Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(1)>> 183-197     doi: 10.3866/PKU.WHXB201609282         中文摘要
Research Progress and Applications of qPlus Noncontact Atomic Force Microscopy
LIU Meng-Xi1, LI Shi-Chao1,2, ZHA Ze-Qi1,2, QIU Xiao-Hui1
1 Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China;
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Full text: PDF (4997KB) HTML Export: BibTeX | EndNote (RIS)

Atomic force microscopy (AFM) is used to investigate surface structures by measuring the interaction force between the tip and sample. Non-contact AFM (NC-AFM) that incorporates a qPlus sensor further enhances the spatial resolution of scanning probe microscopy based on traditional AFM principles. In this perspective, we give a brief introduction to the mechanisms of high-resolution imaging and force measurements using NC-AFM. We then summarize recent applications of NC-AFM in the fields of on-surface chemical reactions, low-dimensional materials, surface charge distribution in molecules, as well as technical improvements and developments of NC-AFM technologies. The opportunities and challenges for NC-AFM technologies are also presented.



Keywords: Noncontact atomic force microscopy   qPlus sensor   High resolution imaging   Force spectroscopy   Kelvin probe force microscopy  
Received: 2016-07-28 Accepted: 2016-09-27 Publication Date (Web): 2016-09-28
Corresponding Authors: QIU Xiao-Hui Email: xhqiu@nanoctr.cn

Fund: The project was supported by the Ministry of Science and Technology, China (2012CB933001) and National Natural Science Foundation of China (21425310).

Cite this article: LIU Meng-Xi, LI Shi-Chao, ZHA Ze-Qi, QIU Xiao-Hui. Research Progress and Applications of qPlus Noncontact Atomic Force Microscopy[J]. Acta Phys. -Chim. Sin., 2017,33 (1): 183-197.    doi: 10.3866/PKU.WHXB201609282

(1) Binnig, G.; Rohrer, H.; Gerber, C.; Weibel, E. Phys. Rev. Lett. 1982, 49 (1), 57. doi: 10.1103/PhysRevLett.49.57
(2) Binnig, G.; Quate, C. F.; Gerber, C. Phys. Rev. Lett. 1986, 56 (9), 930. doi: 10.1103/PhysRevLett.56.1335
(3) Gross, L.; Mohn, F.; Moll, N.; Liljeroth, P.; Meyer, G. Science 2009, 325 (5944), 1110. doi: 10.1126/science.1176210
(4) Albrecht, T.; Grütter, P.; Horne, D.; Rugar, D. J. Appl. Phys. 1991, 69 (2), 668. doi: 10.1063/1.347347
(5) Giessibl, F. J. Rev. Mod. Phys. 2003, 75 (3), 949. doi: 10.1103RevModPhys.75.949
(6) Yuan, B. K.; Chen, P. C.; Zhang, J.; Cheng, Z. H.; Qiu, X. H.; Wang, C. Acta Phys.-Chim. Sin. 2013, 29 (7), 1370. [袁秉凯, 陈鹏程, 仉君, 程志海, 裘晓辉, 王琛. 物理化学学报, 2013, 29 (7), 1370.] doi: 10.3866/PKU.WHXB201304191
(7) Giessibl, F. J. Appl. Phys. Lett. 1998, 73 (26), 3956. doi: 10.1063/1.122948
