Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 295-304    DOI: 10.3866/PKU.WHXB201610172
REVIEW     
Development of Solid Solution Photocatalytic Materials
Tao JING,Ying DAI*()
Download: HTML     PDF(1595KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Traditional semiconductor photocatalysts with a wide band gap can achieve visible light responses through element doping. However, the localized levels introduced by impurities may act as recombination centers of charge carriers, which may lower the photocatalytic activity of the doped materials. The solid solution method can realize precise regulation of the band gap and band edge positions of materials to obtain an optimal balance between their optical absorption and redox potentials. The solid solution method is therefore an effective approach to improve the photocatalytic performance of semiconductor materials. In the present review, considering our recent research, we briefly discuss the latest progress of the solid solution method to tune the band gap and band edge positions of photocatalytic materials as well as examining its influence on carrier separation and migration properties. Finally, challenges and prospects for further development of this method are presented.



Key wordsPhotocatalytic material      Doping      Solid solution      Electronic structure      Carrier separation     
Received: 09 August 2016      Published: 17 October 2016
MSC2000:  O644  
Fund:  The project was supported by the National Key Basic Research Program of China (973)(2013CB632401);National Natural Science Foundation of China(21333006,11374190);Taishan Scholar Program of Shandong Province, China
Corresponding Authors: Ying DAI     E-mail: daiy60@sina.com
Cite this article:

Tao JING,Ying DAI. Development of Solid Solution Photocatalytic Materials. Acta Physico-Chimica Sinca, 2017, 33(2): 295-304.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610172     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/295

Fig 1 Three strategies to tune band gap by solid solution method (a) tuning the valance band maximum (VBM); (b) tuning the conduction band minimum (CBM); (c) simultaneously tuning the VBM and CBM. color online
Fig 2 Schematic electronic structures of AgAlO2, AgGaO2 and AgAl1-xGaxO2 solid solutions reproduced from Ref.41 with permission. Copyright 2011,American Chemical Society. color online
Fig 3 Light absorption spectra (a) and band gap (b) of (ZnO)x(GaN)1-x solid solution with the change of Zn concentration TM refers to the sample obtained by using the traditional method. The x values of (ZnO)x(GaN)1-x samples A-E are defined as: x = 0.46 for A, x = 0.66 for B, x = 0.72 for C, x =0.78 for D and x = 0.81 for E.reproduced from Ref.51 with permission. Copyright 2011,Royal Society of Chemistry. color online
Fig 4 Density of state (DOS) of Zn1-xCdxS (x = 0.5) solid solution reproduced from Ref.65 with permission. Copyright 2012,Wiley Online Library. color online
Fig 5 Diffuse reflection spectra of (AgIn)xZn2(1-x)S2 solid solutions for different compositions
εεrEb/meV
[100][010][001][100][010][001]
Ag2ZnSnS46.696.696.769.739.7310.0917
Ag2ZnSnSe49.649.6412.0812.5812.5815.514
Ag2ZnSn(S0.75Se0.25)47.217.217.4210.2810.2710.9613
Ag2ZnSn(S0.5Se0.5)47.797.838.2410.8810.9011.7310
Ag2ZnSn(S0.25Se0.75)48.568.569.5511.6011.6212.877
Table 1 Calculated static dielectric constant and exciton binding energies for Ag2ZnSnS4, Ag2ZnSnSe4, and Ag2ZnSn(S1-xSex)4 solid solutions
1 Chen X. ; Shen S. ; Guo L. ; Mao S S. Chem Res 2010, 110 (11), 6503.
2 Tong H. ; Ouyang S. ; Bi Y. ; Umezawa N. ; Oshikiri M. ; Ye J. Adv Mater. 2012, 24 (2), 229.
3 Xiang Q. ; Yu J. ; Jaroniec M. Chem Soc Rev. 2012, 41 (2), 782.
4 Hisatomi T. ; Kubota J. ; Domen K. Chem Soc Rev 2014, 43 (22), 7520.
5 Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J M. ; Domen K. ; Antonietti M. Nat Mater. 2009, 8 (1), 76.
