Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (1): 249-254    DOI: 10.3866/PKU.WHXB201610142
ARTICLE     
CH3NH3PbI3 Single Crystal-Based Ambipolar Field-Effect Transistor with Ta2O5 as the Top Gate Dielectric
Qian-Rui LÜ,Jing LI,Zhi-Peng LIAN,Hao-Yan ZHAO,Gui-Fang DONG*(),Qiang LI,Li-Duo WANG,Qing-Feng YAN*()
Download: HTML     PDF(1369KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Organic-inorganic hybrid perovskite methylammonium lead iodide (CH3NH3PbI3) generally tends to show n-type semiconductor properties. In this work, a field-effect transistor (FET) device based on a CH3NH3PbI3 single crystal with tantalum pentoxide (Ta2O5) as the top gate dielectric was fabricated. The p-type field-effect transport properties of the device were observed in the dark. The hole mobility of the device extracted from transfer characteristics in the dark was 8.7×10-5 cm2·V-1·s-1, which is one order of magnitude higher than that of polycrystalline FETs with SiO2 as the bottom gate dielectric. In addition, the effect of light illumination on the CH3NH3PbI3 single-crystal FET was studied. Light illumination strongly influenced the field effect of the device because of the intense photoelectric response of the CH3NH3PbI3 single crystal. Different from a CH3NH3PbI3 polycrystalline FET with a bottom gate dielectric, even with the top gate dielectric shielding, light illumination of 5.00 mW·cm-2 caused the hole current to increase by one order of magnitude compared with that in the dark (VGS (gate-source voltage)=VDS (drain-source voltage)=20 V) and the photoresponsivity reached 2.5 A·W-1. The introduction of Ta2O5 as the top gate dielectric selectively enhanced hole transport in the single-crystal FET, indicating that in the absence of external factors, by appropriate device design, CH3NH3PbI3 also has potential for use in ambipolar transistors.



Key wordsPerovskite      Tantalum pentoxide      Field-effect      Mobility      Light illumination     
Received: 22 August 2016      Published: 14 October 2016
MSC2000:  O649  
Fund:  National Natural Science Foundation of China(51173097);National Natural Science Foundation of China(91333109);National Key Basic Research Program of China(2013CB632900);Tsinghua University Initiative Scientific Research Program, China(20131089202);Tsinghua University Initiative Scientific Research Program, China(20161080165);Open Research Fund Program of the State Key Laboratory of Low-Dimensional Quantum Physics, China(KF201516)
Corresponding Authors: Gui-Fang DONG,Qing-Feng YAN     E-mail: donggf@mail.tsinghua.edu.cn;yanqf@mail.tsinghua.edu.cn
Cite this article:

Qian-Rui LÜ,Jing LI,Zhi-Peng LIAN,Hao-Yan ZHAO,Gui-Fang DONG,Qiang LI,Li-Duo WANG,Qing-Feng YAN. CH3NH3PbI3 Single Crystal-Based Ambipolar Field-Effect Transistor with Ta2O5 as the Top Gate Dielectric. Acta Phys. -Chim. Sin., 2017, 33(1): 249-254.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610142     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/249

 
 
 
 