(8) Babic, B.; Hsu, M. T.; Gray, M. B.; Lu, M.; Herrmann, J. Sens. Actuators A Phys. 2015, 223, 167. doi: 10.1016/j.sna.2014.12.028
(9) Melcher, J.; Stirling, J.; Shaw, G. A. Beilstein J. Nanotechnol. 2015, 6 (1), 1733. doi: 10.3762/bjnano.6.177
(10) Moll, N.; Gross, L.; Mohn, F.; Curioni, A.; Meyer, G. New J. Phys. 2010, 12 (12), 125020. doi: 10.1088/1367-2630/12/12125020
(11) Moll, N.; Gross, L.; Mohn, F.; Curioni, A.; Meyer, G. New J. Phys. 2012, 14 (8), 083023. doi: 10.1088/1367-2630/14/8083023
(12) Gross, L.; Mohn, F.; Moll, N.; Schuler, B.; Criado, A.; Guitián, E.; Peña, D.; Gourdon, A.; Meyer, G. Science 2012, 337 (6100), 1326. doi: 10.1126/science.1225621
(13) Sweetman, A.; Jarvis, S.; Sang, H.; Lekkas, I.; Rahe, P.; Wang, Y.; Wang, J.; Champness, N.; Kantorovich, L.; Moriarty, P. Nat. Commun. 2014, 5. doi: 10.1038/ncomms4931
(14) Huber, F.; Matencio, S.; Weymouth, A. J.; Ocal, C.; Barrena, E.; Giessibl, F. J. Phys. Rev. Lett. 2015, 115 (6), 066101. doi: 10.1103/PhysRevLett.115.066101
(15) Iwata, K.; Yamazaki, S.; Mutombo, P.; Hapala, P.; Ondracek, M.; Jelínek, P.; Sugimoto, Y. Nat. Commun. 2015, 6. doi: 10.1038/ncomms8766
(16) Jarvis, S. P.; Sweetman, A.; Lekkas, I.; Champness, N. R.; Kantorovich, L.; Moriarty, P. J. Phys. Condens. Matter 2014, 27 (5), 054004. doi: 10.1088/0953-8984/27/5/054004
(17) Schuler, B.; Meyer, G.; Pena, D.; Mullins, O. C.; Gross, L. J. Am. Chem. Soc. 2015, 137 (31), 9870. doi: 10.1021jacs.5b04056
(18) Zhang, J.; Chen, P.; Yuan, B.; Ji, W.; Cheng, Z.; Qiu, X. Science 2013, 342 (6158), 611. doi: 10.1126/science.1242603
(19) Kawai, S.; Sadeghi, A.; Xu, F.; Peng, L.; Orita, A.; Otera, J.; Goedecker, S.; Meyer, E. ACS Nano 2015, 9 (3), 2574. doi: 10.1021/nn505876n
(20) Hapala, P.; Kichin, G.; Wagner, C.; Tautz, F. S.; Temirov, R.; Jelínek, P. Phys. Rev. B 2014, 90 (8), 085421. doi: 10.1103PhysRevB.90.085421
(21) Hämäläinen, S. K.; van der Heijden, N.; van der Lit, J.; denHartog, S.; Liljeroth, P.; Swart, I. Phys. Rev. Lett. 2014, 113 (18), 186102. doi: 10.1103/PhysRevLett.113.186102
(22) Emmrich, M.; Huber, F.; Pielmeier, F.; Welker, J.; Hofmann, T.; Schneiderbauer, M.; Meuer, D.; Polesya, S.; Mankovsky, S.; Ködderitzsch, D. Science 2015, 348 (6232), 308. doi: 10.1126science.aaa5329
(23) Jarvis, S. P. Int. J. Mol. Sci. 2015, 16 (8), 19936. doi: 10.3390ijms160819936
(24) Guo, C. S.; Xin, X.; van Hove, M. A.; Ren, X.; Zhao, Y. J. Phys. Chem. C 2015, 119 (25), 141950. doi: 10.1021/acs.jpcc.5b02649
(25) Jarvis, S. P.; Rashid, M. A.; Sweetman, A.; Leaf, J.; Taylor, S.; Moriarty, P.; Dunn, J. Phys. Rev. B 2015, 92 (24), 241405. doi: 10.1103/PhysRevB.92.241405
(26) Neu, M.; Moll, N.; Gross, L.; Meyer, G.; Giessibl, F. J.; Repp, J.Phys. Rev. B 2014, 89 (20), 205407. doi: 10.1103PhysRevB.89.205407
