Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 242-248    DOI: 10.3866/PKU.WHXB201610103
ARTICLE     
Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework
Yi-Fen GAO,Gui-Lin ZHUANG*(),Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG*()
Download: HTML     PDF(3273KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Anovel four-fold interpenetrating metal-organic framework (MOF) (1) was obtained following reaction between Zn2+ and benzene-1, 3, 5-tribenzoate (H3BTB). Single crystal analysis demonstrated that the framework featured a three-dimensional (10, 3) net anionic framework with dimethyl formamide (DMF) and H2NMe2+ encapsulated in channels along the b axis. Alternating current impedance measurements revealed an unusual temperature-dependent conductance. As the temperature was increased from 20℃ the conductance value increased from 0.36×10-6 S·cm-1 to a maximum value of 2.24×10-5 S·cm-1 at 160℃, and then began to decrease. A combination of molecular dynamics (MD) simulations and dielectric property measurements demonstrated that this conductance behavior could be attributed to the synergic effect of the enhanced mobility of the H2NMe2+ cation and removal of DMF as the temperature was increased. Furthermore, the transporting energy barrier was determined to be 0.20 eV, which confirmed that the conductance was caused by proton conductivity. This work indicated that the confinement of H2NMe2+ within the pores of MOFs is a promising method to induce electrical conductivity. Interestingly, the emission peak of 1 was blue-shifted when compared with that of H3BTB. Density functional theory (DFT) calculations revealed that this phenomenon was caused by the disruption of delocalized π-bonds within the BTB3- ligand in 1.



Key wordsMOFs      Density functional theory calculation      Conductivity      Luminescence     
Received: 01 July 2016      Published: 10 October 2016
MSC2000:  O641  
Fund:  National Key Basic Research Program of China (973)(2013CB733501);National Natural Science Foundation of China(21176221);National Natural Science Foundation of China(21136001);National Natural Science Foundation of China(21671172);National Natural Science Foundation of China(21306169);National Natural Science Foundation of China(91334013)
Corresponding Authors: Gui-Lin ZHUANG,Jian-Guo WANG     E-mail: glzhuang@zjut.edu.cn;jgw@zjut.edu.cn
Cite this article:

Yi-Fen GAO,Gui-Lin ZHUANG,Jia-Qi BAI,Xing ZHONG,Jian-Guo WANG. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn (Ⅱ)-Based Metal-Organic Framework. Acta Phys. -Chim. Sin., 2017, 33(1): 242-248.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610103     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/242

 
 
 
 
 
 
