Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (1): 183-197    DOI: 10.3866/PKU.WHXB201609282
REVIEW     
Research Progress and Applications of qPlus Noncontact Atomic Force Microscopy
Meng-Xi LIU1,Shi-Chao LI1,2,Ze-Qi ZHA1,2,Xiao-Hui QIU1,*()
1 Chinese Academy of Sciences Key Laboratory of Standardization and Measurement for Nanotechnology, Chinese Academy of Sciences Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing 100190, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(4997KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Atomic force microscopy (AFM) is used to investigate surface structures by measuring the interaction force between the tip and sample. Non-contact AFM (NC-AFM) that incorporates a qPlus sensor further enhances the spatial resolution of scanning probe microscopy based on traditional AFM principles. In this perspective, we give a brief introduction to the mechanisms of high-resolution imaging and force measurements using NC-AFM. We then summarize recent applications of NC-AFM in the fields of on-surface chemical reactions, low-dimensional materials, surface charge distribution in molecules, as well as technical improvements and developments of NC-AFM technologies. The opportunities and challenges for NC-AFM technologies are also presented.



Key wordsNoncontact atomic force microscopy      qPlus sensor      High resolution imaging      Force spectroscopy      Kelvin probe force microscopy     
Received: 28 July 2016      Published: 28 September 2016
MSC2000:  O647  
Fund:  Ministry of Science and Technology, China(2012CB933001);National Natural Science Foundation of China(21425310)
Corresponding Authors: Xiao-Hui QIU     E-mail: xhqiu@nanoctr.cn
Cite this article:

Meng-Xi LIU,Shi-Chao LI,Ze-Qi ZHA,Xiao-Hui QIU. Research Progress and Applications of qPlus Noncontact Atomic Force Microscopy. Acta Physico-Chimica Sinca, 2017, 33(1): 183-197.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201609282     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/183

Fig 1 Working principle of non-contact atomic force microscopy (NC-AFM)6 (A) block diagram of the NC-AFM feedback loop for constant amplitude control and frequency-shift measurement; (B) qPlus sensor; (C) total interaction force between tip and sample
Fig 2 High resolution imaging of the intramolecular atomic structures (A) ball-and-stick model of the pentacene molecule; (B, C) constant-current STM and constant-height NC-AFM images of pentacene acquired with a CO-modified tip3; (D, E) atomic model and constant-height NC-AFM image of hexabenzocoronene (HBC) on Cu (111)12; (F, G) ball-and-stick model and the NC-AFM constant-height image of perylene-3, 4, 9, 10-tetracarboxylic dianhydride (PTCDA) at room temperature14
Fig 3 High resolution imaging of the intermolecular chemical bonds (A, B) constant-height NC-AFM image of typical 8-hydroxyquinoline (8-hq) molecule-assembled clusters (CO-tip) and the corresponding structure model; (C, D) constant-height NC-AFM image (CO-tip) and the corresponding density functional theory (DFT) calculated structure models of trimer (Cu3q3) complexes (q, dehydrogenated 8-hq)18; (E) constant-height NC-AFM image of the self-assembly fluoro-substituted phenyleneethynylene (BPEPE-F18), taken with a CO-terminated tip. The unit cell is shown by a black rectangle; (F) magnified NC-AFM image with a superimposed stick-and-ball drawing of the molecules19; (G) AFM image of the bis (para-pyridyl) acetylene (BPPA) tetramer taken with a CO terminated tip showing apparent intermolecular bonds; (H) schematic of the BPPA tetramer21
Fig 4 Force spectroscopy measurement between tip and sample (A) schematic of the proposed tip model imaging the surface and a small molecule. The main contributions to force are macroscopic vdW interactions, local vdW interactions, and midrange electrostatic interactions33. (B) curves obtained with analytical expressions for the long-range force, the shortrange force, and the total force to illustrate their dependence on the absolute tip-surface distance34. (C) constant frequency shift image of the Si (111)7 × 7 surface. (D) total force (red line with symbols) and short-range force (yellow line) determined above the adatom site labeled 2 in (C). in the inset, the measured short-range force is compared with a first-principles calculation (black line with symbols)35. (E) dynamic force microscopy topographic images of a single-atomic layer of Sn grown over a Si (111) substrate. (F) sets of short-range force curves obtained over structurally equivalent Sn and Si atoms. The curves in each set are now normalized to the absolute value of the minimum short range force of the Si curve (|FSi (set)|). (G) topographic image of a surface alloy composed by Si, Sn and Pb atoms blended in equal proportions on a Si (111) substrate. Blue, green, and red atoms correspond to Sn, Pb and Si, respectively. (H) distribution of maximum attractive total forces measured over the atoms in (G)34. color online
