Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 356-363    DOI: 10.3866/PKU.WHXB201610191
ARTICLE     
Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones
Shun-Sheng ZHAO,Lan-Lan LI,Xiang-Rong LIU*(),Zuo-Cheng DING,Zai-Wen YANG
Download: HTML     PDF(2140KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Three acyl hydrazones N'-((2-hydroxynaphthalen-1-yl)methylene)-2-phenylacetohydrazide (1), N'-((2-hydroxynaphthalen-1-yl) methylene)-2-(4-hydroxyphenyl)acetohydrazide hydrate (2), and N'-((2-hydroxynaphthalen-1-yl) methylene)-2-(2-methoxyphenyl) acetohydrazide hydrate (3) were synthesized and then characterized by elemental analysis and single-crystal X-ray diffraction. The crystallographic data indicated that both compounds 2 and 3 crystallized in the monoclinic crystal lattice, space group C2/c, while compound 1 crystallized in the orthorhombic space group Pbca. The thermal decomposition processes of the three hydrazones were studied by thermogravimetry. The thermal decomposition temperatures of compounds 1, 2, and 3 were 318.23, 319.04, and 323.01℃, respectively. Meanwhile, the apparent activation energies for thermal decomposition for compounds 1, 2, and 3 were 115.90, 145.18, and 129.38 kJ·mol-1, respectively, calculated according to the Kissinger and Ozawa equations. The interactions of compounds 1-3 with calf thymus (CT)-DNA were evaluated by microcalorimetry. The results indicated these interactions were homogenous endothermic processes with non-identical interaction time (1.00-50.0 min) and interaction enthalpies (0.47-15.50 kJ·mol-1). The interaction enthalpies of compounds 1 and 2 were higher than those of their precursors, while the interaction enthalpy of compound 3 was lower than that of its precursor.



Key wordsAcyl hydrazone      Crystal structure      Thermogravimetry      Microcalorimetry      DNA binding     
Received: 05 September 2016      Published: 19 October 2016
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(21103135,21073139,21301139);Natural Science Basic Research Plan in Shaanxi Province, China(2016JM2011);Scientific Research Program Funded by Shaanxi Provincial Education Commission, China(15JK1492)
Corresponding Authors: Xiang-Rong LIU     E-mail: xkchemistry@163.com
Cite this article:

Shun-Sheng ZHAO,Lan-Lan LI,Xiang-Rong LIU,Zuo-Cheng DING,Zai-Wen YANG. Crystal Structure, Thermal Decomposition and Interaction with CT-DNA of Three 2-Hydroxy-1-naphthaldehyde Acyl Hydrazones. Acta Physico-Chimica Sinca, 2017, 33(2): 356-363.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610191     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/356

Fig 1 Synthetic routes of compounds 1,2,and 3
ItemValue
chemical formulaC19H16N2O2 (1)C19H18N2O4 (2)C19H16N2O4 (3)
formula weight304.34338.35336.34
crystal systemorthorhombicmonoclinicmonoclinic
space groupPbcaC2/cC2/c
unit cell dimensions
a/nm1.2370(3)2.9950(13)0.48540(10)
b/nm0.9704(3)0.8208(3)2.2104(5)
c/nm2.5854(7)1.3227(6)1.5471(3)
α/(°)909090
β/(°)90.00092.055(8)94.056(4)
γ/(°)909090
V/nm33.1034(15)3.2500(2)1.6558(6)
Z884
Dc/(g·cm-3)1.3031.3831.349
F(000)12801424704
θ range/(°)1.58-25.101.36-25.101.61-25.10
T/K296(2)296(2)296(2)
final R indices [I > 2sigma(I)]R1 = 0.0474, wR2 = 0.1306R1 = 0.1022, wR2 = 0.3473R1 = 0.0705, wR2 = 0.1887
R indices (all data)R1 = 0.0844, wR2 = 0.1619R1 = 0.1217, wR2 = 0.3653R1 = 0.1328, wR2 = 0.2280
goodness of fit1.0331.1301.011
