Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(1)>> 242-248     doi: 10.3866/PKU.WHXB201610103         中文摘要
Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn(II)-Based Metal-Organic Framework
GAO Yi-Fen, ZHUANG Gui-Lin, BAI Jia-Qi, ZHONG Xing, WANG Jian-Guo
College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310032, P. R. China
Full text: PDF (3273KB) HTML Export: BibTeX | EndNote (RIS) Supporting Info

Anovel four-fold interpenetrating metal-organic framework (MOF) (1) was obtained following reaction between Zn2+ and benzene-1,3,5-tribenzoate (H3BTB). Single crystal analysis demonstrated that the framework featured a three-dimensional (10, 3) net anionic framework with dimethyl formamide (DMF) and H2NMe2+ encapsulated in channels along the b axis. Alternating current impedance measurements revealed an unusual temperature-dependent conductance. As the temperature was increased from 20℃ the conductance value increased from 0.36×10-6 S·cm-1 to a maximum value of 2.24×10-5 S·cm-1 at 160℃, and then began to decrease. A combination of molecular dynamics (MD) simulations and dielectric property measurements demonstrated that this conductance behavior could be attributed to the synergic effect of the enhanced mobility of the H2NMe2+ cation and removal of DMF as the temperature was increased. Furthermore, the transporting energy barrier was determined to be 0.20 eV, which confirmed that the conductance was caused by proton conductivity. This work indicated that the confinement of H2NMe2+ within the pores of MOFs is a promising method to induce electrical conductivity. Interestingly, the emission peak of 1 was blue-shifted when compared with that of H3BTB. Density functional theory (DFT) calculations revealed that this phenomenon was caused by the disruption of delocalized π-bonds within the BTB3- ligand in 1.



Keywords: MOFs   Density functional theory calculation   Conductivity   Luminescence  
Received: 2016-07-01 Accepted: 2016-10-10 Publication Date (Web): 2016-10-10
Corresponding Authors: ZHUANG Gui-Lin, WANG Jian-Guo Email: glzhuang@zjut.edu.cn;jgw@zjut.edu.cn

Fund: The project was supported by the National Key Basic Research Program of China (973) (2013CB733501) and National Natural Science Foundation of China (21176221, 21136001, 21671172, 21306169, 91334013).

Cite this article: GAO Yi-Fen, ZHUANG Gui-Lin, BAI Jia-Qi, ZHONG Xing, WANG Jian-Guo. Temperature-Dependent Conductivity, Luminescence and Theoretical Calculations of a Novel Zn(II)-Based Metal-Organic Framework[J]. Acta Phys. -Chim. Sin., 2017,33 (1): 242-248.    doi: 10.3866/PKU.WHXB201610103

(1) (a) Long, J. R.; Yaghi, O. M. Chem. Soc. Rev. 2009, 38 (5), 1213. doi: 10.1039/b903811f
(b) Eddaoudi, M.; Kim, J.; Rosi, N.; Vodak, D.; Wachter, J.; O'Keeffe, M.; Yaghi, O. M. Science 2002, 295 (5554), 469. doi: 10.1126/science.1067208
