Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (3): 513-519    DOI: 10.3866/PKU.WHXB201610251
ARTICLE     
Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala]
Jing TONG*(),Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG
Download: HTML     PDF(1754KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

The density and viscosity of aqueous solutions of an ionic liquid (IL) based on alanine, [C2mim] [Ala], with various molalities were measured in the temperature range of T=288.15-328.15 K with intervals of 5 K. From the Jones-Dole equation, a viscosity B-coefficient with a large positive value and dB/dT < 0 were obtained. According to Feakins, the contribution of the solute to the activation free energy for viscous flow of the solution, Δμ2≠0, was obtained. The relationship between Δμ2≠0 and temperature was linear, allowing the standard molar activation entropy, ΔS2≠0, and enthalpy, ΔH2≠0, to be obtained. On the basis of Eyring's theory, a new semi-empirical method to estimate the viscosity of aqueous[C2mim] [Ala] was proposed. The values estimated using this method agreed well with the corresponding experimental ones.



Key wordsIonic liquid      Viscosity of solution      Viscosity B-coefficient      Activation parameter for viscous flow of solution      Transition-state theory     
Received: 13 September 2016      Published: 25 October 2016
MSC2000:  O642  
Fund:  the National Natural Science Foundation of China(21273003)
Corresponding Authors: Jing TONG     E-mail: tongjinglnu@sina.com
Cite this article:

Jing TONG,Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala]. Acta Phys. -Chim. Sin., 2017, 33(3): 513-519.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610251     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/513

Material Source Purity
717 type anion exchange resin National Pharmaceutical Group Chemical Reagent Company
1-methylimidazole Lanzhou Institute of Chemical Physics > 99%
bromoethane National Pharmaceutical Group Chemical Reagent Company > 98%
sodium hydroxide National Pharmaceutical Group Chemical Reagent Company > 96%
methyl alcohol National Pharmaceutical Group Chemical Reagent Company > 99.5%
acetonitrile National Pharmaceutical Group Chemical Reagent Company > 99.5%
ethyl acetate National Pharmaceutical Group Chemical Reagent Company > 99.5%
alanine National Pharmaceutical Group Chemical Reagent Company > 98.5%
absolute ethyl alcohol National Pharmaceutical Group Chemical Reagent Company > 99.7%
Table 1 Source and purity of the materials
Fig 1 Scheme of preparation of ionic liquids [C2mim][Ala] by the neutralization method 1: [C2mim]Br; 2: [C2mim][OH]; 3: [C2mim][Ala]
m/(mol?kg-1) ρ/(g?cm-3)
288.15 K 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K 318.15 K 323.15 K 328.15 K
0* 0.99910 0.99820 0.99704 0.99564 0.99403 0.99222 0.99021 0.98804 0.98569
0.0163 0.99956 0.99864 0.99746 0.99605 0.99443 0.99261 0.99061 0.98843 0.98609
0.0220 0.99971 0.99879 0.99760 0.99619 0.99456 0.99274 0.99074 0.98856 0.98622
0.0278 0.99987 0.99894 0.99775 0.99633 0.99470 0.99288 0.99088 0.98869 0.98635
0.0556 1.00063 0.99967 0.99844 0.99700 0.99536 0.99352 0.99152 0.98933 0.98698
0.1670 1.00375 1.00265 1.00129 0.99976 0.99809 0.99622 0.99419 0.99196 0.98960
0.2789 1.00697 1.00574 1.00420 1.00262 1.00087 0.99899 0.99691 0.99470 0.99226
0.3914 1.01018 1.00883 1.00722 1.00557 1.00373 1.00180 0.99972 0.99750 0.99503
0.5040 1.01331 1.01185 1.01015 1.00841 1.00653 1.00462 1.00243 1.00016 0.99775
0.6173 1.01653 1.01496 1.01313 1.01128 1.00933 1.00739 1.00521 1.00289 1.00047
0.7312 1.01977 1.01807 1.01610 1.01415 1.01210 1.01019 1.00798 1.00568 1.00326
0.8452 1.02277 1.02121 1.01898 1.01699 1.01491 1.01290 1.01066 1.00832 1.00594
1.0079 1.02715 1.02541 1.02307 1.02101 1.01897 1.01679 1.01457 1.01214 1.00974
Table 2 Values of density (ρ) for aqueous [C2mim][Ala] with various molalities at 288.15-328.15 K
m/(mol?kg-1) 106η/(Pa?s)
288.15 K 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K 318.15 K 323.15 K 328.15 K