Table 1  Crystallographic data for compounds 1,2,and 3
CompoundD―H…AdD―H/nmdH…A/nmdD…A/nm∠DHA/(°)
1N(1)―H(1)…O(1)#10.0860.2002.853(2)170.2
O(2)―H(2)…N(2)0.0820.1812.535(2)146.3
2N(2)―H(2)…O(4)#20.0860.1972.828(7)173.4
O(1)―H(1)…N(1)0.0820.1832.532(6)142.7
O(3)―H(3)…O(2)#30.0820.1932.707(7)158.1
O(4)―H(4A)…O(1)0.0850.2052.881(6)164.3
O(4)―H(4B)…O(3)#40.0860.2152.862(7)140.6
3N(1)―H(1)…O(1)0.0860.1952.619(4)133.1
O(3)―H(3)…N(2)0.0820.1852.563(4)145.2
O(4)―H(4A)…O(2)0.0880.2163.036(6)170.2
Table 2  Intermolecular hydrogen bonds of compounds 1,2,and 3
CompoundBondLength/nmBondAngle/(°)
1C(8)―O(1)0.1216(3)O(1)―C(8)―N(2)122.3(2)
C(19)―O(2)0.1346(3)O(1)―C(8)―C(7)123.2(2)
C(1)―C(6)0.1364(4)N(2)―C(8)―C(7)114.5(2)
C(1)―C(2)0.1362(4)N(1)―N(2)―C(9)―C(10)-171.4(2)
C(2)―C(3)0.1351(4)C(6)―C(7)―C(8)―O(1)28.5(4)
C(3)―C(4)0.1369(5)C(9)―C(10)―C(19)―O(2)-5.7(3)
C(6)―C(7)0.1503(3)C(8)―N(1)―N(2)―C(9)174.1(2)
C(7)―C(8)0.1504(3)N(2)―N(1)―C(8)―O(1)8.8(3)
C(9)―C(10)0.1448(3)C(6)―C(7)―C(8)―O(1)28.5(4)
2O(1)―C(1)0.1335(7)O(2)―C(12)―N(2)123.4(5)
O(2)―C(12)0.1213(7)O(2)―C(12)―C(13)122.2(5)
O(3)―C(17)0.1362(7)O(1)―C(1)―C(10)―C(11)1.2(9)
C(1)―C(10)0.1387(8)N(2)―N(1)―C(11)―C(10)176.6(4)
C(14)―C(19)0.1364(8)O(2)―C(12)―C(13)―C(14)-63.0(8)
C(18)―C(19)0.1373(9)C(9)―C(10)―C(11)―N(1)176.3(5)
3O(1)―C(2)0.1367(4)O(2)―C(8)―C(7)121.1(3)
O(1)―C(1)0.1432(4)N(2)―C(8)―O(2)117.1(3)
O(2)―C(8)0.1218(4)N(1)―N(2)―C(9)―C(10)-177.1(3)
C(2)―C(3)0.1398(5)C(2)―C(7)―C(8)―O(2)-170.8(4)
C(3)―C(4)0.1362(5)C(9)―C(10)―C(11)―O(3)-2.7(5)
C(9)―C(10)0.1445(5)C(5)―C(6)―C(7)―C(2)0.1(6)
C(7)―C(8)0.1498(4)C(3)―C(4)―C(5)―C(6)-0.5(7)
Table 3  Selected bond lengths and bond angles for compounds 1,2,and 3
Fig 1  Perspective view of crystal structure of compound 1 Thermal ellipsoids are drawn at the 30% probability level.
Fig 2  Hydrogen bonded interactions in compound 1
Fig 3  Perspective view of crystal structure of compound 2 Thermal ellipsoids are drawn at the 30% probability level.
Fig 4  Hydrogen bonded interactions in crystal structure of compound 2
Fig 5  Molecular structure of compound 3
Fig 6  Packing diagram of the crystal structure of compound 3
Fig 7  TG curves of compounds 1,2,and 3
Fig 8  DTG curves of compounds 1,2,and 3
Fig 9  Thermogenic curves for CT-DNA interaction with 2-hydroxy-1-naphthalene formaldehyde and hydrazines (a),(b),and (c) at 25 ℃
CompoundβTp/℃KissingerOzawa
(℃?min-1)E/(kJ?mol-1) gArE/(kJ?mol-1)E/(kJ?mol-1)
15319.04115.909.52-0.9998119.78-0.9998
10335.26
15345.66
25323.01145.1812.24-0.9998149.06-0.9999
10336.17
15344.50
35318.23129.3810.77-0.9867132.55-0.9885
10335.36
15340.72
Table 4  Kinetic parameters of thermal decomposition for compounds 1,2 and 3 at different heating rates
Fig 10  Thermogenic curves for CT-DNA interaction with 1.000-5.000 mg compound 1 at 25 ℃
Fig 11  Thermogenic curves for CT-DNA interaction with 1.000-5.000 mg compound 2 at 25 ℃
Fig 12  Thermogenic curves for CT-DNA interaction with 1.000-5.000 mg compound 3 at 25 ℃
Fig 13  Thermogenic curves for CT-DNA interaction with 2.000 mg compounds 1,2,and 3 at 25 ℃
CompoundΔH/(kJ?mol-1)
1 mg2 mg3 mg4 mg5 mg
a0.30
b0.10
c5.21
112.5015.5011.202.571.29
25.764.315.500.471.17
33.323.492.751.761.50
Table 5  Calculated enthalpy changes of interaction with CT-DNA of the acyl hydrazones
1 Rollas S. ; Kucukguzel S. G. Molecules 2007, 12, 1910.
2 Baliani A. ; Bueno G. J. ; Stewart M. L. ; Yardley V. ; Brun R. ; Barrett M. P. ; Gilbert I. H. J. Med. Chem. 2005, 48, 5570.
