900 mAh·g-1 at 100 mA·g-1895 mAh·g-1 after 100 cycles 29
OMP-Si/C2179 mAh·g-1 at 100 mA·g-156.6870 mAh·g-1 after 50 cycles 30
Si@SiO2@C@HF composite1400 mAh·g-1 at 100 mA·g-1650 mAh·g-1 after 100 cycles 31
rolled-up Ge/Ti tubes1753 mAh·g-1 at 100 mA·g-185930 mAh·g-1 after 100 cycles 22
Ge nanowire arrays2967 mAh·g-1 at 100 mA·g-1381000 mAh·g-1 after 20 cycles 32
Ge nanotubes1341 mAh·g-1 at 320 mA·g-176921 mAh·g-1 after 50 cycles 33
Ge/graphene composites1803 mAh·g-1 at 50 mA·g-152940 mAh·g-1 after 50 cycles 34
curved NiO nanomenbranes1073 mAh·g-1 at 144 mA·g-168.20721 mAh·g-1 at 1077 mA·g-1 after 1400 cycles 25
NiO nanofoam1128 mAh·g-1 at 71.7 mA·g-172.30670 mAh·g-1 after 40 cycles 35
mesoporous NiO crystals1200 mAh·g-1 at 717 mA·g-153.30682 mAh·g-1 after 100 cycles 36
Table 1 Electrochemical performance comparison between self-rolled electrodes and other nanostructured electrodes
Fig 4 Fabrication and properties of micro rolled-up lithium-ion batteries 22 (a, b) schematic of the single-microtube-device fabrication; (c) an optical microscopy image of a single rolled-up device; (d) transport properties of the single Ge/Ti and Ge microtubes; (e) transport properties of a single Ge/Ti microtube before discharge and after discharge at 2 nA for 400 s; (f) transport properties after charge for 100, 200, and 500 s
Fig 5 Morphology changes of a single Si tube 38 SEM images of a tube before cycling with various magnifications (a-c) and after three cycles of lithiation/delithiation (d, e)
Fig 6 Self-rolled-up micro-capacitors array 39, 40 (a) layer sequence for inorganic and hybrid organic/inorganic capacitors; (b) layer sequence for inorganic and hybrid organic/inorganic capacitors; (c) relationship between capacitance per footprint area and number if winding; (d) 4-inch Si/SiO2 wafer containing array of double tube UCCaps (e); (f) UCCaps processed in parallel
1 Wang X. F. ; Chen Y. ; Schmidt O. G. ; Yan C. L. Chem. Soc. Rev 2016, 45, 1308.
2 Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys. -Chim. Sin 2016, 32, 1062.
2 杨泽; 张旺; 沈越; 袁利霞; 黄云辉. 物理化学学报, 2016, 32, 1062.
3 Wang X. F. ; Shen G. Z. Nano Energy 2015, 15, 104.
4 Lee S.W. ; Lee H.W. ; Ryu I. ; Nix W. D. ; Gao H. ; Cui Y. Nat. Commun 2015, 6, 7533.
5 Liu N. ; Wu H. ; McDowell M. T. ; Yao Y. ; Wang C. ; Cui Y. Nano Lett 2012, 12, 3315.
6 Yao Y. ; McDowell M. T. ; Ryu I. ; Wu H. ; Liu N. ; Hu L. ; Nix W. D. ; Cui Y. Nano Lett 2011, 11, 2949.
7 Gohier A. ; La?k B. ; Kim K. H. ; Maurice J. L. ; Pereira-Ramos J. P. ; Cojocaru C. S. ; Van P. T. Adv. Mater 2012, 24, 2592.
8 Wang B. ; Li X. L. ; Zhang X. F. ; Luo B. ; Jin M. H. ; Liang M.H. ; Dayeh S. A. ; Picraux S. T. ; Zhi L. J. ACS Nano 2013, 7, 1437.
9 Liu X. H. ; Zhang L. Q. ; Zhong L. ; Liu Y. ; Zheng H. ; Wang J.W. ; Cho J. H. ; Dayeh S. A. ; Picraux S. T. ; Sullivan J. P. ; Mao S. X. ; Ye Z. Z. ; Huang J. Y. Nano Lett 2011, 11, 2251.
10 Xiong F. ; Wang H. ; Liu X. ; Sun J. ; Brongersma M. ; Pop E. ; Cui Y. Nano Lett 2015, 15, 6777.
11 Xu X. ; Yan M. ; Tian X. ; Yang C. ; Shi M. ; Wei Q. ; Xu L. ; Mai L. Nano Lett 2015, 15, 3879.
12 Schmidt O. G. ; Eberl K. Nature 2001, 410, 168.
13 Grimm D. ; Bufon C. C. B. ; Deneke C. ; Atkinson P. ; Thurmer D. J. ; Schaffel F. ; Gorantla S. ; Bachmatiuk A. ; Schmidt O. G. Nano Lett 2013, 13, 213.