1 (a) Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38 (5), 1213. doi: 10.1039/b903811f
1 (b)Eddaoudi,M.;Kim,J.;Rosi,N.;Vodak,D.;Wachter,J.;O'Keeffe,M.;Yaghi,O.M.Science 2002,295(5554),469.doi:10.1126/science.1067208
2 (a) Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112 (2), 869. doi: 10.1021/cr200190s
2 (b)Zlotea,C.;Phanon,D.;Mazaj,M.;Heurtaux,D.;Guillerm,V.;Serre,C.;Horcajada,P.;Devic,T.;Magnier,E.;Cuevas,F.;Ferey,G.;Llewellyn,P.L.;Latroche,M.DaltonTrans.2011,40(18),4879.doi:10.1039/c1dt10115c
2 (c)Haldoupis,E.;Nair,S.;Sholl,D.S.J.Am.Chem.Soc.2012,134(9),4313.doi:10.1021/ja2108239
2 (d)Nijem,N.;Wu,H.H.;Canepa,P.;Marti,A.;Balkus,K.J.;Thonhauser,T.;Li,J.;Chabal,Y.J.J.Am.Chem.Soc.2012,134(37),15201.doi:10.1021/ja305754f
2 (e)Zeng,M.H.;Yin,Z.;Tan,Y.X.;Zhang,W.X.;He,Y.P.;Kurmoo,M.J.Am.Chem.Soc.2014,136(12),4680.doi:10.1021/ja500191r
3 (a) Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G.Angew. Chem. Int. Ed. 2008, 47 (22), 4144. doi: 10.1002anie.200705998
3 (b)Stock,N.;Biswas,S.Chem.Rev.2012,112(2),933.doi:10.1021/cr200304e
3 (c)Basdogan,Y.;Keskin,S.Cryst Eng Comm 2015,17(2),261.doi:10.1039/c4ce01711k
4 (a) Li, B. Y.; Zhang, Y. M.; Ma, D. X.; Li, L.; Li, G. H.; Li, G.D.; Shi, Z.; Feng, S. H. Chem. Commun. 2012, 48 (49), 6151. doi: 10.1039/c2cc32384b
4 (b)Lee,J.;Farha,O.K.;Roberts,J.;Scheidt,K.A.;Nguyen,S.T.;Hupp,J.T.Chem.Soc.Rev.2009,38(5),1450.doi:10.1039b807080f
4 (c)Ou,S.;Wu,C.D.Inorganic Chemistry Frontiers 2014,1(10),721.doi:10.1039/C4QI00111G
4 (d)Xamena,F.;Abad,A.;Corma,A.;Garcia,H.J.Catal.2007,250(2),294.doi:10.1016/j.jcat.2007.06.004
5 (a) Jia, L. N.; Hou, L.; Wei, L.; Jing, X. J.; Liu, B.; Wang, Y. Y.; Shi, Q. Z. Cryst. Growth Des. 2013, 13 (4), 1570. doi: 10.1021cg3011310y
5 (b)Burrows,A.D.CrystEngComm 2011,13(11),3623.doi:10.1039/c0ce00568a
6 (a) Zheng, Y. Z.; Tong, M. L.; Zhang, W. X.; Chen, X. M.Angew. Chem. Int. Ed. 2006, 45 (38), 6310. doi: 10.1002anie.200601349
6 (b)Ruan,C.Z.;Wen,R.;Liang,M.X.;Kong,X.J.;Ren,Y.P.;Long,L.S.;Huang,R.B.;Zheng,L.S.Inorg.Chem.2012,51(14),7587.doi:10.1021/ic3003299
6 (c)Zeng,M.H.;Wu,M.C.;Liang,H.;Zhou,Y.L.;Chen,X.M.;Ng,S.W.Inorg.Chem.2007,46(18),7241.doi:10.1021ic700832w
6 (d)Pinkowicz,D.;Podgajny,R.;Nowicka,B.;Chorazy,S.;Reczynski,M.;Sieklucka,B.Inorg.Chem.Front.2015,2(1),10.doi:10.1039/C4QI00189C
6 (e)Peng,J.B.;Zhang,Q.C.;Kong,X.J.;Zheng,Y.Z.;Ren,Y.P.;Long,L.S.;Huang,R.B.;Zheng,L.S.;Zheng,Z.P.J.Am.Chem.Soc.2012,134(7),3314.doi:10.1021/ja209752z
7 (a) Rogez, G.; Viart, N.; Drillon, M. Angew. Chem. Int. Ed. 2010, 49 (11), 1921. doi: 10.1002/anie.200906660