Fig 5 Effect of different tip modifications on imaging (A, B) constant-height NC-AFM images of a dibenzo (cd, n) naphtho (3, 2, 1, 8-pqra) perylene (DBNP) molecule on NaCl (2ML)/Cu (111) with CO tip and Xe tip, respectively; (C, D) constant-height NC-AFM images of a dibromoanthracene (DBA) molecule on NaCl (2ML)/Cu (111) with a Cl tip and Br tip, respectively37; (E) vertical force cut of the 3D NC-AFM data set on the striped Cu (110)-(2 × 1) O added-row reconstruction. The inset is the structural models of O terminated Cu tip. (F) constant-height NC-AFM image recorded on a single dicoronylene (DCLN) adsorbed on Cu (110) with an O terminated Cu tip38
Fig 6 Applications of qPlus NC-AFM in low dimentional nanomaterials (A, B) constant-height NC-AFM images of epitaxial graphene on Ir (111) with a metallic tip and CO tip, respectively51. (C) constant-height NC-AFM image taken with a CO tip. Intra-ribbon resolution shows the formation of 6-zigzag graphene nanoribbons (6-ZGNRs) with atomically precise CH edges. (D) constant-height NC-AFM image of edge-modified ZGNR52. (E) constant-height NC-AFM image of fused n=14 B-GNR53. (F) constant-height NC-AFM image of the junction between two 7-armchair graphene nanoribbons (7-AGNRs) and one 14-AGNR54. (G) NC-AFM image representing a single atomically resolved constant-height measurement of two-dimensional silica56
Fig 7 Applications of qPlus NC-AFM in on-surface chemical reactions (A) STM image of the reactant molecule of oligo-(phenylene-1, 2-ethynylenes) on Ag (100) before annealing; (B, C) STM images of individual products on Ag (100) after annealing at T > 90 ℃; (D-F) Constant-height NC-AFM images of the same molecule depicted in A-C57; (G) constant-height NC-AFM image of the two conformational isomers of precursor molecule oligo-(E)-1, 1′-bi (indenylidene); (H) constant-height NC-AFM image of an oligomer chain on Au (111); (I) schematic representation of chemical structure of the oligomer58; (J, K) constant-height NC-AFM images of 10, 11-diiodonaphtho[1, 2, 3, 4-g, h, i]perylene (DINP) and the aryne molecule after iodine dissociation of DINP; (L, M) the Laplace-filtered representations of individual aryne and the naphtho[1, 2, 3, 4-g, h, i]perylene (NP) molecules; (N, O) colour-coded C-C bond orders for Kekulé depictions of alkyne and cumulene59
Fig 8 3D imaging of qPlus NC-AFM (A) 3D-NC-AFM data acquisition scheme62. (B) molecular structure of diphenanthro[9, 10-b:9′, 10′-d]thiophene (DPAT) identification from 3D data set: to resolve the molecular structure from constant-height NC-AFM images, the 3D data set is displayed along three different planar cross sections. While one of them is parallel to the surface, the other two are aligned with respect to the two carbon rings that are tilted with respect to the surface (green and red)63. (C) schematic representation of the multipass method for intramolecular resolution using AFM. (D) constant-Δf NC-AFM image associated with the first line scans over a pentacene molecule adsorbed on the (101) anatase surface. (E) image of the second line scans following the topography registered during the first line scan. The offset distance the probe was approached toward the surface during the second line scan was 0.3 nm. (F) constant-Δf NC-AFM image of a C60 molecule deposited on the (101) anatase surface obtained by applying the multipass method described in the text. The inset is a ball-and-stick model of the C60 molecule. (G) image of the second line with a distance offset of 0.21 nm64
Fig 9 Measurements of the surface charge distribution (A) schematic of the measurement principle. At each tip position, the Δf is recorded as a function of the sample bias voltage (inset, red circles). The maximum of the fitted parabola (inset, solid black line) yields V* and Δf* for that position. The images were recorded with a copper-terminated tip on a 64 × 64 lateral grid at constant height; (B) local contact potential difference (LCPD) images of naphthalocyanine on NaCl (2 ML)/Cu (111); (C) DFT-calculated asymmetry of the z-component of the electric field above a free naphthalocyanine molecule at a distance d=0.5 nm from the molecular plane66. (D) 3D constant-height NC-AFM image of three Au adatoms on a NaCl (10 ML)/Cu (111) film with charge states neutral, positively. charged, and negatively charged. Height profiles are shown in the inset figure (solid line: Au-, dashed line: Au0, dotted line: Au+). (E) charge-state readout by recording Δf(V) spectra (dots) and determining the LCPD (triangles) from fitted parabolas (dashed lines)67. (F) model of tetrathiafulvalene-pyrazine2 (TTF-PYZ2) with the donor part in red and the acceptor part in blue; (G) constant-height NC-AFM image of TTF-PYZ2 in the"down"conformation with a CO tip. (H) LCPD (V*) maps of TTF-PYZ2 in the"down"conformation with a CO tip68; color online