6 Wang Z. ; Liu Y. ; Huang B. ; Dai Y. ; Lou Z. ; Wang G. ; Qin X. Chem Chem Phys. 2014, 16 (7), 2758.
7 Yi Z. ; Ye J. ; Kikugawa N. ; Kako T. ; Ouyang S. ; StuartWilliams H. ; Yang H. ; Cao J. ; Luo W. ; Li Z. ; Liu Y. ; Withers R L. Nat Mater. 2010, 9 (7), 559.
8 He Z Q. ; Tong L L. ; Zhang Z P. ; Chen J M. ; Song S. ActaPhys -Chim Sin. 2015, 31 (12), 2341.
8 何志桥; 童丽丽; 张志鹏; 陈建孟宋爽. 物理化学学报, 2015, 31 (12), 2341.
9 Chen B C. ; Shen Y. ; Wei J H. ; Xiong R. ; Shi J. ActaPhys -Chim Sin. 2016, 32 (6), 1371.
9 陈博才; 沈洋; 魏建红; 熊锐石兢. 物理化学学报, 2016, 32 (6), 1371.
10 Jiang X J. ; Jia J M. ; Lu H F. ; Zhu Q L. ; Huang H F. ActaPhys -Chim Sin. 2015, 31 (7), 1399.
10 蒋孝佳; 贾建明; 卢晗锋; 朱秋莲黄海凤. 物理化学学报, 2015, 31 (7), 1399.
11 Lin C F. ; Chen X P. ; Chen S. ; Shangguan W F. ActaPhys -Chim Sin. 2015, 31 (1), 153.
11 林彩芳; 陈小平; 陈澍上官文峰. 物理化学学报, 2015, 31 (1), 153.
12 Peng Y. ; Shang L. ; Cao Y. ; Wang Q. ; Zhao Y. ; Zhou C. ; Zhang T. Appl Surf Sci. 2015, 358, 485.
13 Cao S. ; Zhou P. ; Yu J. Chin J Catal. 2014, 35 (7), 989.
14 Irie H. ; Watanabe Y. ; Hashimoto K. Chem Commun 2003, 107 (23), 5483.
15 Yang K. ; Dai Y. ; Huang B. J Phys Chem C 2007, 111 (32), 12086.
16 Yang K. ; Dai Y. ; Huang B. ChemPhysChem 2009, 10 (13), 2327.
17 Chen X. ; Liu L. ; Peter Y Y. ; Mao S S. Science 2011, 331 (6018), 746.
18 Alibabaei L. ; Brennaman M K. ; Norris M R. ; Kalanyan B. ; Song W. ; Losego M D. ; Concepcion J. ; J ; Binstead R A. ; Parsons G N. ; Meyer T J. Proc Natl Acad Sci. 2013, 110 (50), 20008.
