Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 211-241    DOI: 10.3866/PKU.WHXB201610111
REVIEW     
Recent Developments in Cathode Materials for Na Ion Batteries
Yong-Jin FANG1,Zhong-Xue CHEN2,Xin-Ping AI1,Han-Xi YANG1,Yu-Liang CAO1,*()
1 College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, P. R. China
2 School of Power and Mechanical Engineering, Wuhan University, Wuhan 430072, P. R. China
Download: HTML     PDF(4164KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Sodium ion batteries (SIBs) have attracted increasing attention for energy storage systems because of abundant and low cost sodium resources. However, the large ionic radius of sodium and its slow electrochemical kinetics are the main obstacles for the development of suitable electrodes for high-performance SIBs. The development of high-performance cathode materials is the key to improving the energy density of SIBs and facilitating their commercialization. Herein, we review the latest advances and progress of cathode materials for SIBs, including transition metal oxides, polyanions, ferrocyanides, organic materials and polymers, and amorphous materials. Additionally, we have summarized our previous works in this area, explore the relationship between structure and electrochemical performance, and discuss effective ways to improve the reversibility, working potential and structural stability of these cathode materials.



Key wordsSodium ion battery      Cathode material      Development      Sodium storage reaction      Electrochemical reaction mechanism     
Received: 09 August 2016      Published: 11 October 2016
MSC2000:  O647  
Fund:  National Key Research Program of China(2016YFB0901501);National Natural Science Foundation of China(21373155);National Natural Science Foundation of China(21333007);National Natural Science Foundation of China(21273090)
Corresponding Authors: Yu-Liang CAO     E-mail: ylcao@whu.edu.cn
Cite this article:

Yong-Jin FANG,Zhong-Xue CHEN,Xin-Ping AI,Han-Xi YANG,Yu-Liang CAO. Recent Developments in Cathode Materials for Na Ion Batteries. Acta Phys. -Chim. Sin., 2017, 33(1): 211-241.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610111     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/211

Fig 1 Working principle of sodium ion batteries
Fig 2 Relationship between capacity and voltage for cathode materials in sodium ion batteries
Crystal structure illustration of tunnel-type oxide and layered oxides with O3, P3, O2, P2 structures
Fig 4 Electrochemical performance of Na0.44MnO2 nano wire 13 (a) typical discharge profile of Na0.44MnO2 samples calcined at 600, 750, and 900 ℃; (b) cycle performance of Na0.44MnO2 samples calcined at 600, 750, and 900 ℃; n: cycle number
Fig 5 Charge and discharge curves of different NaxMnO2 structures7 (A) P2, (B) β, (C) O′3 type NaMnO2
Fig 6 Electrochemical performances of Na0.67[Mn0.65Ni0.15Co0.2]O2 and Na0.67[Mn0.65Ni0.15Co0.15Al0.05]O2 materials24 (a) cyclic voltammograms measured at a scan rate of 0.5 mV·s-1; (b) charge/discharge curves at selected cycles; (c) cycling performance of the NaMNC and NaMNCA electrodes at a constant current of 20 mA·g-1; (d) reversible capacities cycled at changing current rates
Fig 7 Electrochemical performance of NaFeO2 tested at varied cut-off potential29 (a) charge/discharge curves; (b) cycling performance
Fig 8 Electrochemical performances of P2-Na0.67Mn0.65Fe0.35O2 and P2-Na0.67Mn0.65Fe0.2Ni0.15O2 samples 33 charge/discharge curves of (a) P2-Na0.67Mn0.65Fe0.35O2 and (b) P2-Na0.67Mn0.65Fe0.2Ni0.15O2, and (c) corresponding cycling performances of the two samples
Fig 9 Charge/discharge curves of NaFeO2, NaFe0.5Ni0.5O2, and NaFe0.3Ni0.7O2 samples36
Fig 10 Charge-discharge curves and structural evolution of O′3-NaNiO240 charge/discharge curves of O′3-NaNiO2 during (a) 1.25-3.75 V, (b) 2.0-4.5 V; (c) the structure evolution of O′3-NaNiO2
Fig 11 Charge/discharge curves of (a) O3-NaNi0.5Mn0.5O2 and (b) P2-Na2/3Ni1/3Mn2/3O241
Fig 12 Charge/discharge curves of (a) O3-NaNi0.5Mn0.5O2 and (b) O3-NaFe0.2(Ni0.5Mn0.5)0.8O242
Fig 13 X-ray diffraction (XRD) patterns of Na1-xLixNi0.5Mn0.5O2+σ with different Li contents (x)49(b)
Fig 14 Electrochemical performane of Na3Ni2SbO6 50 (a) cyclic voltammograms of a Na3Ni2SbO6 electrode at a scan rate of 0.1 mV·s-1, (b) galvanostatic charge/discharge curves for Na/Na3Ni2SbO6 cells at a rate of 0.1C, (c) the capacity retention of such cells at 0.1C, (d) rate capability of the cells
Fig 15 Charge/discharge curves and structure evolution of P2-NaxCoO253
Fig 16 (a) Charge/discharge curves and (b) cycling performance of NaCrO2, (c) in situ XRD test of NaCrO2 59, 62(a)
Fig 17 Charge-discharge curves and corresponding derivative curves of NaVO2(O3) and Na0.7VO2(P2)66 charge-discharge curves for (a) NaVO2(O3) and (c) Na0.7VO2(P2), and associated (b) and (d) derivative curves
Fig 18 Structure and electrochemical performance of NaFePO472(a) structures of (a) maricite NaFePO4, (b) olivine LiFePO4 and (c) olivine NaFePO4; (d) typical charge/discharge curve of olivine NaFePO4
Fig 19 Aqueous electrochemical displacement method for synthesis of NaFePO4 and the corresponding electrochemical performance of olivine NaFePO475 (a) cyclic voltammetry and (b) constant current charge-discharge illustration of the aqueous electrochemical displacement process from olivine LiFePO4 to FePO4 in aqueous solution; (c) charge/discharge capacity versus cycle number at 0.1C; (d) the rate performance at various rates from 0.05C to 2C