14 Magdanz V. ; Sanchez S. ; Schmidt O. G. Adv. Mater 2013, 25, 6581.
15 Madani A. ; Kleinert M. ; Stolarek D. ; Zimmermann L. ; Ma L. ; Schmidt O. G. Opt. Lett 2014, 39, 189.
16 Bufon C. C. B. ; Gonzalez J. D. C. ; Thurmer D. J. ; Grimm D. ; Bauer M. ; Schmidt C. G. Nano Lett 2010, 10, 2506.
17 Cendula P. ; Kiravittaya S. ; Mei Y. ; Deneke C. ; Schmidt O. G. Phys. Rev. B 2009, 79, 085429.
18 Huang M. ; Cavallo F. ; Liu F. ; Lagally M. Nanoscale 2011, 3, 96.
19 Ji H. ; Wu X. ; Fan L. ; Krien C. ; Fiering I. ; Guo Y. ; Mei Y. ; Schmidt O. G. Adv. Mater 2010, 22, 4591.
20 Deng J. ; Ji H. ; Yan C. ; Zhang J. ; Si W. ; Baunack S. ; Oswald S. ; Mei Y. ; Schmidt O. G. Angew. Chem 2013, 125, 2382.
21 Liu X. ; Zhang J. ; Si W. ; Xi L. ; Eichler B. ; Yan C. ; Schmidt O. G. ACS Nano 2015, 9, 1198.
22 Yan C. ; Xi W. ; Si W. ; Deng J. ; Schmidt O. G. Adv. Mater 2013, 25, 539.
23 Zhang L. ; Deng J. ; Liu L. ; Si W. ; Oswald S. ; Xi L. ; Kundu M. ; Ma G. ; Gemming T. ; Baunack S. ; Deng F. ; Yan C. ; Schmidt O. G. Adv. Mater 2014, 26, 4527.
24 Chen Y. ; Yan C. ; Schmidt O. G. Adv. Energy Mater 2013, 3, 1269.
25 Sun X. ; Yan C. ; Chen Y. ; Si W. ; Deng J. ; Oswald S. ; Liu L. ; Schmidt O. G. Adv. Energy Mater 2014, 4, 1300912.
26 Liu X. ; Zhang J. ; Si W. ; Xi L. ; Oswald S. ; Yan C. ; Schmidt O. G. Nanoscale 2015, 7, 282.
27 Deng J. ; Yan C. ; Yang L. ; Baunack S. ; Oswald S. ; Wendrock H. ; Mei Y. ; Schmidt O. G. ACS Nano 2013, 7, 6948.
28 Meng X. ; Deng D. ACS Appl. Mater. Interfaces 2015, 7, 6867.
29 Park A. R. ; Son D. Y. ; Kim J. S. ; Lee J. Y. ; Park N. G. ; Park J. ; Lee J. K. ; Yoo P. J. ACS Appl. Mater. Interfaces 2015, 7, 18483.
30 Tang Y. P. ; Yuan S. ; Guo Y. Z. ; Huang R. A. ; Wang J. H. ; Yang B. ; Dai Y. N. Acta Phys. -Chim. Sin 2016, 32, 2280.
30 唐艳平; 元莎; 郭玉忠; 黄瑞安; 王剑华; 杨斌; 戴永年. 物理化学学报, 2016, 32, 2280.
31 Li X. ; Meduri P. ; Chen X. ; Qi W. ; Engelhard M. H. ; Xu W. ; Ding F. ; Xiao W. ; Wang C. ; Zhang J. G. ; Liu J. J. Mater. Chem 2012, 22, 11014.
32 Chan C. K. ; Zhang X. F. ; Cui Y. Nano Lett 2008, 8, 307.
33 Park M. H. ; Cho Y. ; Kim K. ; Kim J. ; Liu M. ; Cho J. Angew. Chem 2011, 123, 9821.
34 Xue D. J. ; Xin S. ; Yan Y. ; Jiang K. C. ; Yin Y. X. ; Guo Y. G. ; Wan L. J. J. Am. Chem. Soc 2012, 134, 2512.
35 Ni W. ; Wu H. B. ; Wang B. ; Xu R. ; Lou X. W. Small 2012, 8, 3432.
36 Su D. ; Ford M. ; Wang G. Sci. Rep 2012, 2, 924.
37 Lu X. ; Deng J. ; Si W. ; Sun X. ; Liu X. ; Liu B. ; Liu L. ; Oswald S. ; Baunack S. ; Grafe H. ; Yan C. ; Schmidt O. G. Adv. Sci 2015, 1500113
38 Si W. ; M?nch I. ; Yan C. ; Deng. J. ; Li S. ; Lin G. ; Han L. ; Mei Y. ; Schmidt O. G. Adv. Mater 2014, 26, 7973.
39 Bufon C. C. B. ; González J. D. C. ; Thurmer D. J. ; Grimm D. ; Bauer M. ; Schmidt O. G. Nano Lett 2010, 10, 2506.
40 Sharma R. ; Bufon C. C. B. ; Grimm D. ; Sommer R. ; Wollatz A. ; Schadewald J. ; Thurmer D. J. ; Siles P. F. ; Bauer M. ; Schmidt O. G. Adv. Energy Mater 2014, 4, 1301631.
[1] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[2] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[3] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[4] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[5] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[6] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[7] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[8] Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.
[9] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[10] WU Wen-Hao, HUANG Xin-Yu, YAO Rui-Min, CHEN Ren-Jie, LI Kai, ZOU Ru-Qiang. Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 255-261.
[11] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 130-148.
[12] Wei-Xin SONG,Hong-Shuai HOU,Xiao-Bo JI. Progress in the Investigation and Application of Na3V2(PO4)3 for Electrochemical Energy Storage[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 103-129.
[13] WANG Jing-Lun, YAN Xiao-Dan, YONG Tian-Qiao, ZHANG Ling-Zhi. Nitrile-Modified 2,5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2293-2300.
[14] LUO Wen, HUANG Lei, GUAN Dou-Dou, HE Ru-Han, LI Feng, MAI Li-Qiang. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1999-2006.
[15] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1056-1061.