19 Wang P. ; Huang B. ; Qin X. ; Zhang X. ; Dai Y. ; Wei J. ; Whangbo M H. Angew Chem Int Edit. 2008, 47 (41), 7931.
20 Wang P. ; Huang B. ; Dai Y. ; Whangbo M H. Phys Chem.Chem Phys. 2012, 14 (28), 9813.
21 Ma X C. ; Dai Y. ; Yu L. ; Huang B B. Light: Sci Appl. 2016, 5, e16017.
22 Yang H G. ; Sun C H. ; Qiao S Z. ; Zou J. ; Liu G. ; Smith S.C. ; Cheng H M. ; Lu G Q. Nature 2008, 453 (7195), 638.
23 Li B. ; Wang Y. J Phys Chem C 2009, 114 (2), 890.
24 Huang W C. ; Lyu L M. ; Yang Y C. ; Huang M H. J Am.Chem Soc. 2011, 134 (2), 1261.
25 Wang H. ; Zhang L. ; Chen Z. ; Hu J. ; Li S. ; Wang Z. ; Liu J. ; Wang X. Chem Soc Rev 2014, 43 (15), 5234.
26 Hong S J. ; Lee S. ; Jang J S. ; Lee J S. Energy Environ Sci. 2011, 4 (5), 1781.
27 Ran J. ; Zhang J. ; Yu J. ; Jaroniec M. ; Qiao S Z. Chem Soc.Rev 2014, 43 (22), 7787.
28 Liu L. ; Ji Z. ; Zou W. ; Gu X. ; Deng Y. ; Gao F. ; Tang C. ; Dong L. ACS Catal. 2013, 3 (9), 2052.
29 Ikeda T. ; Nomoto T. ; Eda K. ; Mizutani Y. ; Kato H. ; Kudo A. ; Onishi H. J Phys Chem C 2008, 112 (4), 1167.
30 Klosek S. ; Raftery D. J Phys Chem B 2001, 105 (14), 2815.
31 Li Y. ; Ding X. ; Zhao J. ; Zhu Y. ; Li Y. ; Deng W. ; Wang C. Chin J Catal. 2015, 36 (12), 2170.
32 Chen W. ; Yang B. ; Yu Q. ; Mao L. ; Fan Z. ; Wang Q. ; Shangguan W. Appl Surf Sci. 2015, 355, 1069.
33 Alidoust N. ; Toroker M C. ; Keith J A. ; Carter E A. ChemSusChem 2014, 7 (1), 195.
34 Peng H. ; Ndione P F. ; Ginley D S. ; Zakutayev A. ; Lany S. Phys Rev X 2015, 5 (2), 021016.
35 Mitchell R H. ; Chakhmouradian A R. J Solid State Chem. 1999, 144 (1), 81.
36 Wang Z. ; Liu Y. ; Huang B. ; Dai Y. ; Lou Z. ; Wang G. ; Zhang X. ; Qin X. Phys Chem Chem Phys. 2014, 16 (7), 2758.
37 Kato H. ; Kobayashi H. ; Kudo A. J Phys Chem B 2002, 106 (48), 12441.
38 Ni L. ; Tanabe M. ; Irie H. Chem Commun. 2013, 49 (86), 10094.
39 Osorio-Guillen J. ; Lany S. ; Zunger A. Phys Rev Lett. 2008, 100 (3), 036601.
40 Zhou L. ; Yu M. ; Yang J. ; Wang Y. ; Yu C. J Phys Chem C 2010, 114 (44), 18812.
41 Ouyang S. ; Ye J. J Am Chem Soc. 2011, 133 (20), 7757.
42 Li J. ; Lu Q. ; Zhang J. ; Zhao S. Mater Sci Semicond Process 2016, 49, 54.
43 Ma Z. ; Wu K. ; Sun B. ; He C. J Mater Chem A 2015, 3 (16), 8466.
44 Yuan Y. ; Zhao Z. ; Zheng J. ; Yang M. ; Qiu L. ; Li Z. ; Zou Z. J Mater Chem. 2010, 20 (32), 6772.
45 Umezawa N. ; Janotti A. ; Rinke P. ; Chikyow T. ; Van de Walle C G. Appl Phys Lett. 2008, 92 (4), 041104.
46 Li Z. ; Dong T. ; Zhang Y. ; Wu L. ; Li J. ; Wang X. ; Fu X. J.Phys Chem C 2007, 111 (12), 4727.
47 Li Z. ; Dong H. ; Zhang Y. ; Dong T. ; Wang X. ; Li J. ; Fu X. J.Phys Chem C 2008, 112 (41), 16046.
48 Hu S. ; Zhu J. ; Wu L. ; Wang X. ; Liu P. ; Zhang Y. ; Li Z. J.Phys Chem C 2010, 115 (2), 460.
49 Maeda K. ; Takata T. ; Hara M. ; Saito N. ; Inoue Y. ; Kobayashi H. ; Domen K. J Am Chem Soc 2005, 127 (23), 8286.
50 Maeda K. ; Xiong A. ; Yoshinaga T. ; Ikeda T. ; Sakamoto N. ; Hisatomi T. ; Takashima M. ; Lu D. ; Kanehara M. ; Setoyama T. ; Teranishi T. ; Domen K. Angew Chem Int Edit. 2010, 122 (24), 4190.
