Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (1): 165-182    DOI: 10.3866/PKU.WHXB201609232
REVIEW     
Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon
Wan-Fei LI1,Mei-Nan LIU1,Jian WANG1,Yue-Gang ZHANG1,2,*()
1 Suzhou Institute of Nano-Tech and Nano-Bionics, Chinese Academy of Sciences, Suzhou 215123, Jiangsu Province, P. R. China
2 Department of Physics, Tsinghua University, Beijing 100084, P. R. China
Download: HTML     PDF(3755KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Chemically modified carbon has attracted significant attention since our first report of its use in lithium/sulfur (Li/S) cells. Compared with traditional carbon materials, chemically modified carbon prevents the dissolution and diffusion of intermediate polysulfides. Therefore, it yields sulfur cathodes with long cycling stability, which has become the focus of current research in the field of Li/S batteries. This review summarizes the use of chemically modified carbon for highly efficient sulfur utilization and the synergistic chemical/physical trapping of sulfur species. The prospects of further developments of Li/S batteries using chemically modified carbon is also discussed.



Key wordsLithium/sulfur battery      Carbon      Chemical modification      Sulfur cathode      Shuttle effect     
Received: 29 July 2016      Published: 23 September 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21433013)
Corresponding Authors: Yue-Gang ZHANG     E-mail: ygzhang2012@sinano.ac.cn
Cite this article:

Wan-Fei LI,Mei-Nan LIU,Jian WANG,Yue-Gang ZHANG. Progress of Lithium/Sulfur Batteries Based on Chemically Modified Carbon. Acta Physico-Chimica Sinca, 2017, 33(1): 165-182.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609232     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/165

Fig 1 Comparison of theoretical specific energies and energy densities of the Li/S and lithium-ion cells15
Fig 2 Illustration of Li/S cell′s capacity degradation mechanisms17
Fig 3 Voltage profile of a Li/S cell16
Fig 4 Comparison of physical absorption (PAB) and chemical adsorption (CAD) in improving the performance of Li/S batteries63
Fig 5 (a) Schematic of graphene oxide (GO) anchoring S; (b) C K-edge X-ray absorption spectroscopy (XAS) of GO and GO-S nanocomposites62
Fig 6 Schematic of the cetyltrimethylammonium bromide (CTAB)-modified S-GO nanocomposites21
Fig 7 Illustration of fabricating Li2S-rGO composites66 rGO: reduced graphene oxide
Fig 8 Schematic of a GO membrane in a Li/S cell26
Fig 9 Schematic of preparing S@NG nanocomposite and Li2Sx trapping by N functional groups22
Fig 10 (a) N 1s XPS spectrum of NG and (b) theoretical calculation of Li2S4 adsorption on different types of graphene
Fig 11 Schematic of the synthesis process of the HNG-Li2S composite23
Fig 12 Cycling performance of the HNG-Li2S/Li cells23
Fig 13 Schematic of a cell: (a) N-CNT film as a top current collector; (b) N-CNT film as a bottom current collector. Optical images of the diffusion of Li2S8 in H-type glass with a commercial separator (c) and a separator plus a N-CNT film (d) after 20 h69
Fig 14 Electrochemical performance of the Li/Li2S cell with N-CNT film as the top current collector69
Fig 15 Schematic of preparing graphene-like OCN materials73
Fig 16 Electrochemical performance of S/OCN cathodes73
Fig 17 First-principles calculations of binding energy between Li2S2 molecules and different types of carbon substrates74
Fig 18 Electrochemical performance of g-C3N4/S75 cathodes with a high sulfur loading (1.5-5.0 mg?cm-2) 74
Fig 19 Synthesis process of 3D porous NSG composite75
Fig 20 Electrochemical performance of S@NSG, S@NG, S@SG, and S/RGO cathodes75
Fig 21 Photographs of different graphene sponges and schematic of the assembled Li/Li2S6 cell with N, S-codoped graphene electrode76
Fig 22 Theoretical calculations of the binding energy of LiSH to different types of carbon substrates76 bond length in ?(1 ?=0.1 nm)
Fig 23 Schematic illustration of the synthesis of nitrogen/sulfur-doped carbon TEOS: tetraethyl orthosilicate; EISA: evaporation-induced self-assembly
Fig 24 Ab initio calculations on the binding energy of Li2S2 with different carbon substrates77