 
1 Kim H. S. ; Lee C. R. ; Im J. H. ; Lee K. B. ; Moehl T. ; Marchioro A. ; Moon S. J. ; Humphry-Baker R. ; Yum J. H. ; Moser J. E. Sci. Rep 2012, 2, 591.
2 Etgar L. ; Gao P. ; Xue Z. ; Peng Q. ; Chandiran A. K. ; Liu B. ; Nazeeruddin M. K. ; Gratzel M. J.Am. Chem. Soc 2012, 134, 17396.
3 Burschka J. ; Pellet N. ; Moon S. J. ; Humphry-Baker R. ; Gao P. ; Nazeeruddin M. K. ; Gr?tzel M. Nature 2013, 499, 316.
4 Liu M. ; Johnston M. B. ; Snaith H. J. Nature 2013, 501, 395.
5 Zhou H. ; Chen Q. ; Li G. ; Luo S. ; Song T. B. ; Duan H. S. ; Hong Z. ; You J. ; Liu Y. ; Yang Y. Science 2014, 345, 542.
6 Xiao J. ; Zhang H. L. Acta Phys. -Chim. Sin 2016, 32, 1894.
6 肖娟; 张浩力. 物理化学学报, 2016, 32, 1894.
7 Tan Z. K. ; Moghaddam R. S. ; Lai M. L. ; Docampo P. ; Higler R. ; Deschler F. ; Price M. ; Sadhanala A. ; Pazos L. M. ; Credgington D. Nat. Nanotech 2014, 9, 687.
8 Yan K. ; Peng M. ; Yu X. ; Cai X. ; Chen S. ; Hu H. ; Chen B. ; Gao X. ; Dong B. ; Zou D. J.Mater. Chem. C 2016, 4, 1375.
9 Fang H. ; Li Q. ; Ding J. ; Li N. ; Tian H. ; Zhang L. ; Ren T. ; Dai J. ; Wang L. ; Yan Q. J.Mater. Chem. C 2016, 4, 630.
10 Lee M. M. ; Teuscher J. ; Miyasaka T. ; Murakami T. N. ; Snaith H. J. Science 2012, 338, 643.
11 DeWolf S. ; Holovsky J. ; Moon S. J. ; Loper P. ; Niesen B. ; Ledinsky M. ; Haug F. J. ; Yum J. H. ; Ballif C. J.Phys. Chem. Lett 2014, 5, 1035.
12 Xing G. ; Mathews N. ; Sun S. ; Lim S. S. ; Lam Y. M. ; Gr?tzel M. ; Mhaisalkar S. ; Sum T. C. Science 2013, 342, 344.
13 Stoumpos C. C. ; Malliakas C. D. ; Kanatzidis M. G. Inorg. Chem 2013, 52, 9019.
14 Giorgi G. ; Fujisawa J. I. ; Segawa H. ; Yamashita K. J.Phys. Chem. Lett 2013, 4, 4213.
15 Gr?tzel M. Nat. Mater 2014, 13, 838.
16 Sum T. C. ; Mathews N. Energy Environ. Sci 2014, 7, 2518.
17 Heo J. H. ; Im S. H. ; Noh J. H. ; Mandal T. N. ; Lim C. S. ; Chang J. A. ; Lee Y. H. ; Kim H. J. ; Sarkar A. ; Nazeeruddin M. K. Nat. Photonics 2013, 7, 486.
18 Chin X. Y. ; Cortecchia D. ; Yin J. ; Bruno A. ; Soci C. Nat. Commun 2015, 6, 7383.
19 Li F. ; Ma C. ; Wang H. ; Hu W. ; Yu W. ; Sheikh A. D. ; Wu T. Nat. Commun 2015, 6, 8238.
20 Shokouh S. H. H. ; Jeon P. J. ; Pezeshki A. ; Choi K. ; Lee H.S. ; Kim J. S. ; Park E. Y. ; Im S. Adv. Funct. Mater 2015, 25, 7208.
21 Poglitsch A. ; Weber D. J.Chem. Phys 1987, 87, 6373.
22 Dang Y. ; Liu Y. ; Sun Y. ; Yuan D. ; Liu X. ; Lu W. ; Liu G. ; Xia H. ; Tao X. CrystEngComm 2015, 17, 665.
23 Im J. H. ; Lee C. R. ; Lee J.W. ; Park S.W. ; Park N. G. Nanoscale 2011, 3, 4088.
24 Lian Z. ; Yan Q. ; Lv Q. ; Wang Y. ; Liu L. ; Zhang L. ; Pan S. ; Li Q. ; Wang L. ; Sun J. L. Sci. Rep 2015, 5, 16563.
25 Xiao Z. ; Yuan Y. ; Shao Y. ; Wang Q. ; Dong Q. ; Bi C. ; Sharma P. ; Gruverman A. ; Huang J. Nat. Mater 2015, 14, 193.
26 Liu X. ; Zhao H. ; Dong G. ; Duan L. ; Li D. ; Wang L. ; Qiu Y. ACS Appl. Mater. Interfaces 2014, 6, 8337.
27 Liang Y. ; Dong G. ; Hu Y. ; Wang L. ; Qiu Y. Appl. Phys. Lett 2005, 86, 132101.