7 (b)Batten,S.R.;Robson,R.Angew.Chem.Int.Ed.1998,37(11),1460.doi:10.1002/(sici)1521(19980619)37:11<1460::aidanie1460>3.0.co;2-z
7 (c)Chen,W.X.;Xu,H.R.;Zhuang,G.L.;Long,L.S.;Huang,R.B.;Zheng,L.S.Chem.Commun.2011,47(43),11933.doi:10.1039/c1cc14702a
7 (d)Wu,B.;Lin,X.;Ge,L.;Wu,L.;Xu,T.Chem.Commun.2013,49(2),143.doi:10.1039/C2CC37045J
7 (e)Bonhote,P.;Dias,A.P.;Papageorgiou,N.;Kalyanasundaram,K.;Gr?tzel,M.Inorg.Chem.1996,35(5),1168.doi:10.1021/ic951325x
7 (f)Sadakiyo,M.;Okawa,H.;Shigematsu,A.;Ohba,M.;Yamada,T.;Kitagawa,H.J.Am.Chem.Soc.2012,134(12),5472.doi:10.1021/ja300122r
7 (g)Zeng,M.H.;Wang,Q.X.;Tan,Y.X.;Hu,S.;Zhao,H.X.;Long,L.S.;Kurmoo,M.J.Am.Chem.Soc.2010,132(8),2561.doi:10.1021/ja908293n
7 (h)Chae,H.K.;Siberio-Perez,D.Y.;Kim,J.;Go,Y.;Eddaoudi,M.;Matzger,A.J.;O'Keeffe,M.;Yaghi,O.M.Nature 2004,427(6974),523.doi:10.1038/nature02311
7 (i)Akutagawa,T.;Koshinaka,H.;Sato,D.;Takeda,S.;Noro,S.I.;Takahashi,H.;Kumai,R.;Tokura,Y.;Nakamura,T.Nat.Mater.2009,8(4),342.doi:10.1038/nmat2377
7 (j)Armand,M.;Endres,F.;MacFarlane,D.R.;Ohno,H.;Scrosati,B.Nat.Mater.2009,8(8),621.doi:10.1038/nmat2448
7 (k)Bureekaew,S.;Horike,S.;Higuchi,M.;Mizuno,M.;Kawamura,T.;Tanaka,D.;Yanai,N.;Kitagawa,S.Nat.Mater.2009,8(10),831.doi:10.1038/nmat2526
8 (a) Liu, Y.; Xuan, W. M.; Cui, Y. Adv. Mater. 2010, 22 (37), 4112. doi: 10.1002/adma.201000197
8 (b)Yang,H.;Sang,R.L.;Xu,X.;Xu,L.Chem.Commun.2013,49(28),2909.doi:10.1039/c3cc40516h
8 (c)Liu,G.X.;Xu,H.;Zhou,H.;Nishihara,S.;Ren,X.M.CrystEngComm 2012,14(5),1856.doi:10.1039/c1ce05369h
9 (a) Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F. R.; Xue, M.; Cui, Y.; Qian, G. Angew. Chem. Int. Ed. 2009, 48 (3), 500. doi: 10.1002/anie.200805101
9 (b)Kreno,L.E.;Leong,K.;Farha,O.K.;Allendorf,M.;VanDuyne,R.P.;Hupp,J.T.Chem.Rev.2012,112(2),1105.doi:10.1021/cr200324t
9 (c)Rocha,J.;Carlos,L.D.;Paz,F.A.A.;Ananias,D.Chem.Soc.Rev.2011,40(2),92.doi:10.1039/C0CS00130A
9 (d)Liu,Y.;Pan,M.;Yang,Q.Y.;Fu,L.;Li,K.;Wei,S.C.;Su,C.Y.Chem.Mater.2012,24(10),1954.doi:10.1021cm3008254
9 (e)Jiang,H.L.;Tatsu,Y.;Lu,Z.H.;Xu,Q.J.Am.Chem.Soc.2010,132(16),5586.doi:10.1021/ja101541s
9 (f)Lee,C.Y.;Farha,O.K.;Hong,B.J.;Sarjeant,A.A.;Nguyen,S.T.;Hupp,J.T.J.Am.Chem.Soc.2011,133(40),15858.doi:10.1021/ja206029a
9 (g)Wei,Z.W.;Gu,Z.Y.;Arvapally,R.K.;Chen,Y.P.;McDougald,R.N.;Ivy,J.F.;Yakovenko,A.A.;Feng,D.W.;Omary,M.A.;Zhou,H.C.J.Am.Chem.Soc.2014,136(23),8269.doi:10.1021/ja5006866
10 (a) Delley, B. J. Chem. Phys. 1990, 92 (1), 508. doi: 10.10631.458452
10 (b)Delley,B.J.Chem.Phys.1991,94(11),7245.doi:10.10631.460208
10 (c)Delley,B.J.Chem.Phys.2000,113(18),7756.doi:10.1063/1.1316015
11 Monkhorst H. J. ; Pack J. D. Phys. Rev. B 1976, 13 (12), 5188.
12 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett 1996, 77 (18), 3865.