1 Goodenough J. B. Energy Environ. Sci 2014, 7, 14.
2 Larcher D. ; Tarascon J. M. Nat. Chem 2015, 7, 19.
3 Ellis B. L. ; Lee K. T. ; Nazar L. F. Chem. Mater 2010, 22, 691.
4 Goodenough J. B. ; Park K. S. J.Am. Chem. Soc 2013, 135, 1167.
5 Erickson E. M. ; Ghanty C. ; Aurbach D. J.Phys. Chem. Lett 2014, 5, 3313.
6 Croguennec L. ; Palacin M. R. J.Am. Chem. Soc 2015, 137, 3140.
7 Liu C. ; Li F. ; Ma L. P. ; Cheng H. M. Adv. Mater 2010, 22, E28.
8 Cheng F. Y. ; Liang J. ; Tao Z. L. ; Chen J. Adv. Mater 2011, 23, 1695.
9 Yang Y. ; Zheng G. Y. ; Cui Y. Chem. Soc. Rev 2013, 42, 3018.
10 Muldoon J. ; Bucur C. B. ; Gregory T. Chem. Rev 2014, 114, 11683.
11 Lin M. C. ; Gong M. ; Lu B. A. ; Wu Y. P. ; Wang D. Y. ; Guan M. Y. ; Angell M. ; Chen C. X. ; Yang J. ; Hwang B. J. ; Dai H.J. Nature 2015, 520, 325.
12 Yin Y. X. ; Xin S. ; Guo Y. G. ; Wan L. J. Angew. Chem. Int. Ed 2013, 52, 13186.
13 Manthiram A. ; Chung S. H. ; Zu C. X. Adv. Mater 2015, 27, 1980.
14 Li W. F. ; Cheng S. ; Wang J. ; Qiu Y. C. ; Zheng Z. Z. ; Lin H.Z. ; Nanda S. ; Ma Q. ; Xu Y. ; Ye F. M. ; Liu M. N. ; Zhou L.S. ; ZhangY.G. Angew. Chem. Int. Ed 2016, 55, 1.
15 Song M. K. ; Cairns E. J. ; Zhang Y. G. Nanoscale 2013, 5, 2186.
16 Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. ; Tarascon J.M. Nat. Mater 2012, 11, 172.
17 Wild M. ; O'Neill L. ; Zhang T. ; Purkayastha R. ; Minton G. ; Marinescub M. ; Offer G. J. Energy Environ. Sci 2015, 8, 3477.
18 Pope M. A. ; Aksay I. A. Adv. Energy Mater 2015, 5, 1500124.
19 Zhang S. ; Ueno K. ; Dokko K. ; Watanabe M. Adv. Energy Mater 2015, 5, 1500117.
20 Huang J. Q. ; Zhang Q. ; Wei F. Energy Storage Mater 2015, 1, 127.
21 Song M. K. ; Zhang Y. G. ; Cairns E. J. Nano Lett 2013, 13, 5891.
22 Qiu Y. C. ; Li W. F. ; Zhao W. ; Li G. Z. ; Hou Y. ; Liu M. N. ; Zhou L. S. ; Ye F. M. ; Li H. F. ; Wei Z. H. ; Yang S. H. ; Duan W. H. ; Ye Y. F. ; Guo J. H. ; Zhang Y. G. Nano Lett 2014, 14, 4821.
23 Qiu Y. C. ; Rong G. L. ; Yang J. ; Li G. Z. ; Ma S. ; Wang X. L. ; Pan Z. H. ; Hou Y. ; Liu M. N. ; Ye F. M. ; Li W. F. ; Seh Z.W. ; Tao X. Y. ; Yao H. B. ; Liu N. ; Zhang R. F. ; Zhou G. M. ; Wang J. P. ; Fan S. S. ; Cui Y. ; Zhang Y. G. Adv. Energy Mater 2015, 5, 1501369.