(27) Kawai, S.; Haapasilta, V.; Lindner, B.; Tahara, K.; Spijker, P.; Buitendijk, J.; Pawlak, R.; Meier, T.; Tobe, Y.; Foster, A.; Meyer, E. Nat. Commun. 2016, 7. doi: 10.1038/ncomms12711
(28) Guo, C. S.; Van Hove, M. A.; Ren, X.; Zhao, Y. J. Phys. Chem. C 2015, 119 (3), 1483. doi: 10.1021/jp511214e
(29) Kim, M.; Chelikowsky, J. R. Appl. Phys. Lett. 2015, 107 (16), 163109. doi: 10.1063/1.4934273
(30) Tsai, H. Z.; Omrani, A. A.; Coh, S.; Oh, H.; Wickenburg, S.; Son, Y.W.; Wong, D.; Riss, A.; Jung, H. S.; Nguyen, G. D. ACS Nano 2015, 9 (12), 12168. doi: 10.1021/acsnano.5b05322
(31) Sader, J. E.; Jarvis, S. P. Appl. Phys. Lett. 2004, 84 (10), 1801. doi: 10.1063/1.1667267
(32) Kuhn, S.; Rahe, P. Phys. Rev. B 2014, 89 (23), 235417. doi: 10.1103/PhysRevB.89.235417
(33) Gao, D. Z.; Grenz, J.; Watkins, M. B.; Federici Canova, F.; Schwarz, A.; Wiesendanger, R.; Shluger, A. L. ACS Nano 2014, 8 (5), 5339. doi: 10.1021/nn501785q
(34) Sugimoto, Y.; Pou, P.; Abe, M.; Jelinek, P.; Pérez, R.; Morita, S.; Custance, O. Nature 2007, 446 (7131), 64. doi: 10.1038nature05530
(35) Lantz, M.; Hug, H.; Hoffmann, R.; Van Schendel, P.; Kappenberger, P.; Martin, S.; Baratoff, A.; Güntherodt, H. J.Science 2001, 291 (5513), 2580. doi: 10.1126/science.1057824
(36) Kawai, S.; Foster, A. S.; Björkman, T.; Nowakowska, S.; Björk, J.; Canova, F. F.; Gade, L. H.; Jung, T. A.; Meyer, E. Nat. Commun. 2016, 7. doi: 10.1038/ncomms11559
(37) Mohn, F.; Schuler, B.; Gross, L.; Meyer, G. Appl. Phys. Lett. 2013, 102 (7), 073109. doi: 10.1063/1.4793200
(38) Monig, H.; Hermoso, D. R.; Díaz Arado, O.; Todorovic, M.; Timmer, A.; Schuer, S.; Langewisch, G.; Pérez, R.; Fuchs, H.ACS Nano 2016, 10 (1), 1201. doi: 10.1021/acsnano.5b06513
(39) Temirov, R.; Soubatch, S.; Neucheva, O.; Lassise, A.; Tautz, F.New J. Phys. 2008, 10 (5), 053012. doi: 10.1088/1367-2630/105/053012
(40) Weiss, C.; Wagner, C.; Kleimann, C.; Rohlfing, M.; Tautz, F.; Temirov, R. Phys. Rev. Lett. 2010, 105 (8), 086103. doi: 10.1103PhysRevLett.105.086103
(41) Eigler, D. M.; Lutz, C.; Rudge, W. Nature 1991, 352 (15), 600. doi: 10.1038/352600a0
(42) Neu, B.; Meyer, G.; Rieder, K. H. Mod. Phys. Lett. B 1995, 9 (15), 963. doi: 10.1142/S0217984995000929
(43) Yazdani, A.; Eigler, D.; Lang, N. Science 1996, 272 (5270), 1921. doi: 10.1126/science.272.5270.1921
(44) Bartels, L.; Meyer, G.; Rieder, K. H. Appl. Phys. Lett. 1997, 71 (2), 213. doi: 10.1063/1.119503
(45) Lee, H.; Ho, W. Science 1999, 286 (5445), 1719. doi: 10.1126science.286.5445.1719
(46) Schneiderbauer, M.; Emmrich, M.; Weymouth, A. J.; Giessibl, F. J. Phys. Rev. Lett. 2014, 112 (16), 166102. doi: 10.1103PhysRevLett.112.166102
(47) Sang, H.; Jarvis, S. P.; Zhou, Z.; Sharp, P.; Moriarty, P.; Wang, J.; Wang, Y.; Kantorovich, L. Sci. Rep. 2014, 4. doi: 10.1038srep06678
