Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (1): 255-261    DOI: 10.3866/PKU.WHXB201610181
ARTICLE     
Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage
Wen-Hao WU1,Xin-Yu HUANG1,Rui-Min YAO1,Ren-Jie CHEN1,Kai LI2,Ru-Qiang ZOU1,*()
1 Department of Materials Science and Engineering, College of Engineering, Peking University, Beijing 100871, P. R. China
2 Research Institute of Chemical Defence, Beijing 100191, P. R. China
Download: HTML     PDF(1958KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

In this article, we used coal-derived carbon foam (CCF) as a skeleton material to encapsulate the solid-to-solid phase change material polyurethane (PU) to provide PU@CCF composites for functional applications. The obtained PU@CCF composites were characterized by field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD), Fourier transform infrared (FT-IR) spectroscopy, thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), and thermal conductivity measurements. The results illustrated that the most preferred ratio of polyethylene glycol (PEG-6000) to hexamethylene diisocyanate (HDI) to synthesize PU was 1:2 and the CCF skeleton prevented PU leakage during the phase change process. Compared with PEG-6000, the thermal conductivity of the PU@CCF composite was raised by 54%, its cycle thermal stability was remarkable after 2000 cycles, and its supercooling degree was lowered by more than 10℃. For electro-to-heat energy conversion, the phase transition behavior of the obtained PU@CCF could be induced under an electron voltage as low as 0.8 V with 75% conversion efficiency at 1.1 V. This functional phase change composite realizes electric-heat conversion under the lowest loading voltage reported to date, providing an important benchmark for the preparation and functionalization of low-cost phase change composites.



Key wordsPhase change material      Thermal energy storage      Thermal conductivity      Carbon foam      Electro-to-heat energy conversion     
Received: 27 July 2016      Published: 18 October 2016
MSC2000:  O642  
Fund:  National Natural Science Foundation of China(51322205);National Natural Science Foundation of China(21371014);Specialized Research Fund of Beijing Municipal Science & Technology Commission, China(Z15111000090000);Specialized Research Fund of Beijing Municipal Science & Technology Commission, China(Z151100000915074)
Corresponding Authors: Ru-Qiang ZOU     E-mail: rzou@pku.edu.cn
Cite this article:

Wen-Hao WU,Xin-Yu HUANG,Rui-Min YAO,Ren-Jie CHEN,Kai LI,Ru-Qiang ZOU. Synthesis and Properties of Polyurethane/Coal-Derived Carbon Foam Phase Change Composites for Thermal Energy Storage. Acta Physico-Chimica Sinca, 2017, 33(1): 255-261.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610181     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I1/255

Fig 1 Schematic reaction mechanism of polyurethane (PU)
Fig 2 (a) FT-IR spectra of hexamethylene diisocyanate (HDI), polyethylene glycol-6000 (PEG-6000) and polyurethane (PU), (b) PXRD patterns of coal-derived carbon foam (CCF), PU, and PU@CCF composite
Fig 3 Structural morphology characterization of CCF and PU@CCF samples (a) optical photograph of CCF, (b, c) SEM images of CCF at 30× and 100×, (d) SEM image of PU@CCF composite at 100×, (e, f) TEM images of PU and PU@CCF
SamplePEG/HDI molar ratioΔH/(J·g-1)Melting point/℃Freezing point/℃Undercool temperature/℃
PEG-6000-175.658.041.216.8
PU1:276.746.138.37.8
PU@CCF1:1100.658.043.414.6
PU@CCF1:261.943.238.94.3
PU@CCF1:340.042.235.46.8
Table 1 Thermal properties of PEG-6000, PU, and different kinds of composites
Fig 4 Thermal physical properties of PEG-6000, PU and PU@CCF (a) TG analysis, (b) DSC analysis, (c) thermal cycle performance, (d) thermal conductivities
Fig 5 Electro-to-heat conversation performance of PU@CCF (a) current diagram, (b) temperature-time diagram, (c) electro-to-heat conversion efficiency
1 Hyun D. C. ; Levinson N. S. ; Jeong U. ; Xia Y. N. Angew. Chem. Int. Ed 2014, 53, 3780.
2 Thavasi V. ; Singh G. ; Ramakrishna S. Energy Environ. Sci 2008, 1, 205.
3 Ye H. ; Ge X. S. Sol. Energy Mater. Sol. Cells 2000, 64 (1), 37.
4 San A. ; Karaipekli A. Appl. Therm. Eng 2007, 27 (8), 1271.
5 Zhang Z. G. ; Huang G. F. ; Fang X. M. ; Shao G. Chem. Engineering 2005, 33 (4), 34.
5 张正国; 黄弋峰; 方晓明; 邵刚. 化学工程, 2005, 33 (4), 34.