(2) (a) Li, J. R.; Sculley, J.; Zhou, H. C. Chem. Rev. 2012, 112 (2), 869. doi: 10.1021/cr200190s
(b) Zlotea, C.; Phanon, D.; Mazaj, M.; Heurtaux, D.; Guillerm, V.; Serre, C.; Horcajada, P.; Devic, T.; Magnier, E.; Cuevas, F.; Ferey, G.; Llewellyn, P. L.; Latroche, M. Dalton Trans. 2011, 40 (18), 4879. doi: 10.1039/c1dt10115c
(c) Haldoupis, E.; Nair, S.; Sholl, D. S. J. Am. Chem. Soc. 2012, 134 (9), 4313. doi: 10.1021/ja2108239
(d) Nijem, N.; Wu, H. H.; Canepa, P.; Marti, A.; Balkus, K. J.; Thonhauser, T.; Li, J.; Chabal, Y. J. J. Am. Chem. Soc. 2012, 134 (37), 15201. doi: 10.1021/ja305754f
(e) Zeng, M. H.; Yin, Z.; Tan, Y. X.; Zhang, W. X.; He, Y. P.; Kurmoo, M. J. Am. Chem. Soc. 2014, 136 (12), 4680. doi: 10.1021/ja500191r
(3) (a) Hwang, Y. K.; Hong, D. Y.; Chang, J. S.; Jhung, S. H.; Seo, Y. K.; Kim, J.; Vimont, A.; Daturi, M.; Serre, C.; Ferey, G.Angew. Chem. Int. Ed. 2008, 47 (22), 4144. doi: 10.1002anie.200705998
(b) Stock, N.; Biswas, S. Chem. Rev. 2012, 112 (2), 933. doi: 10.1021/cr200304e
(c) Basdogan, Y.; Keskin, S. CrystEngComm 2015, 17 (2), 261. doi: 10.1039/c4ce01711k
(4) (a) Li, B. Y.; Zhang, Y. M.; Ma, D. X.; Li, L.; Li, G. H.; Li, G.D.; Shi, Z.; Feng, S. H. Chem. Commun. 2012, 48 (49), 6151. doi: 10.1039/c2cc32384b
(b) Lee, J.; Farha, O. K.; Roberts, J.; Scheidt, K. A.; Nguyen, S.T.; Hupp, J. T. Chem. Soc. Rev. 2009, 38 (5), 1450. doi: 10.1039b807080f
(c) Ou, S.; Wu, C. D. Inorganic Chemistry Frontiers 2014, 1 (10), 721. doi: 10.1039/C4QI00111G
(d) Xamena, F.; Abad, A.; Corma, A.; Garcia, H. J. Catal. 2007, 250 (2), 294. doi: 10.1016/j.jcat.2007.06.004
(5) (a) Jia, L. N.; Hou, L.; Wei, L.; Jing, X. J.; Liu, B.; Wang, Y. Y.; Shi, Q. Z. Cryst. Growth Des. 2013, 13 (4), 1570. doi: 10.1021cg3011310y
(b) Burrows, A. D. CrystEngComm 2011, 13 (11), 3623. doi: 10.1039/c0ce00568a
(6) (a) Zheng, Y. Z.; Tong, M. L.; Zhang, W. X.; Chen, X. M.Angew. Chem. Int. Ed. 2006, 45 (38), 6310. doi: 10.1002anie.200601349
(b) Ruan, C. Z.; Wen, R.; Liang, M. X.; Kong, X. J.; Ren, Y. P.; Long, L. S.; Huang, R. B.; Zheng, L. S. Inorg. Chem. 2012, 51 (14), 7587. doi: 10.1021/ic3003299
(c) Zeng, M. H.; Wu, M. C.; Liang, H.; Zhou, Y. L.; Chen, X.M.; Ng, S.W. Inorg. Chem. 2007, 46 (18), 7241. doi: 10.1021ic700832w
(d) Pinkowicz, D.; Podgajny, R.; Nowicka, B.; Chorazy, S.; Reczynski, M.; Sieklucka, B. Inorg. Chem. Front. 2015, 2 (1), 10. doi: 10.1039/C4QI00189C
(e) Peng, J. B.; Zhang, Q. C.; Kong, X. J.; Zheng, Y. Z.; Ren, Y.P.; Long, L. S.; Huang, R. B.; Zheng, L. S.; Zheng, Z. P. J. Am. Chem. Soc. 2012, 134 (7), 3314. doi: 10.1021/ja209752z
(7) (a) Rogez, G.; Viart, N.; Drillon, M. Angew. Chem. Int. Ed. 2010, 49 (11), 1921. doi: 10.1002/anie.200906660
(b) Batten, S. R.; Robson, R. Angew. Chem. Int. Ed. 1998, 37 (11), 1460. doi: 10.1002/(sici)1521(19980619)37:11<1460::aidanie1460>3.0.co;2-z