Fig 20 Structure of Na3V2(PO4)3
Fig 21 Electrochemical performance of Na3V2(PO4)383 (a) typical charge-discharge profile, (b) rate capability, (c) cycling performance of Na3V2(PO4)3
Fig 22 Structure of Na2FeP2O7 (a) and charge/discharge profiles of Na2FeP2O7 (b) and Na2MnP2O7 (c)[88, 91(a)]
Fig 23 Crystal structure and chare/discharge proffiles of Na2Fe2(SO4)396 (a) structure and (b) charge/discharge profiles of Na2Fe2(SO4)3
Fig 24 Electrochemical performances of Na2FePO4F105(a) (a) typical charge/discharge curves and (b) rate capability of Na2FePO4F
Fig 25 The electrochemical performance of Na3V2(PO4)2F3 and Na3V2O2x(PO4)2F3-2x [109b, 110] charge/discharge curves of (a) Na3V2(PO4)2F3 and (b) Na3V2O2x(PO4)2F3-2x
Fig 26 Charge-discharge curves of Na4M3(P2O7)4(PO4)[118, 119, 122(b)] charge/discharge curves of (a) Na4Fe3(PO4)2(P2O7), (b) Na4Co3(PO4)2(P2O7) and (c) Na7V4(P2O7)4(PO4)
Fig 27 Charge-discharge curves of Na3MPO4CO3124, 125 charge/dsicharge curves of (a) Na3MPO4CO3 and (b) Na3FePO4CO3
Fig 28 Structure and charge-discharge curves of ferrocyanides126, 133 (a) structure and (b) charge/discharge curves of Na4Fe (CN)6; (c) typical charge/discharge curves of Na1.92FeFe (CN)6
Fig 29 Structure and charge/discharge profiles of Na2-δMnFe (CN)6135 Galvanostatic initial charge and discharge profiles and local structure of (a) air-dried and (b) vacuum-dried Na2-δMnFe (CN)6
Fig 30 Electrochemical performance of Na2CoFe (CN)6141 (a) cyclic voltammograms and (b) charge/discharge profiles of Na2CoFe (CN)6
Fig 31 Electrochemical performance of full cell constructed of Na4DHTPA150 (a) charge/discharge curves, (b) cycling performance and (c) rate capability
Fig 32 Charge-discharge curves of some polymers151, 152, 154 charge/discharge profiles at different current rates of (a) P (AN-NA) electrode, (b) PPy/FC polymer and (c) PP-PS cathode
Fig 33 Electrochemical performance of mesoporous amorphous FePO4164 (a) charge/discharge curves and (b) cycling performance of mesoporous amorphous FePO4
MaterialAverage potential/V (vs Na/Na+)Reversible capacity/(mAh·g-1)Energy density/(Wh·kg-1)
Na0.44MnO22.8128358
Na (Ni0.5Mn0.5)xFe1-xO22.9130377
Na0.9Cu0.22Fe0.3Mn0.48O23.2100320
Na3V2(PO4)33.3115380
Na3V2(PO4)2F33.8130494
Na2Fe2(SO4)33.8102388
Na2FeFe (CN)63.2155496
Na2MnFe (CN)63.4150510
Table 1 Comparisons of the electrochemical performance of several cathode materials for SIBs
1 Tarascon J. M. Nat. Chem 2010, 2, 510.
2 Fang Z. ; Cao Y. L. ; Hu Y. S. ; Chen L. Q. ; Huang X. J. Energy Storage Sci. Technol 2016, 5, 149.
2 方铮; 曹余良; 胡勇胜; 陈立泉; 黄学杰. 储能科学与技术, 2016, 5, 149.
3 Mizushima K. ; Jones P. C. ; Wiseman P. J. ; Goodenough J.B. Mater. Res. Bull 1980, 15, 783.
4 (a) Braconnier, J. J.; Delmas, C.; Fouassier, C.; Hagenmuller, P. Mater. Res. Bull. 1980, 15, 1797. doi: 10.1016/0025-5408(80)90199-3
4 (b)Delmas,C.;Braconnier,J.J.;Fouassier,C.;Hagenmuller,P.Solid State Ionics 1981,3-4,165.doi:10.1016/0167-2738(81)90076-X
5 Abraham K. M. Solid State Ionics 1982, 7, 199.
6 Braconnier J. J. ; Delmas C. ; Hagenmuller P. Mater. Res. Bull 1982, 17, 993.
7 Mendiboure A. ; Delmas C. ; Hagenmuller P. J.Solid State Chem 1985, 57, 323.
8 Yabuuchi N. ; Kubota K. ; Dahbi M. ; Komaba S. Chem. Rev 2014, 114, 11636.
9 Delmas C. ; Fouassier C. ; Hagenmuller P. Physica B+C 1980, 99, 81.
10 Blangero M. ; Carlier D. ; Pollet M. ; Darriet J. ; Delmas C. ; Doumerc J. P. Phys. Rev. B 2008, 77, 184116.
11 Doeff M. M. ; Peng M. Y. ; Ma Y. ; De Jonghe L. C. J.Electrochem. Soc 1994, 141
12 Sauvage F. ; Laffont L. ; Tarascon J. M. ; Baudrin E. Inorg. Chem 2007, 46, 3289.
13 Cao Y. ; Xiao L. ; Wang W. ; Choi D. ; Nie Z. ; Yu J. ; Saraf L.V. ; Yang Z. ; Liu J. Adv. Mater 2011, 23, 3155.
14 Kim H. ; Kim D. J. ; Seo D. H. ; Yeom M. S. ; Kang K. ; Kim D. K. ; Jung Y. Chem. Mater 2012, 24, 1205.
15 (a) Hosono, E.; Saito, T.; Hoshino, J.; Okubo, M.; Saito, Y.; Nishio-Hamane, D.; Kudo, T.; Zhou, H. J. Power Sources 2012, 217, 43. doi: 10.1016/j.jpowsour.2012.05.100
15 (b)Qiao,R.;Dai,K.;Mao,J.;Weng,T.C.;Sokaras,D.;Nordlund,D.;Song,X.;Battaglia,V.S.;Hussain,Z.;Liu,G.;Yang,W.Nano Energy 2015,16,186.doi:10.1016/j.nanoen.2015.06.024
15 (c)Wang,C.H.;Yeh,Y.W.;Wongittharom,N.;Wang,Y.C.;Tseng,C.J.;Lee,S.W.;Chang,W.S.;Chang,J.K.J.Power Sources 2015,274,1016.doi:10.1016/j.jpowsour.2014.10.143
15 (d)Demirel,S.;Oz,E.;Altin,E.;Altin,S.;Bayri,A.;Kaya,P.;Turan,S.;Avci,S.Mater.Charact.2015,105,104.doi:10.1016/j.matchar.2015.05.005
16 Guo S. ; Yu H. ; Liu D. ; Tian W. ; Liu X. ; Hanada N. ; Ishida M. ; Zhou H. Chem. Commun 2014, 50, 7998.
17 Jiang X. ; Liu S. ; Xu H. ; Chen L. ; Yang J. ; Qian Y. Chem. Commun 2015, 51, 8480.
18 (a) Wang, Y.; Liu, J.; Lee, B.; Qiao, R.; Yang, Z.; Xu, S.; Yu, X.; Gu, L.; Hu, Y. S.; Yang, W.; Kang, K.; Li, H.; Yang, X. Q.; Chen, L.; Huang, X. Nat. Commun. 2015, 6. doi: 10.1038ncomms7401
18 (b)Wang,Y.;Mu,L.;Liu,J.;Yang,Z.;Yu,X.;Gu,L.;Hu,Y.S.;Li,H.;Yang,X.Q.;Chen,L.;Huang,X.Adv.Energy Mater.2015,doi:10.1002/aenm.201501005
19 Xu S. ; Wang Y. ; Ben L. ; Lyu Y. ; Song N. ; Yang Z. ; Li Y. ; Mu L. ; Yang H. T. ; Gu L. ; Hu Y. S. ; Li H. ; Cheng Z. H. ; Chen L. ; Huang X. Adv. Energy Mater 2015.