24 Suo L. M. ; Hu Y. S. ; Li H. ; Armand M. ; Chen L. Q. Nat. Commun 2013, 4, 1481.
25 Zhou G. ; Li L. ; Wang D.W. ; Shan X. Y. ; Pei S. ; Li F. ; Cheng H. M. Adv. Mater 2015, 27, 641.
26 Huang J. Q. ; Zhuang T. Z. ; Zhang Q. ; Peng H. J. ; Chen C.M. ; Wei F. ACS Nano 2015, 9, 3002.
27 Wang W. K. ; Yu Z. B. ; Wang A. B. ; Yuan K. G. ; Yang Y. S. Research Progress and Thought in Lithium-Sulfur Batteries. The14th National Conference of Electrochemistry Yangzhou: YangzhouUniversity, 2007, 1058.
28 Ji X. L. ; Lee K. T. ; Nazar L. F. Nat. Mater 2009, 8, 500.
29 Li K.F. ; Wang B. ; Su D.W. ; Park J. ; Ahn H. ; Wang G. X. J. Power Sources 2012, 202, 389.
30 Li G. C. ; Hu J. J. ; Li G. R. ; Ye S. H. ; Gao X. P. J.Power Sources 2013, 240, 589.
31 Cheng J. J. ; Pan Y. ; Pan J. A. ; Song H. J. ; Ma Z. S. RSC Adv 2015, 5, 68.
32 Ji L.W. ; Rao M. M. ; Aloni S. ; Wang L. ; Cairns E. J. ; Zhang Y. G. Energy Environ. Sci 2011, 4, 5053.
33 Zheng G. Y. ; Yang Y. ; Cha J. J. ; Hong S. S. ; Cui Y. Nano Lett 2011, 11, 4462.
34 Guo J. C. ; Xu Y. H. ; Wang C. S. Nano Lett 2011, 11, 4288.
35 Wang L. N. ; Zhao Y. ; Thom M. L. ; Byon H. R. Adv. Funct. Mater 2014, 24, 2248.
36 Zhu L. ; Zhu W. C. ; Cheng X. B. ; Huang J. Q. ; Peng H. J. ; Yang S. H. ; Zhang Q. Carbon 2014, 75, 161.
37 Zhu J. X. ; Yang D. ; Yin Z. Y. ; Yan Q. Y. ; Zhang H. Small 2014, 10, 3480.
38 You Y. ; Zeng W. C. ; Yin Y. X. ; Zhang J. ; Yang C. P. ; Zhu Y.W. ; Guo Y. Y. J.Mater. Chem. A 2015, 3, 4799.
39 Li H. F. ; Yang X.W. ; Wang X. M. ; Liu M. N. ; Ye F. M. ; Wang J. ; Qiu Y. C. ; Li W. F. ; Zhang Y. G. Nano Energy 2015, 12, 468.
40 Zhou G. M. ; Pei S. F. ; Li L. ; Wang D.W. ; Wang S. G. ; Huang K. ; Yin L. C. ; Li F. ; Cheng H. M. Adv. Mater 2014, 26, 625.
41 Zheng S. Y. ; Yi F. ; Li Z. P. ; Zhu Y. J. ; Xu Y. H. ; Luo C. ; Yang J. H. ; Wang C. S. Adv. Funct. Mater 2014, 24, 4156.
42 Li Z. ; Yuan L. X. ; Yi Z. Q. ; Sun Y. M. ; Liu Y. ; Jiang Y. ; Shen Y. ; Xin Y. ; Zhang Z. L. ; Huang Y. H. Adv. Energy Mater 2014, 4, 1301473.
43 Zhang K. ; Zhao Q. ; Tao Z. L. ; Chen J. Nano Res 2013, 6, 38.
44 Peng H. J. ; Huang J. Q. ; Zhao M. Q. ; Zhang Q. ; Cheng X.B. ; Liu X. Y. ; Qian W. Q. ; Wei F. Adv. Func. Mater 2014, 19, 2772.