51 Wang J. ; Huang B. ; Wang Z. ; Wang P. ; Cheng H. ; Zheng Z. ; Whangbo M H. J Mater Chem. 2011, 21 (12), 4562.
52 Wang J. ; Yang P. ; Wang Z. ; Huang B. ; Dai Y. J Alloy.Compd. 2015, 652, 205.
53 Wei W. ; Dai Y. ; Yang K. ; Guo M. ; Huang B. J Phys Chem.C 2008, 112 (40), 15915.
54 Sahoo P P. ; Maggard P A. Inorg Chem. 2013, 52 (8), 4443.
55 Li G. ; Kako T. ; Wang D. ; Zou Z. ; Ye J. J Solid State Chem. 2007, 180 (10), 2845.
56 Luan J. ; Zou Z. ; Lu M. ; Chen Y. Mater Chem Phys. 2006, 98 (2), 434.
57 Kanhere P. ; Nisar J. ; Tang Y. ; Pathak B. ; Ahuja R. ; Zheng J. ; Chen Z. J Phys Chem C 2012, 116 (43), 22767.
58 Kudo A. ; Sekizawa M. Catal Lett. 1999, 58 (4), 241.
59 Zhang J. ; Yu J. ; Jaroniec M. ; Gong J R. Nano Lett. 2012, 12 (9), 4584.
60 Li Q. ; Meng H. ; Yu J. ; Xiao W. ; Zheng Y. ; Wang J. Chem.Eur J. 2014, 20 (4), 1176.
61 Wang L. ; Wang W. ; Shang M. ; Yin W. ; Sun S. ; Zhang L. Int.J Hydrog Energy 2010, 35 (1), 19.
62 Wang D H. ; Wang L. ; Xu A W. Nanoscale 2012, 4 (6), 2046.
63 Li Q. ; Meng H. ; Zhou P. ; Zheng Y. ; Wang J. ; Yu J. ; Gong J. ACS Catal. 2013, 3 (5), 882.
64 Yu J. ; Zhang J. ; Jaroniec M. Green Chem. 2010, 12 (9), 1611.
65 Lu J. ; Dai Y. ; Guo M. ; Wei W. ; Ma Y. ; Han S. ; Huang B. ChemPhysChem 2012, 13 (1), 147.
66 Wu J C. ; Zheng J. ; Zacherl C L. ; Wu P. ; Liu Z K. ; Xu R. J.Phys Chem C 2011, 115 (40), 19741.
67 Tsuji I. ; Kato H. ; Kobayashi H. ; Kudo A. J Am Chem Soc. 2004, 126 (41), 13406.
68 Torimoto T. ; Ogawa S. ; Adachi T. ; Kameyama T. ; Okazaki K I. ; Shibayama T. ; Kudo A. ; Kuwabata S. Chem Commun. 2010, 46 (12), 2082.
69 Zhao W. ; Ai Z. ; Zhu X. ; Zhang M. ; Shi Q. ; Dai J. Int J.Hydrog Energy 2014, 39 (15), 7705.
70 Yao W. ; Ye J. J Phys Chem B 2006, 110 (23), 11188.
71 Dang W. ; Chen H. ; Umezawa N. ; Zhang J. Phys Chem.Chem Phys. 2015, 17 (27), 17980.
72 Hart J N. ; Allan N L. Adv Mater. 2013, 25 (21), 2989.
73 Yang W. ; Liu B. ; Yang B. ; Wang J. ; Sekiguchi T. ; Thorsten S. ; Jiang X. Adv Funct Mater. 2015, 25 (17), 2543.
74 Lee C W. ; Park H K. ; Park S. ; Han H S. ; Seo S W. ; Song H J. ; Shin S. ; Kim D W. ; Hong K S. J Mater Chem A 2015, 3 (2), 825.