20 Ma X. ; Chen H. ; Ceder G. J.Electrochem. Soc 2011, 158, A1307.
21 Abakumov A. M. ; Tsirlin A. A. ; Bakaimi I. ; Van Tendeloo G. ; Lappas A. Chem. Mater 2014, 26, 3306.
22 Caballero A. ; Hernan L. ; Morales J. ; Sanchez L. ; SantosPena J. ; Aranda M. A. G. J.Mater. Chem 2002, 12, 1142.
23 Paulsen J. M. ; Dahn J. R. Solid State Ionics 1999, 126, 3.
24 Yuan D. ; He W. ; Pei F. ; Wu F. ; Wu Y. ; Qian J. ; Cao Y. ; Ai X. ; Yang H. J.Mater. Chem. A 2013, 1, 3895.
25 Yabuuchi N. ; Hara R. ; Kajiyama M. ; Kubota K. ; Ishigaki T. ; Hoshikawa A. ; Komaba S. Adv. Energy Mater 2014.
26 Billaud J. ; Singh G. ; Armstrong A. R. ; Gonzalo E. ; Roddatis V. ; Armand M. ; Rojo T. ; Bruce P. G. Energy Environ. Sci 2014, 7, 1387.
27 Yabuuchi N. ; Hara R. ; Kubota K. ; Paulsen J. ; Kumakura S. ; Komaba S. J.Mater. Chem. A 2014, 2, 16851.
28 Billaud J. ; Clément R. J. ; Armstrong A. R. ; Canales-Vázquez J. ; Rozier P. ; Grey C. P. ; Bruce P. G. J.Am. Chem. Soc 2014, 136, 17243.
29 Yabuuchi N. ; Yoshida H. ; Komaba S. Electrochemistry 2012, 80, 716.
30 Zhao J. ; Zhao L. ; Dimov N. ; Okada S. ; Nishida T. J.Electrochem. Soc 2013, 160, A3077.
31 Lee E. ; Brown D. E. ; Alp E. E. ; Ren Y. ; Lu J. ; Woo J. J. ; Johnson C. S. Chem. Mater 2015, 27, 6755.
32 Yabuuchi N. ; Kajiyama M. ; Iwatate J. ; Nishikawa H. ; Hitomi S. ; Okuyama R. ; Usui R. ; Yamada Y. ; Komaba S. Nat. Mater 2012, 11, 512.
33 Yuan D. ; Hu X. ; Qian J. ; Pei F. ; Wu F. ; Mao R. ; Ai X. ; Yang H. ; Cao Y. Electrochim. Acta 2014, 116, 300.
34 Thorne J. S. ; Dunlap R. A. ; Obrovac M. N. J. Electrochem. Soc 2013, 160, A361.
35 Singh G. ; Acebedo B. ; Cabanas M. C. ; Shanmukaraj D. ; Armand M. ; Rojo T. Electrochem. Commun 2013, 37, 61.
36 Wang X. ; Liu G. ; Iwao T. ; Okubo M. ; Yamada A. J.Phys. Chem. C 2014, 118, 2970.
37 Singh G. ; Aguesse F. ; Otaegui L. ; Goikolea E. ; Gonzalo E. ; Segalini J. ; Rojo T. J.Power Sources 2015, 273, 333.
38 (a) Miyazaki, S.; Kikkawa, S.; Koizumi, M. Synth. Met. 1983, 6, 211. doi: 10.1016/0379-6779(83)90156-X
38 (b)Molenda,J.;Stok?losa,A.Solid State Ionics 1990,38,1.doi:10.1016/0167-2738(90)90438-W
39 Vassilaras P. ; Ma X. ; Li X. ; Ceder G. J.Electrochem. Soc 2013, 160, A207.
40 Han M. H. ; Gonzalo E. ; Casas-Cabanas M. ; Rojo T. J.Power Sources 2014, 258, 266.
41 (a) Komaba, S.; Yabuuchi, N.; Nakayama, T.; Ogata, A.; Ishikawa, T.; Nakai, I. Inorg. Chem. 2012, 51, 6211. doi: 10.1021/ic300357d
41 (b)Wang,H.;Yang,B.;Liao,X.Z.;Xu,J.;Yang,D.;He,Y.S.;Ma,Z.F.Electrochim.Acta 2013,113,200.doi:10.1016/j.electacta.2013.09.098
42 Yuan D. D. ; Wang Y. X. ; Cao Y. L. ; Ai X. P. ; Yang H. X. ACS Appl. Mater. Interfaces 2015, 7, 8585.
43 Yoshida H. ; Yabuuchi N. ; Kubota K. ; Ikeuchi I. ; Garsuch A. ; Schulz-Dobrick M. ; Komaba S. Chem. Commun 2014, 50, 3677.
44 Yu H. ; Guo S. ; Zhu Y. ; Ishida M. ; Zhou H. Chem. Commun 2014, 50, 457.
45 Shanmugam R. ; Lai W. ECS Electrochem. Lett 2014, 3, A23.
46 Gupta A. ; Buddie Mullins C. ; Goodenough J. B. J.Power Sources 2013, 243, 817.
47 Saadoune I. ; Maazaz A. ; Ménétrier M. ; Delmas C. J.Solid State Chem 1996, 122, 111.
48 Kim D. ; Kang S. H. ; Slater M. ; Rood S. ; Vaughey J. T. ; Karan N. ; Balasubramanian M. ; Johnson C. S. Adv. Energy Mater 2011, 1, 333.