1 Binnig G. ; Rohrer H. ; Gerber C. ; Weibel E. Phys. Rev. Lett 1982, 49 (1), 57.
2 Binnig G. ; Quate C. F. ; Gerber C. Phys. Rev. Lett 1986, 56 (9), 930.
3 Gross L. ; Mohn F. ; Moll N. ; Liljeroth P. ; Meyer G. Science 2009, 325 (5944), 1110.
4 Albrecht T. ; Grütter P. ; Horne D. ; Rugar D. J. Appl. Phys 1991, 69 (2), 668.
5 Giessibl F. J. Rev. Mod. Phys 2003, 75 (3), 949.
6 Yuan B. K. ; Chen P. C. ; Zhang J. ; Cheng Z. H. ; Qiu X. H. ; Wang C. Acta Phys.-Chim. Sin 2013, 29 (7), 1370.
6 袁秉凯; 陈鹏程; 仉君; 程志海; 裘晓辉; 王琛. 物理化学学报, 2013, 29 (7), 1370.
7 Giessibl F. J. Appl. Phys. Lett 1998, 73 (26), 3956.
8 Babic B. ; Hsu M. T. ; Gray M. B. ; Lu M. ; Herrmann J. Sens. Actuators A Phys 2015, 223, 167.
9 Melcher J. ; Stirling J. ; Shaw G. A. ; Beilstein J. Nanotechnol 2015, 6 (1), 1733.
10 Moll N. ; Gross L. ; Mohn F. ; Curioni A. ; Meyer G. New J.Phys 2010, 12 (12), 125020.
11 Moll N. ; Gross L. ; Mohn F. ; Curioni A. ; Meyer G. New J.Phys 2012, 14 (8), 083023.
12 Gross L. ; Mohn F. ; Moll N. ; Schuler B. ; Criado A. ; Guitián E. ; Pe?a D. ; Gourdon A. ; Meyer G. Science 2012, 337 (6100), 1326.
13 Sweetman A. ; Jarvis S. ; Sang H. ; Lekkas I. ; Rahe P. ; Wang Y. ; Wang J. ; Champness N. ; Kantorovich L. ; MoriartyP. Nat. Commun 2014, 5.
14 Huber F. ; Matencio S. ; Weymouth A. J. ; Ocal C. ; Barrena E. ; Giessibl F. J. Phys. Rev. Lett 2015, 115 (6), 066101.
15 Iwata K. ; Yamazaki S. ; Mutombo P. ; Hapala P. ; Ondracek M. ; Jelínek P. ; Sugimoto Y. Nat. Commun 2015, 6.
16 Jarvis S. P. ; Sweetman A. ; Lekkas I. ; Champness N. R. ; Kantorovich L. ; Moriarty P. J. Phys. Condens. Matter 2014, 27 (5), 054004.
17 Schuler B. ; Meyer G. ; Pena D. ; Mullins O. C. ; Gross L. J. Am. Chem. Soc 2015, 137 (31), 9870.
18 Zhang J. ; Chen P. ; Yuan B. ; Ji W. ; Cheng Z. ; Qiu X. Science 2013, 342 (6158), 611.
19 Kawai S. ; Sadeghi A. ; Xu F. ; Peng L. ; Orita A. ; Otera J. ; Goedecker S. ; Meyer E. ACS Nano 2015, 9 (3), 2574.
20 Hapala P. ; Kichin G. ; Wagner C. ; Tautz F. S. ; Temirov R. ; Jelínek P. Phys. Rev. B 2014, 90 (8), 085421.
21 H?m?l?inen S. K. ; van der Heijden N. ; van der Lit J. ; denHartog S. ; Liljeroth P. ; Swart I. Phys. Rev. Lett 2014, 113 (18), 186102.