0* 1138.94 1002.19 889.72 798.76 718.42 652.51 595.99 546.97 504.34
0.0163 1155.66 1016.83 900.32 810.28 726.22 661.23 604.04 554.05 510.81
0.0220 1162.14 1022.20 907.12 813.02 731.68 663.91 606.04 556.48 513.42
0.0278 1167.52 1026.54 911.25 816.71 734.85 666.47 608.46 558.74 515.47
0.0556 1203.50 1057.00 937.61 838.18 755.28 684.64 625.84 573.01 529.17
0.1670 1361.78 1197.73 1057.29 939.25 841.78 759.14 688.42 629.47 580.32
0.2789 1513.37 1326.28 1163.51 1028.02 917.09 827.74 749.56 685.07 625.26
0.3914 1658.85 1447.27 1273.96 1119.60 998.07 894.54 806.16 736.45 672.84
0.5040 1822.49 1576.27 1369.16 1210.09 1071.09 959.38 867.95 781.70 717.17
0.6173 1959.04 1698.93 1479.00 1302.43 1147.66 1027.68 929.59 832.47 764.53
0.7312 2102.97 1820.80 1581.68 1381.36 1225.96 1089.81 986.60 888.42 808.06
0.8452 2248.67 1943.41 1678.92 1470.57 1293.88 1158.21 1037.89 933.05 851.57
1.0079 2462.62 2111.12 1828.17 1600.75 1395.70 1255.26 1116.53 1001.13 912.97
Table 3 Values of viscosity (η) for aqueous [C2mim][Ala] with various molalities at 288.15-328.15 K
Fig 2 Plotting extrapolation function of ηvs c1/2 at 293.15, 303.15, 313.15, 323.15 K
288.15 K 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K 318.15 K 323.15 K 328.15 K
A/(L1/2?mol-1/2) -0.0800 -0.0699 -0.0648 -0.0605 -0.0513 -0.0469 -0.0401 -0.0292 -0.0212
B/(L?mol-1) 1.4074 1.3479 1.2833 1.2145 1.1529 1.1098 1.0619 1.0015 0.9688
r2 0.9996 0.9997 0.9997 0.9995 0.9998 0.9995 0.9997 0.9997 0.9998
s/(L1/2?mol-1/2) 0.0126 0.0098 0.0095 0.0117 0.0074 0.0104 0.0078 0.0076 0.0066
Table 4 Parameter A, B coefficient of viscosity for aqueous [C2mim][Ala] with the correlation coefficient square r2 and the standard deviation s at 288.15-328.15 K
Fig 3 Plotting predicted values of viscoity, ηpre for the aqueous [C2mim][Ala] vs the corresponding experimental values, ηexp
T/K Δμ1≠0/(kJ?mol-1) Δμ2≠0/(kJ?mol-1) ΔS2≠0/(J?mol-1) ΔH2≠0/(kJ?mol-1) ?V10/(cm3?mol-1) ?V20 /(cm3?mol-1)
288.15 9.441 217.1 1023 511.8 18.03 173.82
293.15 9.295 212.5 1023 512.3 18.05 175.10
298.15 9.162 207.0 1023 511.8 18.07 176.51
303.15 9.047 200.4 1023 510.4 18.09 177.33
308.15 8.929 194.5 1023 509.7 18.12 178.27
313.15 8.828 191.0 1023 511.2 18.16 178.62
318.15 8.735 186.6 1023 511.9 18.19 179.36
323.15 8.647 180.0 1023 510.5 18.23 179.82
328.15 8.566 177.4 1023 512.9 18.28 180.28
Table 5 Thermodynamic parameters of the activation for viscous flow of aqueous [C2mim][Ala]
m/(mol?kg-1) ΔμE≠/RT
288.15 K 293.15 K 298.15 K 303.15 K 308.15 K 313.15 K 318.15 K 323.15 K 328.15 K
0.0163 -0.0084 -0.0075 -0.0091 -0.0055 -0.0080 -0.0047 -0.0038 -0.3921 -0.0029
0.0220 -0.0108 -0.0099 -0.0088 -0.0089 -0.0070 -0.0069 -0.0065 -0.3921 -0.0032
0.0278 -0.0144 -0.0135 -0.0117 -0.0114 -0.0093 -0.0095 -0.0086 -0.3921 -0.0048
0.0556 -0.0231 -0.0217 -0.0188 -0.0191 -0.0138 -0.0132 -0.0097 -0.3921 -0.0052
0.1670 -0.0563 -0.0466 -0.0413 -0.0401 -0.0332 -0.0328 -0.0318 -0.3921 -0.0195
0.2789 -0.1080 -0.0952 -0.0888 -0.0852 -0.0759 -0.0697 -0.0645 -0.3921 -0.0520
0.3914 -0.1739 -0.1589 -0.1418 -0.1358 -0.1201 -0.1159 -0.1101 -0.3921 -0.0863
0.5040 -0.2374 -0.2244 -0.2134 -0.1939 -0.1784 -0.1698 -0.1546 -0.3921 -0.1302
0.6173 -0.3234 -0.3010 -0.2804 -0.2567 -0.2387 -0.2254 -0.2050 -0.3921 -0.1744
0.7312 -0.4115 -0.3839 -0.3581 -0.3349 -0.3027 -0.2917 -0.2649 -0.3921 -0.2278
0.8452 -0.5028 -0.4706 -0.4430 -0.4090 -0.3785 -0.3556 -0.3335 -0.3921 -0.2839
1.0079 -0.6375 -0.6039 -0.5636 -0.5190 -0.4877 -0.4528 -0.4305 -0.3921 -0.3691
β0 -0.0019 -0.0015 -0.0009 -0.0010 -0.0008 0.0007 -0.0003 0.0013 0.0024
β1/(kg?mol-1) -0.3154 -0.2773 -0.2558 -0.2430 -0.2041 -0.2112 -0.1766 -0.1531 -0.1427
β2/(kg2 ·mol-2) -0.3204 -0.3242 -0.3080 -0.2761 -0.2818 -0.2436 -0.2517 -0.2399 -0.2284
r2 0.99998 0.99998 0.99998 0.99998 0.99998 0.99998 0.99998 0.99998 0.99998
s 0.00271 0.00261 0.00249 0.00237 0.00226 0.00219 0.00210 0.00199 0.00019
Table 6 Values of ΔμE≠/RT of aqueous [C2mim][Ala]
Fig 4 Plotting the viscosity values, ηpre′, of aqueous [C2mim][Ala] estimated by using the semi-empirical methodvs the corresponding experimental ones, ηexp