49 (a) Guo, S.; Liu, P.; Yu, H.; Zhu, Y.; Chen, M.; Ishida, M.; Zhou, H. Angew. Chem. 2015, 127, 5992. doi: 10.1002ange.201411788
49 (b)Lee,E.;Lu,J.;Ren,Y.;Luo,X.;Zhang,X.;Wen,J.;Miller,D.;DeWahl,A.;Hackney,S.;Key,B.;Kim,D.;Slater,M.D.;Johnson,C.S.Adv.EnergyMater.2014,doi:10.1002aenm.201400458
50 Yuan D. ; Liang X. ; Wu L. ; Cao Y. ; Ai X. ; Feng J. ; Yang H. Adv. Mater 2014, 26, 6301.
51 Ma J. ; Bo S. H. ; Wu L. ; Zhu Y. ; Grey C. P. ; Khalifah P. G. Chem. Mater 2015, 27, 2387.
52 (a) Mu, L.; Xu, S.; Li, Y.; Hu, Y. S.; Li, H.; Chen, L.; Huang, X. Adv. Mater. 2015, 27, 6928. doi: 10.1002/adma.201502449
52 (b)Xu,S.Y.;Wu,X.Y.;Li,Y.M.;Hu,Y.S.;Chen,L.Q.Chin.Phys.B 2014,23,118202.doi;
52 (c)Li,Y.;Yang,Z.;Xu,S.;Mu,L.;Gu,L.;Hu,Y.S.;Li,H.;Chen,L.Adv.Sci.2015,doi:10.1002/advs.201500031
52 (d)Li,Y.;Hu,Y.S.;Qi,X.;Rong,X.;Li,H.;Huang,X.;Chen,L.Energy Storage Materials 2016,5,191.doi:10.1016/j.ensm.2016.07.006
53 Berthelot R. ; Carlier D. ; Delmas C. Nat. Mater 2011, 10, 74.
54 Ding J. J. ; Zhou Y. N. ; Sun Q. ; Yu X. Q. ; Yang X. Q. ; Fu Z.W. Electrochim. Acta 2013, 87, 388.
55 Ma Y. ; Doeff M. M. ; Visco S. J. ; De Jonghe L. C. J.Electrochem. Soc 1993, 140, 2726.
56 Yoshida H. ; Yabuuchi N. ; Komaba S. Electrochem. Commun 2013, 34, 60.
57 Carlier D. ; Cheng J. H. ; Berthelot R. ; Guignard M. ; Yoncheva M. ; Stoyanova R. ; Hwang B. J. ; Delmas C. Dalton Trans 2011, 40, 9306.
58 (a) Chagas, L.; Buchholz, D.; Vaalma, C.; Wu, L.; Passerini, S.J. Mater. Chem. A 2014, 2, 20263. doi: 10.1039/C4TA03946G
58 (b)Chen,X.;Zhou,X.;Hu,M.;Liang,J.;Wu,D.;Wei,J.;Zhou,Z.,J.Mater.Chem.A 2015,3,20708.doi:10.1039C5TA05205J
59 Komaba S. ; Takei C. ; Nakayama T. ; Ogata A. ; Yabuuchi N. Electrochem. Commun 2010, 12, 355.
60 Ding J. J. ; Zhou Y. N. ; Sun Q. ; Fu Z.W. Electrochem. Commun 2012, 22, 85.
61 (a) Nohira, T.; Ishibashi, T.; Hagiwara, R. J. Power Sources 2012, 205, 506. doi: 10.1016/j.jpowsour.2011.11.086
61 (b)Chen,C.Y.;Matsumoto,K.;Nohira,T.;Hagiwara,R.;Fukunaga,A.;Sakai,S.;Nitta,K.;Inazawa,S.J.PowerSources 2013,237,52.doi:10.1016/j.jpowsour.2013.03.006
62 (a) Zhou, Y. N.; Ding, J. J.; Nam, K.W.; Yu, X.; Bak, S. M.; Hu, E.; Liu, J.; Bai, J.; Li, H.; Fu, Z.W.; Yang, X. Q. J. Mater. Chem. A 2013, 1, 11130. doi: 10.1039/c3ta12282d
62 (b)Kubota,K.;Ikeuchi,I.;Nakayama,T.;Takei,C.;Yabuuchi,N.;Shiiba,H.;Nakayama,M.;Komaba,S.J.Phys.Chem.C 2015,119,166.doi:10.1021/jp5105888
62 (c)Bo,S.H.;Li,X.;Toumar,A.J.;Ceder,G.Chem.Mater.2016,doi:10.1021/acs.chemmater.5b04626
63 Yu C. Y. ; Park J. S. ; Jung H. G. ; Chung K.Y. ; Aurbach D. ; Sun Y. K. ; Myung S. T. Energy Environ. Sci 2015, 8, 2019.
64 Wang Y. ; Xiao R. ; Hu Y. S. ; Avdeev M. ; Chen L. Nat. Commun 2015, 6
65 (a) Masashige, O. J. Phys.: Condens. Matter 2008, 20, 145205. doi: 10.1088/0953-8984/20/14/145205
65 (b)McQueen,T.M.;Stephens,P.W.;Huang,Q.;Klimczuk,T.;Ronning,F.;Cava,R.J.Phys.Rev.Lett.2008,101,166402.doi:10.1103/PhysRevLett.101.166402
66 (a) Guignard, M.; Didier, C.; Darriet, J.; Bordet, P.; Elka?m, E.; Delmas, C. Nat. Mater. 2013, 12, 74. doi: 10.1038/nmat3478
66 (b)Didier,C.;Guignard,M.;Darriet,J.;Delmas,C.Inorg.Chem.2012,51,11007.doi:10.1021/ic301505e
67 Hamani D. ; Ati M. ; Tarascon J. M. ; Rozier P. Electrochem. Commun 2011, 13, 938.
68 Masquelier C. ; Croguennec L. Chem. Rev 2013, 113, 6552.
69 (a) Zaghib, K.; Trottier, J.; Hovington, P.; Brochu, F.; Guerfi, A.; Mauger, A.; Julien, C. M. J. Power Sources 2011, 196, 9612. doi: 10.1016/j.jpowsour.2011.06.061
69 (b)Sun,A.;Manivannan,A.ECSTrans.2011,35,3.doi:10.1149/1.3655683
69 (c)Oh,S.M.;Myung,S.T.;Hassoun,J.;Scrosati,B.;Sun,Y.K.Electrochem.Commun.2012,22,149.doi:10.1016/j.elecom.2012.06.014
70 Le Poul N. ; Baudrin E. ; Morcrette M. ; Gwizdala S. ; Masquelier C. ; Tarascon J. M. Solid State Ionics 2003, 159, 149.