[1] Jinyang XI,Yuma NAKAMURA,Tianqi ZHAO,Dong WANG,Zhigang SHUAI. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 961-976.
[2] Jing ZHANG,Youjun HE,Jie MIN. Recent Progress in Hybrid Perovskite Solar Cells Based on p-Type Small Molecules as Hole Transporting Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1221-1238.
[3] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[4] Peng HUANG,Ligang YUAN,Yaowen LI,Yi ZHOU,Bo SONG. L-3, 4-dihydroxyphenylalanine and Dimethyl Sulfoxide Codoped PEDOT:PSS as a Hole Transfer Layer: towards High-Performance Planar p-i-n Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1264-1271.
[5] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 36-48.
[6] Yang HUANG,Qing-De SUN,Wen XU,Yao HE,Wan-Jian YIN. Halide Perovskite Materials for Solar Cells: a Theoretical Review[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1730-1751.
[7] Jin-Yu GU,Peng-Wei QI,Yang PENG. Progress on the Development of Inorganic Lead-Free Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1379-1389.
[8] Ya-Nan WANG,Pin MA,Lu-Mei PENG,Di ZHANG,Yan-Yan FANG,Xiao-Wen ZHOU,Yuan LIN. Synthesis of Colloidal Perovskite CH3NH3PbBr3-xClx Nanocrystals with Lead Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2099-2105.
[9] Ji-Chong LIU,Feng TANG,Feng-Ye YE,Qi CHEN,Li-Wei CHEN. Visualization of Energy Band Alignment in Thin-Film Optoelectronic Devices with Scanning Kelvin Probe Microscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1934-1943.
[10] Xu-Xia SHAI,Dan LI,Shuang-Shuang LIU,Hao LI,Ming-Kui WANG. Advances and Developments in Perovskite Materials for Solar Cell Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2159-2170.
[11] Juan XIAO,Hao-Li ZHANG. Recent Progress in Organic-Inorganic Hybrid Perovskite Materials for Luminescence Applications[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1894-1912.
[12] Xiao-Qing LU,Zi-Gang ZHAO,Ke LI,Shu-Xian WEI,Yuan-Yuan QU,Yong-Qiang NIU,Xue-Feng LIU. First-Principles Investigation of the Structural and Photoelectronic Properties of CH3NH3PbxSn1-xI3 Mixed Perovskites[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1439-1445.
[13] Xue-Peng LIU,Fan-Tai KONG,Wang-Chao CHEN,Ting YU,Fu-Ling GUO,Jian CHEN,Song-Yuan DAI. Application of Organic Hole-Transporting Materials in Perovskite Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1347-1370.
[14] Li ZHOU,Jun ZHU,Ya-Feng XU,Zhi-Peng SHAO,Xu-Hui ZHANG,Jia-Jiu YE,Yang HUANG,Chang-Neng ZHANG,Song-Yuan DAI. Influence of Insulating Oxide Coatings on the Performance of Perovskite Solar Cells and the Interface Charge Recombination Dynamics[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1207-1213.
[15] Yan-Qing WANG,Long LI,Lin-Hui NIE,Nan-Nan LI,Cheng-Wu SHI. Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition[J]. Acta Phys. -Chim. Sin., 2016, 32(11): 2724-2730.