22 Emmrich M. ; Huber F. ; Pielmeier F. ; Welker J. ; Hofmann T. ; Schneiderbauer M. ; Meuer D. ; Polesya S. ; Mankovsky S. ; K?dderitzsch D. Science 2015, 348 (6232), 308.
23 Jarvis S. P. Int. J.Mol. Sci 2015, 16 (8), 19936.
24 Guo C. S. ; Xin X. ; van Hove M. A. ; Ren X. ; Zhao Y. J.Phys. Chem. C 2015, 119 (25), 141950.
25 Jarvis S. P. ; Rashid M. A. ; Sweetman A. ; Leaf J. ; Taylor S. ; Moriarty P. ; Dunn J. Phys. Rev. B 2015, 92 (24), 241405.
26 Neu M. ; Moll N. ; Gross L. ; Meyer G. ; Giessibl F. J. ; Repp J. Phys. Rev. B 2014, 89 (20), 205407.
27 Kawai S. ; Haapasilta V. ; Lindner B. ; Tahara K. ; Spijker P. ; Buitendijk J. ; Pawlak R. ; Meier T. ; Tobe Y. ; Foster A. ; Meyer E. Nat. Commun 2016, 7.
28 Guo C. S. ; Van Hove M. A. ; Ren X. ; Zhao Y. J.Phys. Chem. C 2015, 119 (3), 1483.
29 Kim M. ; Chelikowsky J. R. Appl. Phys. Lett 2015, 107 (16), 163109.
30 Tsai H. Z. ; Omrani A. A. ; Coh S. ; Oh H. ; Wickenburg S. ; Son Y.W. ; Wong D. ; Riss A. ; Jung H. S. ; Nguyen G. D. ACS Nano 2015, 9 (12), 12168.
31 Sader J. E. ; Jarvis S. P. Appl. Phys. Lett 2004, 84 (10), 1801.
32 Kuhn S. ; Rahe P. Phys. Rev. B 2014, 89 (23), 235417.
33 Gao D. Z. ; Grenz J. ; Watkins M. B. ; Federici Canova F. ; Schwarz A. ; Wiesendanger R. ; Shluger A. L. ACS Nano 2014, 8 (5), 5339.
34 Sugimoto Y. ; Pou P. ; Abe M. ; Jelinek P. ; Pérez R. ; Morita S. ; Custance O. Nature 2007, 446 (7131), 64.
35 Lantz M. ; Hug H. ; Hoffmann R. ; Van Schendel P. ; Kappenberger P. ; Martin S. ; Baratoff A. ; Güntherodt H. J. Science 2001, 291 (5513), 2580.
36 Kawai S. ; Foster A. S. ; Bj?rkman T. ; Nowakowska S. ; Bj?rk J. ; Canova F. F. ; Gade L. H. ; Jung T. A. ; Meyer E. Nat. Commun 2016, 7.
37 Mohn F. ; Schuler B. ; Gross L. ; Meyer G. Appl. Phys. Lett 2013, 102 (7), 073109.
38 Monig H. ; Hermoso D. R. ; Díaz Arado O. ; Todorovic M. ; Timmer A. ; Schuer S. ; Langewisch G. ; Pérez R. ; Fuchs H. ACS Nano 2016, 10 (1), 1201.