71 Zhu Y. ; Xu Y. ; Liu Y. ; Luo C. ; Wang C. Nanoscale 2013, 5, 780.
72 (a) Moreau, P.; Guyomard, D.; Gaubicher, J.; Boucher, F.Chem. Mater. 2010, 22, 4126. doi: 10.1021/cm101377h
72 (b)Galceran,M.;Saurel,D.;Acebedo,B.;Roddatis,V.V.;Martin,E.;Rojo,T.;Casas-Cabanas,M.Phys.Chem.Chem.Phys.2014,16,8837.doi:10.1039/c4cp01089b
72 (c)Casas-Cabanas,M.;Roddatis,V.V.;Saurel,D.;Kubiak,P.;Carretero-Gonzalez,J.;Palomares,V.;Serras,P.;Rojo,T.J.Mater.Chem.2012,22,17421.doi:10.1039/c2jm33639a
73 Lu J. ; Chung S. C. ; Nishimura S.I. ; Yamada A. Chem. Mater 2013, 25, 4557.
74 Boucher F. ; Gaubicher J. ; Cuisinier M. ; Guyomard D. ; Moreau P. J.Am. Chem. Soc 2014, 136, 9144.
75 Fang Y. ; Liu Q. ; Xiao L. ; Ai X. ; Yang H. ; Cao Y. ACS Appl. Mater. Interfaces 2015, 7, 17977.
76 Uebou Y. ; Kiyabu T. ; Okada S. ; YamakiJ. I. Rep. Inst. Adv. Mater. Study Kyushu Univ 2002, 16, 1.
77 Jian Z. ; Zhao L. ; Pan H. ; Hu Y. S. ; Li H. ; Chen W. ; Chen L. Electrochem. Commun 2012, 14, 86.
78 (a) Duan, W.; Zhu, Z.; Li, H.; Hu, Z.; Zhang, K.; Cheng, F.; Chen, J. J. Mater. Chem. A 2014, 2, 8668. doi: 10.1039c4ta00106k
78 (b)Jian,Z.;Han,W.;Lu,X.;Yang,H.;Hu,Y.S.;Zhou,J.;Zhou,Z.;Li,J.;Chen,W.;Chen,D.;Chen,L.Adv.EnergyMater.2013,3,156.doi:10.1002/aenm.201200558
78 (c)Li,S.;Dong,Y.;Xu,L.;Xu,X.;He,L.;Mai,L.Adv.Mater.2014,26,3545.doi:10.1002/adma.201305522
78 (d)Rui,X.;Sun,W.;Wu,C.;Yu,Y.;Yan,Q.Adv.Mater.2015,27,6670.doi:10.1002/adma.201502864
78 (e)Jiang,Y.;Yang,Z.;Li,W.;Zeng,L.;Pan,F.;Wang,M.;Wei,X.;Hu,G.;Gu,L.;Yu,Y.Adv.EnergyMater.2015,doi:10.1002/aenm.201402104
78 (f)Li,H.;Bai,Y.;Wu,F.;Li,Y.;Wu,C.J.PowerSources 2015,273,784.doi:10.1016/j.jpowsour.2014.09.153
79 (a) Jian, Z.; Yuan, C.; Han, W.; Lu, X.; Gu, L.; Xi, X.; Hu, Y.S.; Li, H.; Chen, W.; Chen, D.; Ikuhara, Y.; Chen, L. Adv. Funct. Mater. 2014, 24, 4265. doi: 10.1002/adfm.201400173
79 (b)Lim,S.Y.;Kim,H.;Shakoor,R.A.;Jung,Y.;Choi,J.W.J.Electrochem.Soc.2012,159,A1393.doi:10.1149/2.015209jes
80 Saravanan K. ; Mason C.W. ; Rudola A. ; Wong K. H. ; Balaya P. Adv. Energy Mater 2013, 3, 444.
81 Zhu C. ; Song K. ; van Aken P. A. ; Maier J. ; Yu Y. Nano Lett 2014, 14, 2175.
82 (a) Zhu, C.; Kopold, P.; van Aken, P. A.; Maier, J.; Yu, Y. Adv. Mater. 2016, doi: 10.1002/adma.201505943
82 (b)Plashnitsa,L.S.;Kobayashi,E.;Noguchi,Y.;Okada,S.;Yamaki,J.I.J.Electrochem.Soc.2010,157,A536.doi:10.1149/1.3298903
83 Fang Y. ; Xiao L. ; Ai X. ; Cao Y. ; Yang H. Adv. Mater 2015, 27, 5895.
84 Fang Y. ; Xiao L. ; Qian J. ; Cao Y. ; Ai X. ; Huang Y. ; Yang H. Adv. Energy Mater 2016.
85 Mason C.W. ; Gocheva I. ; Hoster H. E. ; Yu D. Y.W. ECS Trans 2014, 58, 41.
86 Lim S. J. ; Han D.W. ; Nam D. H. ; Hong K. S. ; Eom J. Y. ; Ryu W. H. ; Kwon H. S. J.Mater. Chem. A 2014, 2, 19623.
87 Li H. ; Yu X. ; Bai Y. ; Wu F. ; Wu C. ; Liu L.Y. ; Yang X. Q. J. Mater. Chem. A 2015, 3, 9578.
88 Barpanda P. ; Ye T. ; Nishimura S. I. ; Chung S. C. ; Yamada Y. ; Okubo M. ; Zhou H. ; Yamada A. Electrochem. Commun 2012, 24, 116.
89 Barpanda P. ; Liu G. ; Ling C. D. ; Tamaru M. ; Avdeev M. ; Chung S. C. ; Yamada Y. ; Yamada A. Chem. Mater 2013, 25, 3480.
90 Kim H. ; Shakoor R. A. ; Park C. ; Lim S. Y. ; Kim J. S. ; Jo Y.N. ; Cho W. ; Miyasaka K. ; Kahraman R. ; Jung Y. ; Choi J.W. Adv. Funct. Mater 2013, 23, 1147.
91 (a) Park, C. S.; Kim, H.; Shakoor, R. A.; Yang, E.; Lim, S. Y.; Kahraman, R.; Jung, Y.; Choi, J.W. J. Am. Chem. Soc. 2013, 135, 2787. doi: 10.1021/ja312044k
91 (b)Barpanda,P.;Ye,T.;Avdeev,M.;Chung,S.C.;Yamada,A.J.Mater.Chem.A 2013,1,4194.doi:10.1039/c3ta10210f
92 (a) Barpanda, P.; Liu, G.; Mohamed, Z.; Ling, C. D.; Yamada, A. Solid State Ion. 2014, 268, Part B, 305. doi: 10.1016/j.ssi.2014.03.011
92 (b)Tealdi,C.;Ricci,M.;Ferrara,C.;Bruni,G.;Quartarone,E.;Mustarelli,P.Batteries 2016,2,1.doi:10.3390/batteries2010001
92 (c)Shakoor,R.A.;Park,C.S.;Raja,A.A.;Shin,J.;Kahraman,R.Phys.Chem.Chem.Phys.2016,18,3929.doi:10.1039/c5cp06836c