45 Liu S. K. ; Xie K. ; Li Y. J. ; Chen Z. X. ; Hong X. B. ; Zhou L.J. ; Yuan J. F. ; Zheng C. M. RSC Adv 2015, 5, 5516.
46 Zhu L. ; Peng H. J. ; Liang J. Y. ; Huang J. Q. ; Chen C. M. ; Guo X. F. ; Zhu W. C. ; Li P. ; Zhang Q. Nano Energy 2015, 11, 746.
47 Sun L. ; Kong W. B. ; Jiang Y. ; Wu H. C. ; Jiang K. L. ; Wang J. P. ; Fan S. S. J.Mater. Chem. A 2015, 3, 5305.
48 Yang X. ; Zhang L. ; Zhang F. ; Huang Y. ; Chen Y. S. ACS Nano 2014, 8, 5208.
49 Seh Z.W. ; Li W. Y. ; Cha J. J. ; Zheng G. Y. ; Yang Y. ; McDowell M. T. ; Hsu P. C. ; Cui Y. Nat. Commun 2013, 4, 1331.
50 Yao H. B. ; Zheng G. Y. ; Hsu P. C. ; Kong D. S. ; Cha J. J. ; Li W. Y. ; Seh Z.W. ; McDowell M. T. ; Yan K. ; Liang Z. ; Narasimhan V. K. ; Cui Y. Nat. Commun 2014, 5, 3943.
51 Tao X. Y. ; Wang J. G. ; Ying Z. G. ; Cai Q. X. ; Zheng G. Y. ; Gan Y. P. ; Huang H. ; Xia Y. ; Liang C. ; Zhang W. K. ; Cui Y. Nano Lett 2014, 14, 5288.
52 Pang Q. ; Kundu D. ; Cuisinier M. ; Naza L. F. Nat. Commun 2015, 5, 4759.
53 Song M. S. ; Han S. C. ; Kim H. S. ; Kim J. H. ; Kim K. T. ; Kang Y. M. ; Ahn H. J. ; Dou S. X. ; Lee J. Y. J.Electrochem. Soc 2004, 151, A791.
54 Zhang Y. G. ; Zhao Y. ; Yermukhambetova A. ; Bakenov Z. ; Chen P. J. J.Mater. Chem. A 2013, 1, 295.
55 Choi Y. J. ; Jung B. S. ; Lee D. J. ; Kim K.W. ; Ahn H. J. ; Cho K. K. ; Gu H. B. Phys. Scr 2007, T129, 62.
56 Ji X. L. ; Evers S. ; Black R. ; Nazar L. F. Nat. Commun 2011, 2, 325.
57 Liang Z. ; Zheng G. Y. ; Li W. Y. ; Seh Z.W. ; Yao H. B. ; Yan K. ; Kong D. S. ; Cui Y. ACS Nano 2014, 8, 5249.
58 Sun F. G. ; Wang J. T. ; Long D. H. ; Qiao W. M. ; Ling L. C. ; Lv C. X. ; Cai R. J.Mater. Chem. A 2013, 1, 13283.
59 Qu Q. T. ; Gao T. ; Zheng H. Y. ; Wang Y. ; Li X. Y. ; Li X. X. ; Chen J. M. ; Han Y. Y. ; Shao J. ; Zheng H. Z. Adv. Mater. Interfaces 2015, 2, 1500048.
60 Liang X. ; Garsuch A. ; Nazar L. F. Angew. Chem. Int. Ed 2015, 54, 3907.
61 Zhang Q. F. ; Wang Y. F. ; Seh Z.W. ; Fu Z. H. ; Zhang R. F. ; Cui Y. Nano Lett 2015, 15, 3780.
62 Ji L. ; Rao M. ; Zheng H. ; Zhang L. ; Li Y. ; Duan W. ; Guo J. ; Cairns E. J. ; Zhang Y. J. Am. Chem. Soc 2011, 133, 18522.
63 Zhang S. S. Inorg. Chem. Front 2015, 2, 1059.
64 Zhang L. ; Ji L. ; Glans P. A. ; Zhang Y. ; Zhu J. ; Guo J. Phys. Chem. Chem. Phys 2012, 14, 13670.
65 Qiu Y. C. ; Li W. F. ; Li G. Z. ; Hou Y. ; Zhou L. S. ; Li H. F. ; Liu M. N. ; Ye F. M. ; Yang X.W. ; Zhang Y. G. Nano Res 2014, 7, 1355.