(48) Repp, J.; Meyer, G.; Stojkovi?, S. M.; Gourdon, A.; Joachim, C.Phys. Rev. Lett. 2005, 94 (2), 026803. doi: 10.1103PhysRevLett.94.026803
(49) Gross, L.; Moll, N.; Mohn, F.; Curioni, A.; Meyer, G.; Hanke, F.; Persson, M. Phys. Rev. Lett. 2011, 107 (8), 086101. doi: 10.1103/PhysRevLett.107.086101
(50) Sun, Z.; Boneschanscher, M. P.; Swart, I.; Vanmaekelbergh, D.; Liljeroth, P. Phys. Rev. Lett. 2011, 106 (4), 046104. doi: 10.1103PhysRevLett.106.046104
(51) Boneschanscher, M. P.; van der Lit, J.; Sun, Z.; Swart, I.; Liljeroth, P.; Vanmaekelbergh, D. l. ACS Nano 2012, 6 (11), 10216. doi: 10.1021/nn3040155
(52) Ruffieux, P.; Wang, S.; Yang, B.; Sánchez-Sánchez, C.; Liu, J.; Dienel, T.; Talirz, L.; Shinde, P.; Pignedoli, C. A.; Passerone, D.; Dumslaff, T.; Feng, X.; Müllen, K.; Fasel, R. Nature 2016, 531 (7595), 489. doi: 10.1038/nature17151
(53) Kawai, S.; Saito, S.; Osumi, S.; Yamaguchi, S.; Foster, A. S.; Spijker, P.; Meyer, E. Nat. Commun. 2015, 6. doi: 10.1038ncomms9098
(54) Dienel, T.; Kawai, S.; Sode, H.; Feng, X.; Mullen, K.; Ruffieux, P.; Fasel, R.; Groning, O. Nano Lett. 2015, 15 (8), 5185. doi: 10.1021/acs.nanolett.5b01403
(55) Shiotari, A.; Liu, B. H.; Jaekel, S.; Grill, L.; Shaikhutdinov, S.; Freund, H. J.; Wolf, M.; Kumagai, T. J. Phys. Chem. C 2014, 118 (47), 27428. doi: 10.1021/jp509013p
(56) Lichtenstein, L.; Heyde, M.; Freund, H. J. J. Phys. Chem. C 2012, 116 (38), 20426. doi: 10.1021/jp3062866
(57) de Oteyza, Dimas. G.; Gorman, P.; Chen, Y. C.; Wickenburg, S.; Rise, A.; Mowbray, D. J.; Etkin, G.; Pedramrazi, Z.; Tsai; H. Z.; Rubio, A.; Crommie, M. F.; Fischer, F. R. Science 2013, 340 (6139), 1434. doi: 10.1126/science.1238187
(58) Riss, A.; Wickenburg, S.; Gorman, P.; Tan, L. Z.; Tsai, H. Z.; deOteyza, D. G.; Chen, Y. C.; Bradley, A. J.; Ugeda, M. M.; Etkin, G. Nano Lett. 2014, 14 (5), 2251. doi: 10.1021/nl403791q
(59) Pavlicek, N.; Schuler, B.; Collazos, S.; Moll, N.; Pérez, D.; Guitián, E.; Meyer, G.; Peña, D.; Gross, L. Nat. Chem. 2015, 7 (8), 623. doi: 10.1038/NCHEM.2300
(60) Riss, A.; Paz, A. P.; Wickenburg, S.; Tsai, H. Z.; de Oteyza, D.G.; Bradley, A. J.; Ugeda, M. M.; Gorman, P.; Jung, H. S.; Crommie, M. F. Nat. Chem. 2016, 8, 678. doi: 10.1038NCHEM.2506
(61) Majzik, Z.; Cuenca, A. B.; Pavlicek, N.; Miralles, N. R.; Meyer, G.; Gross, L.; Fernandez, E. ACS Nano 2016, 10 (5), 5340. doi: 10.1021/acsnano.6b01484
(62) Albers, B. J.; Schwendemann, T. C.; Baykara, M. Z.; Pilet, N.; Liebmann, M.; Altman, E. I.; Schwarz, U. D. Nat. Nanotechnol. 2009, 4 (5), 307. doi: 10.1038/nnano.2009.57
(63) Albrecht, F.; Pavlicek, N.; Herranz-Lancho, C.; Ruben, M.; Repp, J. J. Am. Chem. Soc. 2015, 137 (23), 7424. doi: 10.1021jacs.5b03114