93 Barpanda P. ; Avdeev M. ; Ling C. D. ; Lu J. ; Yamada A. Inorg. Chem 2013, 52, 395.
94 Barpanda P. ; Liu G. ; Avdeev M. ; Yamada A. ChemElectroChem 2014, 1, 1488.
95 Kim J. ; Park I. ; Kim H. ; Park K. Y. ; Park Y. U. ; Kang K. Adv. Energy Mater 2016.
96 Barpanda P. ; Oyama G. ; Nishimura S. I. ; Chung S. C. ; Yamada A. Nat. Commun 2014, 5
97 Oyama G. ; Nishimura S. I. ; Suzuki Y. ; Okubo M. ; Yamada A. ChemElectroChem 2015, 2, 1019.
98 Meng Y. ; Yu T. ; Zhang S. ; Deng C. J.Mater. Chem. A 2016, 4, 1624.
99 Wei S. ; Mortemard de Boisse B. ; Oyama G. ; Nishimura S.I. ; Yamada A. ChemElectroChem 2016, 3, 209.
100 Singh P. ; Shiva K. ; Celio H. ; Goodenough J. B. Energy Environ. Sci 2015, 8, 3000.
101 (a) Dwibedi, D.; Araujo, R. B.; Chakraborty, S.; Shanbogh, P.P.; Sundaram, N. G.; Ahuja, R.; Barpanda, P. J. Mater. Chem. A 2015, 3, 18564. doi: 10.1039/c5ta04527d
101 (b)Reynaud,M.;Rousse,G.;Abakumov,A.M.;Sougrati,M.T.;VanTendeloo,G.;Chotard,J.N.;Tarascon,J.M.J.Mater.Chem.A 2014,2,2671.doi:10.1039/c3ta13648e
101 (c)Araujo,R.B.;Islam,M.S.;Chakraborty,S.;Ahuja,R.J.Mater.Chem.A 2016,4,451.doi:10.1039/c5ta08114a
102 (a) Padhi, A. K.; Nanjundaswamy, K. S.; Masquelier, C.; Okada, S.; Goodenough, J. B. J. Electrochem. Soc. 1997, 144, 1609. doi: 10.1149/1.1837649
102 (b)Padhi,A.K.;Manivannan,V.;Goodenough,J.B.J.Electrochem.Soc.1998,145,1518.doi:10.1149/1.1838513
103 Ellis B. L. ; Makahnouk W. R. M. ; Makimura Y. ; Toghill K. ; Nazar L. F. Nat. Mater 2007, 6, 749.
104 Recham N. ; Chotard J. N. ; Dupont L. ; Djellab K. ; Armand M. ; Tarascon J. M. J.Electrochem. Soc 2009, 156, A993.
105 (a) Kawabe, Y.; Yabuuchi, N.; Kajiyama, M.; Fukuhara, N.; Inamasu, T.; Okuyama, R.; Nakai, I.; Komaba, S. Electrochem. Commun. 2011, 13, 1225. doi: 10.1016/j.elecom.2011.08.038
105 (b)Langrock,A.;Xu,Y.;Liu,Y.;Ehrman,S.;Manivannan,A.;Wang,C.J.PowerSources 2013,223,62.doi:10.1016/j.jpowsour.2012.09.059
106 Le Meins J. M. ; Crosnier-Lopez M. P. ; Hemon-Ribaud A. ; Courbion G. J.Solid State Chem 1999, 148, 260.
107 (a) Gover, R. K. B.; Bryan, A.; Burns, P.; Barker, J. Solid State Ion. 2006, 177, 1495. doi: 10.1016/j.ssi.2006.07.028
107 (b)Barker,J.;Gover,R.K.B.;Burns,P.;Bryan,A.J.Electrochem.Solid-StateLett.2006,9,A190.doi:10.1149/1.2168288
107 (c)Song,W.;Liu,S.SolidStateSci.2013,15,1.doi:10.1016j.solidstatesciences.2012.09.012
108 Shakoor R. A. ; Seo D. H. ; Kim H. ; Park Y. U. ; Kim J. ; Kim S.W. ; Gwon H. ; Lee S. ; Kang K. J.Mater. Chem 2012, 22, 20535.
109 (a) Liu, Z.; Hu, Y. Y.; Dunstan, M. T.; Huo, H.; Hao, X.; Zou, H.; Zhong, G.; Yang, Y.; Grey, C. P. Chem. Mater. 2014, 26, 2513. doi: 10.1021/cm403728w
109 (b)Bianchini,M.;Fauth,F.;Brisset,N.;Weill,F.;Suard,E.;Masquelier,C.;Croguennec,L.Chem.Mater.2015,27,3009.doi:10.1021/acs.chemmater.5b00361
110 Massa W. ; Yakubovich O. V. ; Dimitrova O. V. Solid State Sci 2002, 4, 495.
111 Sauvage F. ; Quarez E. ; Tarascon J. M. ; Baudrin E. Solid State Sci 2006, 8, 1215.
112 Serras P. ; Palomares V. ; Goni A. ; Gil de Muro I. ; Kubiak P. ; Lezama L. ; Rojo T. J.Mater. Chem 2012, 22, 22301.
113 Peng M. ; Li B. ; Yan H. ; Zhang D. ; Wang X. ; Xia D. ; Guo G. Angew. Chem. Int. Ed 2015, 54, 6452.
114 Qi Y. ; Mu L. ; Zhao J. ; Hu Y. S. ; Liu H. ; Dai S. Angew. Chem 2015, 127, 10049.
115 (a) Park, Y. U.; Seo, D. H.; Kim, H.; Kim, J.; Lee, S.; Kim, B.; Kang, K. Adv. Funct. Mater. 2014, 24, 4603. doi: 10.1002adfm.201400561
115 (b)Xu,M.;Xiao,P.;Stauffer,S.;Song,J.;Henkelman,G.;Goodenough,J.B.Chem.Mater.2014,26,3089.doi:10.1021/cm500106w
115 (c)Park,Y.U.;Seo,D.H.;Kwon,H.S.;Kim,B.;Kim,J.;Kim,H.;Kim,I.;Yoo,H.I.;Kang,K.J.Am.Chem.Soc.2013,135,13870.doi:doi:10.1021/ja406016j
115 (d)Serras,P.;Palomares,V.;Alonso,J.;Sharma,N.;LópezdelAmo,J.M.;Kubiak,P.;Fdez-Gubieda,M.L.;Rojo,T.Chem.Mater.2013,25,4917.doi:10.1021/cm403679b
115 (e)Sharma,N.;Serras,P.;Palomares,V.;Brand,H.E.A.;Alonso,J.;Kubiak,P.;Fdez-Gubieda,M.L.;Rojo,T.Chem.Mater.2014,26,3391.doi:10.1021/cm5005104
116 (a) Barpanda, P.; Chotard, J. N.; Recham, N.; Delacourt, C.; Ati, M.; Dupont, L.; Armand, M.; Tarascon, J. M. Inorg. Chem. 2010, 49, 7401. doi: 10.1021/ic100583f
116 (b)Tripathi,R.;Gardiner,G.R.;Islam,M.S.;Nazar,L.F.Chem.Mater.2011,23,2278.doi:10.1021/cm200683n
116 (c)Ellis,B.L.;Makahnouk,W.R.M.;Rowan-Weetaluktuk,W.N.;Ryan,D.H.;Nazar,L.F.Chem.Mater.2010,22,1059.doi:10.1021/cm902023h
117 Kim H. ; Park I. ; Seo D. H. ; Lee S. ; Kim S.W. ; Kwon W. J. ; Park Y. U. ; Kim C. S. ; Jeon S. ; Kang K. J.Am. Chem. Soc 2012, 134, 10369.