75 Fan W. ; Hu J. ; Huang J. ; Wu X. ; Lin S. ; Huang C. ; Qiu X. Appl Surf Sci. 2015, 357, 2364.
76 Shenawi-Khalil S. ; Uvarov V. ; Kritsman Y. ; Menes E. ; Popov I. ; Sasson Y. Catal Commun. 2011, 12 (12), 1136.
77 Wang W. ; Huang F. ; Lin X. Scr Mater. 2007, 56 (8), 669.
78 Jia Z. ; Wang F. ; Xin F. ; Zhang B. Ind Eng Chem Res. 2011, 50 (11), 6688.
79 Zhang H. ; Liu L. ; Zhou Z. Phys Chem Chem Phys. 2012, 14 (3), 1286.
80 Wang D. ; Ye J. ; Kako T. ; Kimura T. J Phys Chem B 2006, 110 (32), 15824.
81 Reunchan P. ; Ouyang S. ; Umezawa N. ; Xu H. ; Zhang Y. ; Y e ; J Mater Chem A 2013, 1 (13), 4221.
82 Chen H. ; Umezawa N. Phys Rev B 2014, 90 (4), 045119.
83 Harb M. J Phys Chem C 2015, 119, 4565.
84 Jing T. ; Dai Y. ; Ma X. ; Wei W. ; Huang B. J Phys Chem C 2015, 119 (50), 27900.
[1] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 377-390.
[2] Jiale XU,Lei HU,Lu WANG,Jinxia DENG,Jun CHEN,Xianran XING. Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 339-343.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[4] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[5] Hui-Jun YAN,Biao LI,Ning JIANG,Ding-Guo XIA. First-Principles Study:the Structural Stability and Sulfur Anion Redox of Li1-xNiO2-ySy[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1781-1788.
[6] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[7] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1297-1309.
[8] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 573-581.
[9] XING Lei, JIAO Li-Ying. Recent Advances in the Chemical Doping of Two-Dimensional Molybdenum Disulfide[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2133-2145.
[10] LI Yuan-Yuan, ZHAO Xin-Xin, MI Yi-Ming, SUN Gai-Li, WU Jian-Bao, WANG Li-Li. Effect of Y on the Properties of Graphene for Hydrogen Storage[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1658-1665.
[11] Chun-Xia TIAN,Jun-Shuai YANG,Xiao-Hua ZHANG,Jin-Hua CHEN. New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Physico-Chimica Sinca, 2016, 32(6): 1473-1481.
[12] YANG Zu-Guang, HUAWei-Bo, ZHANG Jun, CHEN Jiu-Hua, HE Feng-Rong, ZHONG Ben-He, GUO Xiao-Dong. Enhanced Electrochemical Performance of LiNi0.5Co0.2Mn0.3O2 Cathode Materials at Elevated Temperature by Zr Doping[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1056-1061.
[13] WANG Rui-Fen, WANG Fu-Ming, SONG Jin-Ling, AN Sheng-Li, WANG Xin. Synthesis and Photocatalytic Activities of Rare Earth-Boron Co-Doped Slice Layer TiO2[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 536-542.
[14] LI Gang, CHEN Min-Qiang, ZHAO Shi-Xiong, LI Peng-Wei, HU Jie, SANG Sheng-Bo, HOU Jing-Jing. Effect of Se Doping on the Electronic Band Structure and Optical Absorption Properties of Single Layer MoS2[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2905-2912.
[15] WANG Yan-Qing, LI Long, NIE Lin-Hui, LI Nan-Nan, SHI Cheng-Wu. Organic-Inorganic Hybrid Perovskite Solar Cells Processed with Br or Cl Doping via a Two-Step Deposition[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2724-2730.