(64) Moreno, C.; Stetsovych, O.; Shimizu, T. K.; Custance, O. Nano Lett. 2015, 15 (4), 2257. doi: 10.1021/nl504182w
(65) Altman, E. I.; Baykara, M. Z.; Schwarz, U. D. Acc. Chem. Res. 2015, 48 (9), 2640. doi: 10.1021/acs.accounts.5b00166
(66) Mohn, F.; Gross, L.; Moll, N.; Meyer, G. Nat. Nanotechnol. 2012, 7 (4), 227. doi: 10.1038/nnano.2012.20
(67) Steurer, W.; Repp, J.; Gross, L.; Scivetti, I.; Persson, M.; Meyer, G. Phys. Rev. Lett. 2015, 114 (3), 036801. doi: 10.1103PhysRevLett.114.036801
(68) Schuler, B.; Liu, S. X.; Geng, Y.; Decurtins, S.; Meyer, G.; Gross, L. Nano Lett. 2014, 14 (6), 3342. doi: 10.1103PhysRevLett.114.036801
(69) Corso, M.; Ondracek, M.; Lotze, C.; Hapala, P.; Franke, K. J.; Jelínek, P.; Pascual, J. I. Phys. Rev. Lett. 2015, 115 (13), 136101. doi: 10.1103/PhysRevLett.115.136101
(70) Moll, N.; Schuler, B.; Kawai, S.; Xu, F.; Peng, L.; Orita, A.; Otera, J.; Curioni, A.; Neu, M.; Repp, J. Nano Lett. 2014, 14 (11), 6127. doi: 10.1021/nl502113z
(71) Albrecht, F.; Repp, J.; Fleischmann, M.; Scheer, M.; Ondracek, M.; Jelínek, P. Phys. Rev. Lett. 2015, 115 (7), 076101. doi: 10.1103/PhysRevLett.115.076101
(72) Albrecht, F.; Fleischmann, M.; Scheer, M.; Gross, L.; Repp, J.Phys. Rev. B 2015, 92 (23), 235443. doi: 10.1103PhysRevB.92.235443
(73) Gross, L.; Mohn, F.; Liljeroth, P.; Repp, J.; Giessibl, F. J.; Meyer, G. Science 2009, 324 (5933), 1428. doi: 10.1126science.1172273
(74) González, L.; Oria, R.; Botaya, L.; Puig-Vidal, M.; Otero, J.Nanotechnology 2015, 26 (5), 055501. doi: 10.1088/0957-448426/5/055501
(75) Churnside, A. B.; Perkins, T. T. FEBS Lett. 2014, 588 (19), 3621. doi: 10.1016/j.febslet.2014.04.033
(76) Pielmeier, F.; Meuer, D.; Schmid, D.; Strunk, C.; Giessibl, F. J.Beilstein J. Nanotechnol. 2014, 5 (1), 407. doi: 10.3762bjnano.5.187
(77) Falter, J.; Stiefermann, M.; Langewisch, G.; Schurig, P.; Hölscher, H.; Fuchs, H.; Schirmeisen, A. Beilstein J. Nanotechnol. 2014, 5 (1), 507. doi: 10.3762/bjnano.5.59
(78) Schwarz, A.; Köhler, A.; Grenz, J.; Wiesendanger, R. Appl. Phys. Lett. 2014, 105 (1), 011606. doi: 10.1063/1.4890324
(79) Melcher, J.; Stirling, J.; Cervantes, F. G.; Pratt, J. R.; Shaw, G.A. Appl. Phys. Lett. 2014, 105 (23), 233109. doi: 10.10631.4903801
(80) Meza, J. M.; Polesel-Maris, J.; Lubin, C.; Thoyer, F.; Makky, A.; Ouerghi, A.; Cousty, J. Curr. Appl. Phys. 2015, 15 (9), 1015. doi: 10.1016/j.cap.2015.05.015
(81) Li, R.; Ye, H.; Zhang, W.; Ma, G.; Su, Y. Sci. Rep. 2015, 5. doi: 10.1038/srep15828
(82) Labidi, H.; Kupsta, M.; Huff, T.; Salomons, M.; Vick, D.; Taucer, M.; Pitters, J.; Wolkow, R. A. Ultramicroscopy 2015, 158, 33. doi: 10.1016/j.ultramic.2015.06.008

Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top