13 Dolg M. ; Wedig U. ; Stoll H. ; Preuss H. J.Chem. Phys 1987, 86 (2), 866.
14 Gale J. D. ; Rohl A. L. Mol. Simul 2003, 29 (5), 291.
15 Addicoat M. A. ; Vankova N. ; Akter I. F. ; Heine T. J.Chem. Theory Comput 2014, 10 (2), 880.
16 Rao K. P. ; Higuchi M. ; Duan J. ; Kitagawa S. Cryst. Growth Des 2013, 13 (3), 981.
[1] An XIE,Zhi WANG,Qiaoyu WU,Liping CHENG,Genggeng LUO,Di SUN. [Ag25(SC6H4Pri)18(dppp)6](CF3SO3)7·CH3CN (HSC6H4Pri = 4-t-isopropylthiophenol, and dppp = 1, 3-bis(diphenyphosphino)propane) Cluster Containing a Sandwich-like Skeleton: Structural Characterization and Optical Properties[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 776-780.
[2] Dongmei JIANG,Le BO,Ting ZHU,Junbin TAO,Xiaoping YANG. Construction and NIR Luminescence Properties of Zn-Ln Rectangular Nanoclusters[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 812-817.
[3] Min ZHU,Manbo LI,Chuanhao YAO,Nan XIA,Yan ZHAO,Nan YAN,Lingwen LIAO,Zhikun WU. PPh3: Converts Thiolated Gold Nanoparticles to [Au25(PPh3)10(SR)5Cl2]2+[J]. Acta Phys. -Chim. Sin., 2018, 34(7): 792-798.
[4] Xinyi WANG,Lei XIE,Yuanqi DING,Xinyi YAO,Chi ZHANG,Huihui KONG,Likun WANG,Wei XU. Interactions between Bases and Metals on Au(111) under Ultrahigh Vacuum Conditions[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1321-1333.
[5] Jin-Long LIU,Liang-Zhen LIN,Jin-Feng HU,Ming-Jie BAI,Liang-Xian CHEN,Jun-Jun WEI,Li-Fu HEI,Cheng-Ming LI. Reaction Process and Luminescence Mechanism of Carbon Nanodots Prepared by Microwave Synthesis[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 92-98.
[6] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1803-1810.
[7] . Synthesis, Characterization, Spectroscopic Properties, and Luminescence Quenching Mechanism of a Pt(Ⅱ) Complex Decorated with a π-Conjugated TEMPO-Terpyridine Ligand System[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1390-1398.
[8] Fan CHEN,Zhong-Yue WANG,Yan-Yan ZHANG,Ke-Han YU,Li-Xing WENG,Wei WEI. Synthesis of Poly(acrylic acid)-Functionalized La1-xEuxF3 Nanocrystals with High Photoluminescence for Cellular Imaging[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1446-1452.
[9] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1043-1050.
[10] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[11] Ting ZHANG,Jie SHEN. Aggregation Properties and Thermodynamics of Micellization of Gemini Surfactants with Diester and Rigid Spacers in Organic Alcohol-Water Mixed Media[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 795-802.
[12] Hong YUAN,Jing ZHANG,Xue-Hong WEI,Hui-Min FANG,Shi-Fang YUAN,Li-Xin WU. Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 407-412.
[13] Wen-Hao WU,Xin-Yu HUANG,Rui-Min YAO,Ren-Jie CHEN,Kai LI,Ru-Qiang ZOU. Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 255-261.
[14] Kui LI,Yao-Lin ZHAO,Jia DENG,Chao-Hui HE,Shu-Jiang DING,Wei-Qun SHI. Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2264-2270.
[15] Bao-Lin AN,Fu-Fang YANG,Zhen YANG,Yuan-Yuan DUAN,Yang-Xin YU. Measurements of the Viscosity and Thermal Conductivity of a Gas at Definitive Thermodynamic States[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1129-1133.