118 Kim H. ; Park I. ; Lee S. ; Kim H. ; Park K. Y. ; Park Y. U. ; Kim H. ; Kim J. ; Lim H. D. ; Yoon W. S. ; Kang K. Chem. Mater 2013, 25, 3614.
119 Nose M. ; Nakayama H. ; Nobuhara K. ; Yamaguchi H. ; Nakanishi S. ; Iba H. J.Power Sources 2013, 234, 175.
120 Nose M. ; Shiotani S. ; Nakayama H. ; Nobuhara K. ; Nakanishi S. ; Iba H. Electrochem. Commun 2013, 34, 266.
121 Wood S. M. ; Eames C. ; Kendrick E. ; Islam M. S. J.Phys. Chem. C 2015, 119, 15935.
122 (a) Deng, C.; Zhang, S. ACS Appl. Mater. Interfaces 2014, 6, 9111. doi: 10.1021/am501072j
122 (b)Zhang,S.;Deng,C.;Meng,Y.J.Mater.Chem.A 2014,2,20538.doi:10.1039/c4ta04499a
123 (a) Hautier, G.; Jain, A.; Chen, H.; Moore, C.; Ong, S. P.; Ceder, G. J. Mater. Chem. 2011, 21, 17147. doi: 10.1039c1jm12216a
123 (b)Jain,A.;Hautier,G.;Moore,C.;Kang,B.;Lee,J.;Chen,H.;Twu,N.;Ceder,G.J.Electrochem.Soc.2012,159,A622.doi:10.1149/2.080205jes
124 Chen H. ; Hao Q. ; Zivkovic O. ; Hautier G. ; Du L. S. ; Tang Y. ; Hu Y. Y. ; Ma X. ; Grey C. P. ; Ceder G. Chem. Mater 2013, 25, 2777.
125 Huang W. ; Zhou J. ; Li B. ; Ma J. ; Tao S. ; Xia D. ; Chu W. ; Wu Z. Sci. Rep 2014, 4, 4188.
126 Qian J. ; Zhou M. ; Cao Y. ; Ai X. ; Yang H. Adv. Energy Mater 2012, 2, 410.
127 Qian J. ; Zhou M. ; Cao Y. J. Electrochem 2012, 18, 108.
128 Lu Y. ; Wang L. ; Cheng J. ; Goodenough J. B. Chem. Commun 2012, 48, 6544.
129 Wu X. ; Deng W. ; Qian J. ; Cao Y. ; Ai X. ; Yang H. J.Mater. Chem. A 2013, 1, 10130.
130 Liu Y. ; Qiao Y. ; Zhang W. ; Li Z. ; Ji X. ; Miao L. ; Yuan L. ; Hu X. ; Huang Y. Nano Energy 2015, 12, 386.
131 You Y. ; Wu X. L. ; Yin Y. X. ; Guo Y. G. Energy Environ. Sci 2014, 7, 1643.
132 You Y. ; Yu X. ; Yin Y. ; Nam K.W. ; Guo Y. G. Nano Res 2014, 8, 117.
133 (a) Wessells, C. D.; Peddada, S. V.; Huggins, R. A.; Cui, Y.Nano Lett. 2011, 11, 5421. doi: 10.1021/nl203193q
133 (b)Wang,L.;Song,J.;Qiao,R.;Wray,L.A.;Hossain,M.A.;Chuang,Y.D.;Yang,W.;Lu,Y.;Evans,D.;Lee,J.J.;Vail,S.;Zhao,X.;Nishijima,M.;Kakimoto,S.;Goodenough,J.B.J.Am.Chem.Soc.2015,137,2548.doi:10.1021/ja510347s
134 Wang L. ; Lu Y. ; Liu J. ; Xu M. ; Cheng J. ; Zhang D. ; Goodenough J. B. Angew. Chem. Int. Ed 2013, 52, 1964.
135 Song J. ; Wang L. ; Lu Y. ; Liu J. ; Guo B. ; Xiao P. ; Lee J. J. ; Yang X. Q. ; Henkelman G. ; Goodenough J. B. J.Am. Chem. Soc 2015, 137, 2658.
136 Yang D. ; Xu J. ; Liao X. Z. ; He Y. S. ; Liu H. ; Ma Z. F. Chem. Commun 2014, 50, 13377.
137 Li W. J. ; Chou S. L. ; Wang J. Z. ; Wang J. L. ; Gu Q. F. ; Liu H. K. ; Dou S. X. Nano Energy 2015, 13, 200.
138 Lee E. ; Kim D. H. ; Hwang J. ; Kang J. S. ; Van Minh N. ; Yang I. S. ; Ueno T. ; Sawada M. J.Korean Phys. Soc 2013, 62, 1910.
139 Masamitsu T. ; Tomoyuki M. ; Yutaka M. Appl. Phys. Express 2013, 6, 025802.
140 Xie M. ; Xu M. ; Huang Y. ; Chen R. ; Zhang X. ; Li L. ; Wu F. Electrochem. Commun 2015, 59, 91.
141 Wu X. ; Wu C. ; Wei C. ; Hu L. ; Qian J. ; Cao Y. ; Ai X. ; Wang J. ; Yang H. ACS Appl. Mater. Interfaces 2016, 8, 5393.