(c) Chen, W. X.; Xu, H. R.; Zhuang, G. L.; Long, L. S.; Huang, R. B.; Zheng, L. S. Chem. Commun. 2011, 47 (43), 11933. doi: 10.1039/c1cc14702a
(d)Wu, B.; Lin, X.; Ge, L.; Wu, L.; Xu, T. Chem. Commun. 2013, 49 (2), 143. doi: 10.1039/C2CC37045J
(e) Bonhote, P.; Dias, A. P.; Papageorgiou, N.; Kalyanasundaram, K.; Grätzel, M. Inorg. Chem. 1996, 35 (5), 1168. doi: 10.1021/ic951325x
(f) Sadakiyo, M.; OO kawa, H.; Shigematsu, A.; Ohba, M.; Yamada, T.; Kitagawa, H. J. Am. Chem. Soc. 2012, 134 (12), 5472. doi: 10.1021/ja300122r
(g) Zeng, M. H.; Wang, Q. X.; Tan, Y. X.; Hu, S.; Zhao, H. X.; Long, L. S.; Kurmoo, M. J. Am. Chem. Soc. 2010, 132 (8), 2561. doi: 10.1021/ja908293n
(h) Chae, H. K.; Siberio-Perez, D. Y.; Kim, J.; Go, Y.; Eddaoudi, M.; Matzger, A. J.; O'Keeffe, M.; Yaghi, O. M.Nature 2004, 427 (6974), 523. doi: 10.1038/nature02311
(i) Akutagawa, T.; Koshinaka, H.; Sato, D.; Takeda, S.; Noro, S.I.; Takahashi, H.; Kumai, R.; Tokura, Y.; Nakamura, T. Nat. Mater. 2009, 8 (4), 342. doi: 10.1038/nmat2377
(j) Armand, M.; Endres, F.; MacFarlane, D. R.; Ohno, H.; Scrosati, B. Nat. Mater. 2009, 8 (8), 621. doi: 10.1038/nmat2448
(k) Bureekaew, S.; Horike, S.; Higuchi, M.; Mizuno, M.; Kawamura, T.; Tanaka, D.; Yanai, N.; Kitagawa, S. Nat. Mater. 2009, 8 (10), 831. doi: 10.1038/nmat2526
(8) (a) Liu, Y.; Xuan, W. M.; Cui, Y. Adv. Mater. 2010, 22 (37), 4112. doi: 10.1002/adma.201000197
(b) Yang, H.; Sang, R. L.; Xu, X.; Xu, L. Chem. Commun. 2013, 49 (28), 2909. doi: 10.1039/c3cc40516h
(c) Liu, G. X.; Xu, H.; Zhou, H.; Nishihara, S.; Ren, X. M.CrystEngComm 2012, 14 (5), 1856. doi: 10.1039/c1ce05369h
(9) (a) Chen, B.; Wang, L.; Xiao, Y.; Fronczek, F. R.; Xue, M.; Cui, Y.; Qian, G. Angew. Chem. Int. Ed. 2009, 48 (3), 500. doi: 10.1002/anie.200805101
(b) Kreno, L. E.; Leong, K.; Farha, O. K.; Allendorf, M.; VanDuyne, R. P.; Hupp, J. T. Chem. Rev. 2012, 112 (2), 1105. doi: 10.1021/cr200324t
(c) Rocha, J.; Carlos, L. D.; Paz, F. A. A.; Ananias, D. Chem. Soc. Rev. 2011, 40 (2), 92. doi: 10.1039/C0CS00130A
(d) Liu, Y.; Pan, M.; Yang, Q. Y.; Fu, L.; Li, K.; Wei, S. C.; Su, C. Y. Chem. Mater. 2012, 24 (10), 1954. doi: 10.1021cm3008254
(e) Jiang, H. L.; Tatsu, Y.; Lu, Z. H.; Xu, Q. J. Am. Chem. Soc. 2010, 132 (16), 5586. doi: 10.1021/ja101541s
(f) Lee, C. Y.; Farha, O. K.; Hong, B. J.; Sarjeant, A. A.; Nguyen, S. T.; Hupp, J. T. J. Am. Chem. Soc. 2011, 133 (40), 15858. doi: 10.1021/ja206029a
(g)Wei, Z.W.; Gu, Z. Y.; Arvapally, R. K.; Chen, Y. P.; McDougald, R. N.; Ivy, J. F.; Yakovenko, A. A.; Feng, D.W.; Omary, M. A.; Zhou, H. C. J. Am. Chem. Soc. 2014, 136 (23), 8269. doi: 10.1021/ja5006866
(10) (a) Delley, B. J. Chem. Phys. 1990, 92 (1), 508. doi: 10.10631.458452
(b) Delley, B. J. Chem. Phys. 1991, 94 (11), 7245. doi: 10.10631.460208
(c) Delley, B. J. Chem. Phys. 2000, 113 (18), 7756. doi: 10.1063/1.1316015
(11) Monkhorst, H. J.; Pack, J. D. Phys. Rev. B 1976, 13 (12), 5188.