3 Webber, M. A.; Coldham, N. G. Measuring the Activity of Active Efflux in Gram-Negative Bacteria. In Antibiotic Resistance Protocols, 2nd ed.; Gillespie, S. H., McHugh, T. D. Eds.; Humana Press: Totowa, NJ, 2010; pp 173-180. doi:10.1007/978-1-60327-279-7_13
4 Su X. ; Aprahamian I. Chem. Soc. Rev. 2014, 43, 1963.
5 McKinnon D. D. ; Domaille D. W. ; Cha J. N. ; Anseth K. N. Chem. Mater. 2014, 26, 2382.
6 Ren J. W. ; Liu X. R. ; Yang Z. W. ; Zhao S. S. Thermochim. Acta 2014, 82, 17.
7 Liu, J. H.; Wu, X. Y.; Zhang, Q. Z.; He, X.; Yang, W. B.; Lu, C.Z. Chin. J. Inorg. Chem. 2006, 22, 1028.
7 刘九辉,吴小园,张全争,何翔,杨文斌,卢灿忠.无机化学学报, 2006, 22, 1028.
8 Wang S. X. ; Fu Y. F. ; Fan Z. J. ; Mi N. ; Zhang H. K. ; Song H. B. ; Nataliya P. B. ; Vasiliy A. B. Chin. J. Struct. Chem. 2011, 30, 235.
9 Fan N. Y. ; Gao S. ; Huo L. H. ; Zhao J. G. ; Wang H. S. ; Xi S. Q. J. Anal. Chem. 2005, 33, 751.
10 Li G. Q. ; Zhou Y. Z. ; Xiao L. M. ; Zhu H. J. ; Tu S. J. Chin. J. Inorg. Chem. 2008, 24, 1023.
10 李桂琴; 周荫庄; 肖岭梅; 朱惠菊; 屠淑洁. 无机化学学报, 2008, 24, 1023.
11 Patel M. N. ; Bhatt B. S. ; Dosi P. A. J. Therm. Anal. Calorim. 2012, 107, 55.
12 Yamaguchi T. ; Yamamoto Y. ; Kinoshita D. ; Akiba K. ; Zhang Y. ; Reed C. A. ; Hashizume D. ; Iwasaki F. J. Am. Chem. Soc. 2008, 130, 6894.
13 Yuan X. R. ; Shang Z. H. ; Li R. Y. ; Liu Y. H. ; Chen X. X. ; Zhang H. L. ; Xiu Y. Acta Phys. -Chim. Sin. 2009, 25, 1785.
13 原现瑞; 尚振华; 李润岩; 刘英华; 陈晓霞; 张慧丽俢勇. 物理化学学报, 2009, 25, 1785.
14 Wu W. T. ; Yang R. ; Hu T. ; Peng K. ; He S. Y. ; Hu R. Z. Acta Phys. -Chim. Sin 2004, 20, 1144.
14 武望婷; 杨锐; 胡亭; 彭科; 何水样; 胡荣祖. 物理化学学报, 2004, 20, 1144d.
15 Chen F. Y. ; Cao W. K. ; He S. Y. ; Wang B. H. ; Zhang Y. M. Acta Phys. -Chim. Sin 2006, 22, 280.
15 陈凤英; 曹文凯; 何水样; 王保怀; 张有民. 物理化学学报, 2006, 22, 280d.
16 He S. Y. ; Cao W. K. ; Hu T. ; Zhao J. S. ; Zhang W. P. ; Xue G.L. ; Hu R. Z. Acta Phys. -Chim. Sin 2002, 18, 865.
16 何水样; 曹文凯; 胡亭; 赵建设; 张维平; 薛岗林; 胡荣祖. 物理化学学报, 2002, 18, 865.
17 Bartell L. S. ; Roth E. A. ; Hollowell C. D. ; Kuchitsu K. ; Young J. E. J. Chem. Phys. 1965, 42, 2683.
18 Brown L. D. ; Ibers J. A. J. Am. Chem. Soc. 1976, 98, 1597.
19 Wang S. X. ; Huang J. ; Fan Z. J. ; Wang H. ; Fu Y. F. ; Mi N. ; Zhang Z. C. ; Song H. B. J. Chem. Crystallogr. 2011, 41, 1348.