142 You Y. ; Wu X. L. ; Yin Y. X. ; Guo Y. G. J.Mater. Chem. A 2013, 1, 14061.
143 Yue Y. ; Binder A. J. ; Guo B. ; Zhang Z. ; Qiao Z. A. ; Tian C. ; Dai S. Angew. Chem 2014, 126, 3198.
144 Okubo M. ; Li C. H. ; Talham D. R. Chem. Commun 2014, 50, 1353.
145 Guo C. ; Zhang K. ; Zhao Q. ; Pei L. ; Chen J. Chem. Commun 2015, 51, 10244.
146 Luo W. ; Allen M. ; Raju V. ; Ji X. Adv. Energy Mater 2014.
147 Deng W. ; Shen Y. ; Qian J. ; Cao Y. ; Yang H. ACS Appl. Mater. Interfaces 2015, 7, 21095.
148 Yao M. ; Kuratani K. ; Kojima T. ; Takeichi N. ; Senoh H. ; Kiyobayashi T. Sci. Rep 2014, 4, 3650.
149 Chihara K. ; Chujo N. ; Kitajou A. ; Okada S. Electrochim. Acta 2013, 110, 240.
150 Wang S. ; Wang L. ; Zhu Z. ; Hu Z. ; Zhao Q. ; Chen J. Angew. Chem. In. Ed 2014, 53, 5892.
151 Zhao R. ; Zhu L. ; Cao Y. ; Ai X. ; Yang H. X. Electrochem. Commun 2012, 21, 36.
152 Zhou M. ; Zhu L. ; Cao Y. ; Zhao R. ; Qian J. ; Ai X. ; Yang H. RSC Adv 2012, 2, 5495.
153 Zhou M. ; Xiong Y. ; Cao Y. ; Ai X. ; Yang H. J. Polym. Sci., Part B: Polym. Phys 2013, 51, 114.
154 Zhu L. ; Shen Y. ; Sun M. ; Qian J. ; Cao Y. ; Ai X. ; Yang H. Chem. Commun 2013, 49, 11370.
155 Wang H. G. ; Yuan S. ; Ma D. L. ; Huang X. L. ; Meng F. L. ; Zhang X. B. Adv. Energy Mater 2014.
156 Xu F. ; Xia J. ; Shi W. Electrochem. Commun 2015, 60, 117.
157 Xu F. ; Xia J. ; Shi W. ; Cao S. A. Mater. Chem. Phys 2016, 169, 192.
158 Dai Y. ; Zhang Y. ; Gao L. ; Xu G. ; Xie J. Electrochem. Solid-State Lett 2010, 13, A22.
159 Deng W. ; Liang X. ; Wu X. ; Qian J. ; Cao Y. ; Ai X. ; Feng J. ; Yang H. Sci. Rep 2013, 3, 2671.
160 Banda H. ; Damien D. ; Nagarajan K. ; Hariharan M. ; Shaijumon M. M. J.Mater. Chem. A 2015, 3, 10453.
161 Shiratsuchi T. ; Okada S. ; Yamaki J. ; Nishida T. J.Power Sources 2006, 159, 268.
162 Zhao J. ; Jian Z. ; Ma J. ; Wang F. ; Hu Y. S. ; Chen W. ; Chen L. ; Liu H. ; Dai S. ChemSusChem 2012, 5, 1495.
163 Liu Y. ; Xu Y. ; Han X. ; Pellegrinelli C. ; Zhu Y. ; Zhu H. ; Wan J. ; Chung A. C. ; Vaaland O. ; Wang C. Nano Lett 2012, 12, 5664.
164 Fang Y. ; Xiao L. ; Qian J. ; Ai X. ; Yang H. ; Cao Y. Nano Lett 2014, 14, 3539.
165 Xu S. ; Zhang S. ; Zhang J. ; Tan T. ; Liu Y. J.Mater. Chem. A 2014, 2, 7221.
166 Wang W. ; Wang S. ; Jiao H. ; Zhan P. ; Jiao S. Phys. Chem. Chem. Phys 2015, 17, 4551.
167 Li C. ; Miao X. ; Chu W. ; Wu P. ; Tong D. G. J.Mater. Chem. A 2015, 3, 8265.
168 Uchaker E. ; Zheng Y. ; Li S. ; Candelaria S. ; Hu S. ; Cao G. J. Mater. Chem. A 2014, 2, 18208.
169 Fu S. Y. ; Li Y. Z. ; Chu W. ; Yang Y. M. ; Tong D. G. ; Le Zeng Q. J.Mater. Chem. A 2015, 3, 16716.
[1] ZHAO Mingyu, ZHU Lin, FU Bowen, JIANG Suhua, ZHOU Yongning, SONG Yun. Sodium Ion Storage Performance of NiCo2S4 Hexagonal Nanosheets[J]. Acta Phys. -Chim. Sin., 2019, 35(2): 193-199.
[2] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[3] Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 219-226.
[4] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1605-1613.
[5] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1189-1196.
[6] Ying-Jie ZHANG,Zi-Yi ZHU,Peng DONG,Zhen-Ping QIU,Hui-Xin LIANG,Xue LI. New Research Progress of the Electrochemical Reaction Mechanism, Preparation and Modification for LiFePO4[J]. Acta Phys. -Chim. Sin., 2017, 33(6): 1085-1107.
[7] Quan-Jun WANG,Hong-Juan SUN,Tong-Jiang PENG,Ming-Zhu FENG. Structure Development during the Cation Exchange Processes of Graphite Oxide[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 413-418.
[8] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Surface Analysis of the Lithium-Rich Cathode Material Li1.2Mn0.54Co0.13Ni0.13NaxO2 by Advanced Electron Microscopy[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2287-2292.
[9] Wen LUO,Lei HUANG,Dou-Dou GUAN,Ru-Han HE,Feng LI,Li-Qiang MAI. A Selenium Disulfide-Impregnated Hollow Carbon Sphere Composite as a Cathode Material for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1999-2006.
[10] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.
[11] Wei HUANG,Chun-Yang WU,Yue-Wu ZENG,Chuan-Hong JIN,Ze ZHANG. Electron Microscopy Study of Surface Reconstruction and Its Evolution in P2-Type Na0.66Mn0.675Ni0.1625Co0.1625O2 for Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1489-1494.
[12] Zu-Guang YANG,Wei-Bo HUA,Jun ZHANG,Jiu-Hua CHEN,Feng-Rong HE,Ben-He ZHONG,Xiao-Dong GUO. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1056-1061.
[13] Jian-Wen KOU,Zhao WANG,Li-Ying BAO,Yue-Feng SU,Yu HU,Lai CHEN,Shao-Yu XU,Fen CHEN,Ren-Jie CHEN,Feng-Chun SUN,Feng WU. Layered Lithium-Rich Cathode Materials Synthesized by an Ethanol-Based One-Step Oxalate Coprecipitation Method[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 717-722.
[14] Ting LI,Zhi-Hui LONG,Dao-Hong ZHANG. Synthesis and Electrochemical Properties of Fe2O3/rGO Nanocomposites as Lithium and Sodium Storage Materials[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 573-580.
[15] Cheng-Cheng CHEN,Ning ZHANG,Yong-Chang LIU,Yi-Jing WANG,Jun CHEN. In-situ Preparation of Na2Ti3O7 Nanosheets as High-Performance Anodes for Sodium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 349-355.