(12) Perdew, J. P.; Burke, K.; Ernzerhof, M. Phys. Rev. Lett. 1996, 77 (18), 3865.
(13) Dolg, M.; Wedig, U.; Stoll, H.; Preuss, H. J. Chem. Phys. 1987, 86 (2), 866. doi: 10.1063/1.452288
(14) Gale, J. D.; Rohl, A. L. Mol. Simul. 2003, 29 (5), 291. doi: 10.1080/0892702031000104887
(15) Addicoat, M. A.; Vankova, N.; Akter, I. F.; Heine, T. J. Chem. Theory Comput. 2014, 10 (2), 880. doi: 10.1021/ct400952t
(16) Rao, K. P.; Higuchi, M.; Duan, J.; Kitagawa, S. Cryst. Growth Des. 2013, 13 (3), 981. doi: 10.1021/cg301476p

1. LI Kui, ZHAO Yao-Lin, DENG Jia, HE Chao-Hui, DING Shu-Jiang, SHI Wei-Qun.Adsorption of Radioiodine on Cu2O Surfaces: a First-Principles Density Functional Study[J]. Acta Phys. -Chim. Sin., 2016,32(9): 2264-2270
2. WANG Juan, LI Shi-Kun, ZHAO Zhen-Chao, ZHOU Dan-Hong, LU An-Hui, ZHANG Wei-Ping.Density Functional Theory Study of CO2 Adsorption in Amine-Functionalized Carbonaceous Materials[J]. Acta Phys. -Chim. Sin., 2016,32(7): 1666-1673
3. LIU Jian-Hong, Lü Cun-Qin, JIN Chun, WANG Gui-Chang.First-Principles Study of Effect of CO to Oxidize Methanol to Formic Acid in Alkaline Media on PtAu(111) and Pt(111) Surfaces[J]. Acta Phys. -Chim. Sin., 2016,32(4): 950-960
4. ZHAO Zong-Yan, TIAN Fan.Theoretical Study of the Interfacial Structure and Properties of a CdS/FeP Composite Photocatalyst[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2511-2517
5. MA Hui-Ling, ZHANG Long, ZHANG You-Wei, LIU Di, SUN Chao, ZENG Xin-Miao, ZHAI Mao-Lin.γ-Ray Induced Reduction of Graphene Oxide in Aqueous Solution[J]. Acta Phys. -Chim. Sin., 2015,31(10): 2016-2022
6. CAO Xiao-Xiao, SU Yan, ZHAO Ji-Jun, LIU Chang-Ling, ZHOU Pan-Wang.Stability and Raman Spectroscopy of Alkane Guest Molecules (CnHm, n≤6, m≤14) in 51262 and 51264 Water Cavities by Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1437-1446
7. WANG Chen, WEI Zi-Zhang, LÜ Yong-Kang, XING Bin, WANG Gui-Chang.Theoretical Investigation of Structure-Sensitivity of Styrene Epoxidation on Ag(111) and Ag(110) Surfaces[J]. Acta Phys. -Chim. Sin., 2013,29(04): 723-730
8. FAN Cheng-Wei, ZHANG Xin, CHEN Sheng, WANG Hai-Fang, CAO Ao-Neng.Solution-Processable, Highly Conductive, Permanently Rippled Graphene Sheets[J]. Acta Phys. -Chim. Sin., 2012,28(10): 2465-2470