20 Khan M. R. ; Omoloso A. D. Fitoterapia 2002, 73, 327.
21 Wads? I. J. Therm. Anal. Calorim. 2001, 64, 75.
22 Li X. ; Liu Y. ; Jun W. ; Liang H. G. ; Qu S. S. Thermochim. Acta 2002, 387, 57.
23 McGulnness M. S. ; Barisas B. G. Environ. Sci. Technol. 1991, 25, 1092.
24 Wang Y. L. ; Zhao F. Q. ; Ji Y. P. ; Yi J. H. ; An T. ; Liu W. X. Chin. Chem. Lett. 2014, 25, 902.
25 Yi P. G. ; Shang Z. C. ; Yu Q. S. Chin. J. Inorg. Chem. 2001, 17, 77.
25 易平贵; 商志才; 俞庆森. 无机化学学报, 2001, 17, 77.
[1] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.
[2] Lian YUAN,Yu-Jiao LIU,Huan HE,Feng-Lei JIANG,Hui-Rong LI,Yi LIU. Microcalorimetric Analysis of Isolated Rat Liver Mitochondrial Metabolism under Different Conditions[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 73-80.
[3] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 344-355.
[4] Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2480-2490.
[5] HUO Jian-Xia, SONG Su-Wei, JIN Cheng-Wei, REN Ning, GENG Li-Na, ZHANG Jian-Jun. Synthesis, Characterization, Thermal Decomposition Mechanism and Properties of the [Eu(4-MOBA)3(terpy)(H2O)]2 Complex[J]. Acta Physico-Chimica Sinca, 2016, 32(4): 901-906.
[6] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming, LIANG Min, CHEN Li-Ying. An Investigation into the Reaction Kinetics of Cubic Nano-Cu2O in Theory and Experiment[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2891-2897.
[7] TANG Huan-Feng, HUANG Zai-Yin, XIAO Ming. Effects of Particle Size and Temperature on Surface Thermodynamic Functions of Cubic Nano-Cu2O[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2678-2684.
[8] LI Jing, CHEN Li-Zhen, WANG Jian-Long, LAN Guan-Chao, HOU Huan, LI Man. Crystal Structure and Thermal Decomposition Kinetics of Byproduct of Synthesis of RDX: 3,5-Dinitro-1-oxygen-3,5-diazacyclohexane[J]. Acta Physico-Chimica Sinca, 2015, 31(11): 2049-2056.
[9] ZHANG Xiang-Xiong, CHEN Min. Influence of Homogeneous Electric Field on the Structure and Growth of Ice[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1208-1214.
[10] LI Jie, XIONG Ping-Ping, BU Huai-Yu, CHEN San-Ping. Syntheses, Structures, Antifungal Activities and DNACleavage of Transition Metal Coordination Compounds with 4-(1H-1,2,4-triazol-1-ylmethyl) Benzoic Acid[J]. Acta Physico-Chimica Sinca, 2014, 30(7): 1354-1362.
[11] CHEN Lai, CHEN Shi, HU Dao-Zhong, SU Yue-Feng, LI Wei-Kang, WANG Zhao, BAO Li-Ying, WU Feng. Crystal Structure and Electrochemical Performance of Lithium-Rich Cathode Materials xLi2MnO3·(1-x)LiNi0.5Mn0.5O2 (x=0.1-0.8)[J]. Acta Physico-Chimica Sinca, 2014, 30(3): 467-475.
[12] ZHU Yan-Yan, LIU Yan-Fang, LÜ Yan-Hui, WANG Hua, LING Qiang, ZHU Yong-Fa. Reflux Preparation and Photocatalytic Performance of Bismuth Phosphate Nanorods[J]. Acta Physico-Chimica Sinca, 2013, 29(03): 576-584.
[13] GAO Shuai, WU Yong-Quan, SHEN Tong, ZHANG Ning, LAI Li-Shan. Analysis of Zn-Mg Alloy Structure and Phases Distribution of Zn-Mg Diffusion System[J]. Acta Physico-Chimica Sinca, 2012, 28(09): 2037-2043.
[14] GUO Zheng, HU Xin-Gen, LIANG Hong-Yu, JIA Zhao-Peng, CHENG Wei-Na, LIU Jia-Min. Enthalpic Pairwise Interactions of α-Aminobutyric Acid Enantiomers in DMF+Water Mixtures[J]. Acta Physico-Chimica Sinca, 2012, 28(09): 2015-2022.
[15] HUA Xiao-Hui, LI Wei-Hong, XU Yi-Zhuang, WU Jin-Guang. Crystal Structures and Pore Stability of Coordination Polymers Constructed by Nicotinic Acid and Isonicotinic Acid with Co(II)[J]. Acta Physico-Chimica Sinca, 2012, 28(08): 1815-1822.