6 Hu X. F. ; Lin L. Y. ; Hu D.W. J.Tianjin Univ. Technol 2008, 24 (3), 63.
6 胡小芳; 林丽莹; 胡大为. 天津理工大学学报, 2008, 24 (3), 63.
7 Zhang, M. Synthesis and Properties Study on PolyethyleneGlycol/Poly (Vinyl Alcohol) Polymeric Solid-Solid PhaseChange Materials. Ph. D. Dissertation, Jilin University, Changchun, 2004.
7 张梅.聚乙二醇/聚乙烯醇高分子固-固相变材料的合成与性能研究[D].长春:吉林大学, 2004.
8 Benson D. K. ; Burrows R.W. ; Webb J. D. Sol. Energy Mater 1986, 13, 133.
9 Chandra D. ; Helms J. H. ; Majumdar A. J.Electrochem. Soc 1994, 141 (7), 1921.
10 Machado A. V. ; Covas J. A. ; Duin M. V. Polymer 2001, 42, 3649.
11 Mehrabzadeh M. ; Rezaie D. J.Appl. Polym. Sci 2002, 84, 2573.
12 Liang X. H. ; Guo Y. Q. ; Gu L. Z. ; Ding E. Y. Macromolecules 1995, 28, 6551.
13 Harlan S. L. ACS Symp. Ser 1991, 457, 248.
14 Parrish B. ; Breitenkamp R. B. ; Emrick T. J.Am. Chem. Soc 2005, 127, 7404.
15 Sekiguchi A. ; Lee V. Y. ; Nanjo M. Coordin. Chem. Rev 2000, 210, 11.
16 Jannasch P. ; Wesslén B. J.Appl. Polym. Sci 1995, 58 (4), 753.
17 Lu X. P. ; Nilsson O. ; Fricke J. ; Pekala R.W. J.Appl. Phys 1993, 73 (2), 581.
18 Stankovich S. ; Dikin D. A. ; Dommett G. H. B. ; Kohlhaas K.M. ; Zimney E. J. ; Stach E. A. ; Piner R. D. ; Nguyen S. T. ; Ruoff R. S. Nature 2006, 442, 282.
19 Liu Z. F. Acta Phys. -Chim. Sin 2016, 32 (7), 1553.
19 刘忠范. 物理化学学报, 2016, 32 (7), 1553.
20 Zhang Y. F. ; Gao T. ; Zhang Y. ; Liu Z. F. Acta Phys. -Chim. Sin 2012, 28 (10), 2456.
20 张艳锋; 高腾; 张玉; 刘忠范. 物理化学学报, 2012, 28 (10), 2456.
21 Liu Z. F. Acta Phys. -Chim. Sin 2016, 32 (4), 810.
21 刘忠范. 物理化学学报, 2016, 32 (4), 810.
22 Balandin A. A. ; Ghosh S. ; Bao W. Z. ; Calizo I. ; Teweldebrhan D. ; Miao F. ; Lau C. N. Nano Lett 2008, 8, 902.
23 Chen Z. P. ; Ren W. C. ; Gao L. B. ; Liu B. L. ; Pei S. F. ; Cheng H. M. Nat. Mater 2011, 10, 424.
24 Klett J.W. ; McMillan A. D. ; Gallego N. C. ; Walls C. A. J. Mater. Sci 2004, 39, 3659.
25 Chen X. N. ; Lu Y. G. ; Zhang X. ; Zhao F. J. Mater. Des 2012, 40, 497.
26 Chen C. ; Kennel E. B. ; Stiller A. H. ; Stansberry P. G. ; Zondlo J.W. Carbon 2006, 44, 1535.
27 Calvo M. ; García R. ; Arenillas A. ; Suárez I. ; Moinelo S. R. Fuel 2005, 84, 2184.
28 Deng T. L. ; Bai R. C. ; Shao Q. S. ; Ren M. S. ; Zhang J. B. ; Zhou C. J. ; Pan J. F. Mater. Rev 2011, 25, 454.
28 邓涛略; 白瑞成; 邵勤思; 任慕苏; 张家宝; 周春节; 潘剑峰. 材料导报, 2011, 25, 454.