39 Temirov R. ; Soubatch S. ; Neucheva O. ; Lassise A. ; Tautz F. New J.Phys 2008, 10 (5), 053012.
40 Weiss C. ; Wagner C. ; Kleimann C. ; Rohlfing M. ; Tautz F. ; Temirov R. Phys. Rev. Lett 2010, 105 (8), 086103.
41 Eigler D. M. ; Lutz C. ; Rudge W. Nature 1991, 352 (15), 600.
42 Neu B. ; Meyer G. ; Rieder K. H. Mod. Phys. Lett. B 1995, 9 (15), 963.
43 Yazdani A. ; Eigler D. ; Lang N. Science 1996, 272 (5270), 1921.
44 Bartels L. ; Meyer G. ; Rieder K. H. Appl. Phys. Lett 1997, 71 (2), 213.
45 Lee H. ; Ho W. Science 1999, 286 (5445), 1719.
46 Schneiderbauer M. ; Emmrich M. ; Weymouth A. J. ; Giessibl F. J. Phys. Rev. Lett 2014, 112 (16), 166102.
47 Sang H. ; Jarvis S. P. ; Zhou Z. ; Sharp P. ; Moriarty P. ; Wang J. ; Wang Y. ; Kantorovich L. Sci. Rep 2014, 4.
48 Repp J. ; Meyer G. ; Stojkovi? S. M. ; Gourdon A. ; Joachim C. Phys. Rev. Lett 2005, 94 (2), 026803.
49 Gross L. ; Moll N. ; Mohn F. ; Curioni A. ; Meyer G. ; Hanke F. ; Persson M. Phys. Rev. Lett 2011, 107 (8), 086101.
50 Sun Z. ; Boneschanscher M. P. ; Swart I. ; Vanmaekelbergh D. ; Liljeroth P. Phys. Rev. Lett 2011, 106 (4), 046104.
51 Boneschanscher M. P. ; van der Lit J. ; Sun Z. ; Swart I. ; Liljeroth P. ; Vanmaekelbergh D. l. ACS Nano 2012, 6 (11), 10216.
52 Ruffieux P. ; Wang S. ; Yang B. ; Sánchez-Sánchez C. ; Liu J. ; Dienel T. ; Talirz L. ; Shinde P. ; Pignedoli C. A. ; Passerone D. ; Dumslaff T. ; Feng X. ; Müllen K. ; Fasel R. Nature 2016, 531 (7595), 489.
53 Kawai S. ; Saito S. ; Osumi S. ; Yamaguchi S. ; Foster A. S. ; Spijker P. ; Meyer E. Nat. Commun 2015, 6.
54 Dienel T. ; Kawai S. ; Sode H. ; Feng X. ; Mullen K. ; Ruffieux P. ; Fasel R. ; Groning O. Nano Lett 2015, 15 (8), 5185.
55 Shiotari A. ; Liu B. H. ; Jaekel S. ; Grill L. ; Shaikhutdinov S. ; Freund H. J. ; Wolf M. ; Kumagai T. J.Phys. Chem. C 2014, 118 (47), 27428.
56 Lichtenstein L. ; Heyde M. ; Freund H. J. J.Phys. Chem. C 2012, 116 (38), 20426.
57 de Oteyza Dimas. G. ; Gorman P. ; Chen Y. C. ; Wickenburg S. ; Rise A. ; Mowbray D. J. ; Etkin G. ; Pedramrazi Z. ; Tsai H. Z. ; Rubio A. ; Crommie M. F. ; Fischer F. R. Science 2013, 340 (6139), 1434.
58 Riss A. ; Wickenburg S. ; Gorman P. ; Tan L. Z. ; Tsai H. Z. ; de Oteyza D. G. ; Chen Y. C. ; Bradley A. J. ; Ugeda M. M. ; Etkin G. Nano Lett 2014, 14 (5), 2251.
59 Pavlicek N. ; Schuler B. ; Collazos S. ; Moll N. ; Pérez D. ; Guitián E. ; Meyer G. ; Pe?a D. ; Gross L. Nat. Chem 2015, 7 (8), 623.
60 Riss A. ; Paz A. P. ; Wickenburg S. ; Tsai H. Z. ; de Oteyza D.G. ; Bradley A. J. ; Ugeda M. M. ; Gorman P. ; Jung H. S. ; Crommie M. F. Nat. Chem 2016, 8, 678.
61 Majzik Z. ; Cuenca A. B. ; Pavlicek N. ; Miralles N. R. ; Meyer G. ; Gross L. ; Fernandez E. ACS Nano 2016, 10 (5), 5340.
62 Albers B. J. ; Schwendemann T. C. ; Baykara M. Z. ; Pilet N. ; Liebmann M. ; Altman E. I. ; Schwarz U. D. Nat. Nanotechnol 2009, 4 (5), 307.