9. HE Rui, JIAO Yan-Hua, LIANG Yuan-Yuan, CHEN Can-Yu.Accurate Predictions of the NMR Parameters in Organic and Biological Crystallines[J]. Acta Phys. -Chim. Sin., 2011,27(09): 2051-2058
10. XU Jia, ZHANG Ming, XU Jian-Hong, MA Gui-Lin.Synthesis and Electrical Properties of La2(Mo1-xVx)2O9-α[J]. Acta Phys. -Chim. Sin., 2011,27(04): 863-868
11. BEI Yi-Ling; ZHU Chen-Fu; LIU Qing-Yang; QI Gui-Bin.Addition Reaction of Pentacoordinated Silicon Compounds by R3SiX with NR’3[J]. Acta Phys. -Chim. Sin., 2008,24(02): 217-222
12. DENG Hui-Ning; WANG Yu-Xin.Preparation and Properties of Proton Conducting Composite Membranes from Sulfonated Poly(phthalazinone ether keton) and Phosphotungstic Acid[J]. Acta Phys. -Chim. Sin., 2007,23(08): 1235-1240
13. Wang Chen;Fan Xiao-Lin;Liu Yu-Hong;Wan Li-Jun;Bai Chun-Li.Recent Progress of Electrical Conductivity of Single Molecule[J]. Acta Phys. -Chim. Sin., 2004,20(08S): 1003-1009
14. Gao Xiao-Hui, Li Jie, Xiao Shen-Xiu, Chen Tian-Lang.Structure and Superconductivity of 1223 Phase in F-doped Hg-based Superconductor[J]. Acta Phys. -Chim. Sin., 1999,15(10): 877-882
15. Zhang Jian-Hui, Zhu Chang-Fei, Li Ya-Dong, Li Xiao-Guang.Mixed Doping and Nonstoichiometry Effect in Manganate[J]. Acta Phys. -Chim. Sin., 1999,15(01): 44-49
16. Li Hong-Qi,Yao Zhong-Qi,Liu Dan,Tan Gan-Zu,Yu Xian-Da.Conducting Langmuir-Blodgett Films Based on a New Tetrathiafulvalene and Its Charge Transfer Complex[J]. Acta Phys. -Chim. Sin., 1997,13(11): 1034-1039
17. Chen Ke-Zheng,Zhang Zhi-Kun,Cui Zuo-Lin,Yang Da-Zhi.Study on the Phase-transformation of Nono-fibre[J]. Acta Phys. -Chim. Sin., 1997,13(04): 311-316
18. Lin Xian-Jie,Xu Long-Jun.Study on the Active Mechanism of Substitution and Doping on Conductivity of Polyanilines[J]. Acta Phys. -Chim. Sin., 1996,12(02): 152-155
19. Xiao Jin-Fang,Yao Zhong-Qi,Jin Dao-Sen.Study on Conductivity of Tetrathiafulvalene Derivatives/Stearic Acid LB Films[J]. Acta Phys. -Chim. Sin., 1995,11(06): 492-497
20. Tan Qi-Xian, Zhu Long-Zhang, Liu Shu-Lan, Guo He-Tong.A Study on the Codeposition Mechanism of Tungsten Carbide Particles with Nickel from Nickel Sulfate Bath[J]. Acta Phys. -Chim. Sin., 1994,10(10): 892-896
21. Xiao He-Ming, Li Yong-Fu, Qian Jian-Jun.A Study on Sensitivity and Conductivity of Alkali and Heavy Metal Azides[J]. Acta Phys. -Chim. Sin., 1994,10(03): 235-240
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top