66 Ye F. M. ; Liu M. N. ; Zhang X. Y. ; Li W. F. ; Pan Z. H. ; Li H.F. ; Zhang S. ; Zhang Y. G. Small 2016, 12, 4966.
67 Liu M. N. ; Ye F. M. ; Li W. F. ; Li H. F. ; Zhang Y. G. Nano Res 2016, 9, 94.
68 Wang C. ; Su K. ; Wan W. ; Guo H. ; Zhou H. H. ; Chen J. T. ; Zhang X. X. ; Huang Y. H. J.Mater. Chem. A 2014, 2, 5018.
69 Zhang S. ; Liu M. N. ; Ma F. ; Ye F. M. ; Li H. F. ; Zhang X. Y. ; Hou Y. ; Qiu Y. C. ; Li W. F. ; Wang J. ; Wang J. ; Zhang Y. G. J. Mater. Chem. A 2015, 3, 18913.
70 Liu J. H. ; Zhang T. K. ; Wang Z. C. ; Dawson G. ; Chen W. J. Mater. Chem 2011, 21, 14398.
71 Zhang Y.W. ; Liu J. H. ; Wu G. ; Chen W. Nanoscale 2012, 4, 5300.
72 Liu J. ; Liu Y. ; Liu N. Y. ; Han Y. Z. ; Zhang X. ; Huang H. ; Lifshitz Y. ; Lee S. T. ; Zhong J. ; Kang Z. H. Science 2015, 347, 970.
73 Liu J. H. ; Li W. F. ; Duan L. M. ; Li X. ; Ji L. ; Geng Z. B. ; Huang K. K. ; Lu L. H. ; Zhou L. S. ; Liu Z. R. ; Chen W. ; Liu L.W. ; Feng S. H. ; Zhang Y. G. Nano Lett 2015, 15, 5137.
74 Pang Q. ; Nazar L. F. ACS Nano 2016, 10, 4111.
75 Wang J. ; Cheng S. ; Li W.F. ; Zhang S. ; Li H. F. ; Zheng Z.Z. ; Li F. J. ; Shi L. Y. ; Lin H. Z. ; Zhang Y. G. J.Power Sources 2016, 321, 193.
76 Zhou G. ; Paek E. ; Hwang G. S. ; Manthiram A. Nat. Commun 2015, 6, 7760.
77 Pang Q. ; Tang J. ; Huang H. ; Liang X. ; Hart C. ; Tam K. C. ; Nazar L. F. Adv. Mater 2015, 27, 6021.
[1] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 92-98.
[2] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[3] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1811-1821.
[4] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1855-1864.
[5] Hong-Yan NING,Qi-Lei YANG,Xiao YANG,Ying-Xia LI,Zhao-Yu SONG,Yi-Ren LU,Li-Hong ZHANG,Yuan LIU. Carbon Fiber-supported Rh-Mn in Close Contact with Each Other and Its Catalytic Performance for Ethanol Synthesis from Syngas[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1865-1874.
[6] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1838-1845.
[7] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1915-1922.
[8] Xiao-Qiang. WANG,Jiang. LIU,Yong-Min. XIE,Wei-Zi. CAI,Ya-Peng. ZHANG,Qian. ZHOU,Fang-Yong. YU,Mei-Lin. LIU. A High Performance Direct Carbon Solid Oxide Fuel Cell Stack for Portable Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1614-1620.
[9] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[10] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1297-1309.
[11] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1429-1435.
[12] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[13] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 886-902.
[14] Mao-Mao RUAN,Le-Xin SONG,Qing-Shan WANG,Juan XIA,Zun YANG,Yue TENG,Zhe-Yuan XU. Facile Green Synthesis of Highly Monodisperse Bismuth Subcarbonate Micropompons Self-assembled by Nanosheets: Improved Photocatalytic Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1033-1042.
[15] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.