63 Albrecht F. ; Pavlicek N. ; Herranz-Lancho C. ; Ruben M. ; Repp J. J.Am. Chem. Soc 2015, 137 (23), 7424.
64 Moreno C. ; Stetsovych O. ; Shimizu T. K. ; Custance O. Nano Lett 2015, 15 (4), 2257.
65 Altman E. I. ; Baykara M. Z. ; Schwarz U. D. Acc. Chem. Res 2015, 48 (9), 2640.
66 Mohn F. ; Gross L. ; Moll N. ; Meyer G. Nat. Nanotechnol 2012, 7 (4), 227.
67 Steurer W. ; Repp J. ; Gross L. ; Scivetti I. ; Persson M. ; Meyer G. Phys. Rev. Lett 2015, 114 (3), 036801.
68 Schuler B. ; Liu S. X. ; Geng Y. ; Decurtins S. ; Meyer G. ; Gross L. Nano Lett 2014, 14 (6), 3342.
69 Corso M. ; Ondracek M. ; Lotze C. ; Hapala P. ; Franke K. J. ; Jelínek P. ; Pascual J. I. Phys. Rev. Lett 2015, 115 (13), 136101.
70 Moll N. ; Schuler B. ; Kawai S. ; Xu F. ; Peng L. ; Orita A. ; Otera J. ; Curioni A. ; Neu M. ; Repp J. Nano Lett 2014, 14 (11), 6127.
71 Albrecht F. ; Repp J. ; Fleischmann M. ; Scheer M. ; Ondracek M. ; Jelínek P. Phys. Rev. Lett 2015, 115 (7), 076101.
72 Albrecht F. ; Fleischmann M. ; Scheer M. ; Gross L. ; Repp J. Phys. Rev. B 2015, 92 (23), 235443.
73 Gross L. ; Mohn F. ; Liljeroth P. ; Repp J. ; Giessibl F. J. ; Meyer G. Science 2009, 324 (5933), 1428.
74 González L. ; Oria R. ; Botaya L. ; Puig-Vidal M. ; Otero J. Nanotechnology 2015, 26 (5), 055501.
75 Churnside A. B. ; Perkins T. T. FEBS Lett 2014, 588 (19), 3621.
76 Pielmeier F. ; Meuer D. ; Schmid D. ; Strunk C. ; Giessibl F. J. Beilstein J.Nanotechnol 2014, 5 (1), 407.
77 Falter J. ; Stiefermann M. ; Langewisch G. ; Schurig P. ; H?lscher H. ; Fuchs H. ; Schirmeisen A. Beilstein J.Nanotechnol 2014, 5 (1), 507.
78 Schwarz A. ; K?hler A. ; Grenz J. ; Wiesendanger R. Appl. Phys. Lett 2014, 105 (1), 011606.
79 Melcher J. ; Stirling J. ; Cervantes F. G. ; Pratt J. R. ; Shaw G. A. Appl. Phys. Lett 2014, 105 (23), 233109.
80 Meza J. M. ; Polesel-Maris J. ; Lubin C. ; Thoyer F. ; Makky A. ; Ouerghi A. ; Cousty J. Curr. Appl. Phys 2015, 15 (9), 1015.
81 Li R. ; Ye H. ; Zhang W. ; Ma G. ; Su Y. Sci. Rep 2015, 5.
82 Labidi H. ; Kupsta M. ; Huff T. ; Salomons M. ; Vick D. ; Taucer M. ; Pitters J. ; Wolkow R. A. Ultramicroscopy 2015, 158, 33.
[1] ZHANG Xiao-Ning, HU Hong-Mei. Investigation of Interfaces of Ionic Liquid via Kelvin Probe Force Microscopy at Room Temperature[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1722-1726.
[2] YUAN Bing-Kai, CHEN Peng-Cheng, ZHANG Jun, CHENG Zhi-Hai, WANG Chen, QIU Xiao-Hui. Research Progress in Atomic Resolution Microscopy[J]. Acta Physico-Chimica Sinca, 2013, 29(07): 1370-1384.
[3] RAN Ke, CHEN Qing, ZUO Jian-Min. Fabrication and Structure Characterization of Quasi-2-Dimensional Amorphous Carbon Structures[J]. Acta Physico-Chimica Sinca, 2012, 28(07): 1551-1555.
[4] SHEN Xin-Chun, WANG Wen-Qing, GONG Yan, ZHANG Yan. Dynamical Spin Chirality and Magnetoelectric Effect of α-Glycine[J]. Acta Physico-Chimica Sinca, 2008, 24(12): 2153-2158.