29 Li K. ; Wu Q. ; Ye P.W. ; Wang X. Q. ; Li L. ; Luan Z. Q. Carbon Techniques 2013, 32, 6.
29 李凯; 吴琼; 叶平伟; 王喜芹; 栗丽; 栾志强. 炭素技术, 2013, 32, 6.
30 Joulin A. ; Younsi Z. ; Zalewski L. ; Lassue S. ; Rousse D. R. ; Cavrot J. P. Appl. Energy 2011, 88, 2454.
31 Hou L. J. ; Ding Y. T. ; Zhang Z. L. ; Sun Z. S. ; Shan Z. H. Colloids Surf. A 2015, 467, 46.
32 Bilgin S. S. ; Derya K. ; Cemil A. ; Isa G. Carbohydr. Polym 2011, 84, 141.
33 Chen R. J. ; Yao R. M. ; Xia W. ; Zou R. Q. Appl. Energy 2015, 152, 183.
[1] AN Bao-Lin, YANG Fu-Fang, YANG Zhen, DUAN Yuan-Yuan, YU Yang-Xin. Measurements of the Viscosity and Thermal Conductivity of a Gas at Definitive Thermodynamic States[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1129-1133.
[2] XIA Xiang-Lai, LI Lin-Yan, GUO Fang, SU Wei, LIU Yan, CHEN Xiao-Mou, PAN She-Qi. Simulation of the Immobilization of Pu in the Gd2Zr2O7 Matrix by Investigating the Thermophysical Properties of (Gd1-xCex)2Zr2O7+x[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1810-1814.
[3] WU Ke-Zhong, SUN Xiao-Long, CHEN Lei, RUAN Bei. Preparation and Thermal Performances of 1-Alkylammonium Tetrachlorocobaltate Eutectoid Mixtures as Phase Change Materials[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1260-1264.
[4] NAN Guang-Hua, WANG Jian-Ping, WANG Yan, WANG He, LI Wei, ZHANG Xing-Xiang. Preparation and Properties of Nanoencapsulated Phase Change Materials Containing Polyaniline[J]. Acta Physico-Chimica Sinca, 2014, 30(2): 338-344.
[5] SHI Jing-Jie, CHEN Li-Ping, CHEN Wang-Hua, SHI Ning, YANG Hui, XU Wei. Prediction of the Thermal Conductivity of Organic Compounds Using Heuristic and Support Vector Machine Methods[J]. Acta Physico-Chimica Sinca, 2012, 28(12): 2790-2796.
[6] DU Ai, ZHOU Bin, GUI Jia-Yin, LIU Guang-Wu, LI Yu-Nong, WU Guang-Ming, SHEN Jun, ZHANG Zhi-Hua. Thermal and Mechanical Properties of Density-Gradient Aerogels for Outer-Space Hypervelocity Particle Capture[J]. Acta Physico-Chimica Sinca, 2012, 28(05): 1189-1196.
[7] WU Xiao-Lin, SUN Rong, ZHU Peng-Li, DU Ru-Xu. Near Infrared Spectrum Analysis of Organic/Inorganic Composite Microcapsule Phase Change Materials[J]. Acta Physico-Chimica Sinca, 2011, 27(05): 1039-1044.
[8] LAN Xiao-Zheng; YANG Chang-Guang; TAN Zhi-Cheng; SUN Li-Xian; XU Fen. Microencapsulation of n-eicosane as Energy StorageMaterial Synthesized by Interfacial Polymerization[J]. Acta Physico-Chimica Sinca, 2007, 23(04): 581-584.
[9] GAO Shuo;CAO Chen-Zhong. A Topological-Quantum Method for the Estimation of the Thermal Conductivity of Liquid Alkanes[J]. Acta Physico-Chimica Sinca, 2006, 22(12): 1478-1483.
[10] Zou Guang-Long;Lan Xiao-Zheng;Tan Zhi-Cheng;Sun Li-Xian;Zhang Tao. Microencapsulation of n-Hexadecane as a Phase Change Material in Polyurea[J]. Acta Physico-Chimica Sinca, 2004, 20(01): 90-93.
[11] Liu Hong-Qin. The Applications of Free Volume Models to the Evaluation of Transport Properties of Square Well Fluids[J]. Acta Physico-Chimica Sinca, 1994, 10(06): 495-500.
[12] Liu Hong-Qin. The Correlations of Viscosities and Thermal Conductivities of Saturated Vapors with Those of Coexisting Liquids[J]. Acta Physico-Chimica Sinca, 1994, 10(05): 461-467.