1 Zhang S. ; Wang J. ; Lu X. ; Zhou Q. Structures and Interactions of Ionic Liquids Heidelberg, Germany: Springer, 2014.
2 Greaves T. L. ; Drummond C.J. Chem. Rev. 2007, 108 (1), 206.
3 Rantwijk F. V. ; Sheldon R. A. Chem. Rev. 2007, 38 (107), 2757.
4 Tariq M. ; Freire M. G. ; Saramago B. ; Coutinho J. A. P. ; Lopes J. N. C. ; Rebelo L. P. N. Chem. Soc. Rev. 2011, 41, 829.
5 Sun X. ; Luo H. ; Dai S. Chem. Rev. 2012, 112, 2100.
6 Riyazuddeen ; Usmani M. A. J.Chem. Eng. Data 2011, 56, 3504.
7 Liu W. ; Zhao T. ; Zhang Y. ; Wang H. ; Yu M. J.Solut. Chem. 2006, 35, 1337.
8 Tao G. H. ; He L. ; Liu W. S. ; Xu L. ; Xiong W. ; Wang T. ; Kou Y. Green Chem. 2006, 8, 639.
9 Fukumoto K. ; Ohno H. Chem. Commun. 2006, 3081.
10 Fukumoto K. ; Yoshizawa M. ; Ohno H. J.Am. Chem. Soc. 2005, 127, 2398.
11 Ohno H. ; Fukumoto K. Acc. Chem. Res. 2007, 40, 1122.
12 Tong J. ; Hong M. ; Chen Y. ; Wang H. ; Guan W. ; Yang J. Z. J.Chem. Thermodyn. 2012, 54, 352.
13 Hong M. ; Sun A. ; Yang Q. ; Guan W. ; Tong J. ; Yang J. Z. J.Chem. Thermodyn. 2013, 67, 91.
14 Hong M. ; Sun A. ; Liu C. ; Guan W. ; Tong J. ; Yang J. Z. Ind.Eng. Chem. Res. 2013, 52, 15679.
15 Hong M. ; Liu R. J. ; Yang H. X. ; Guan W. ; Tong J. ; Yang J.Z. J.Chem. Thermodyn. 2014, 70, 214.
16 Tong J. ; Liu Q. S. ; Zhang P. ; Yang J. Z. J.Chem. Eng. Data 2007, 52, 1497.
17 Jenkins H. D. B. ; Marcus Y. Chem. Rev. 1995, 95, 2695.
18 Feakins D. ; Freemantle D. J. ; Lawrence K. G. J. Chem. Soc.Faraday Trans. I 1974, 70, 795.
19 Feakins D. ; Waghorne W. E. ; Lawrence K. G. J. Chem. Soc.Faraday Trans. I 1986, 82, 563.
20 Lide D. R. Handbook of Chemistry and Physics 82nd ed. Boca Raton: CRC Press, 2001.
21 Huang Z. Q. An Introduction to the Theory of Electrolyte Solution revised ed. Beijing: Science Press, 1983.
21 黄子卿. 电解质溶液理论导论, 修订版 北京: 科学出版社, 1983.
22 Harned H. S. ; Owen B. B. The Physical Chemistry of Electrolyte Solutions 3rd ed. New York: Reinhold, 1958.
23 Eyring H. J.Chem. Phys. 1936, 4, 283.
24 Liu W. B. ; Wang J. J. ; Wang C. L. ; Lu J. S. Acta Phys.-Chim.Sin. 1992, 8, 742.
24 刘文彬; 王健吉; 王彩兰卢俊梭. 物理化学学报, 1992, 8, 742.
25 Liu W. B. ; Wu Y. P. ; Wang J. J. ; Lu J. S. Acta Phys.-Chim.Sin. 1995, 11, 590.
25 刘文彬; 吴艳平; 王健吉卢俊梭. 物理化学学报, 1995, 11, 590.
26 Mountain B.W. ; Seward T. M. Geochimica et Cosmochimica Acta 2003, 67, 3005.
27 Hu Y. F. ; Lee H. Electrochim Acta 2003, 48, 1789.
28 Hu Y. F. Chem. Eng. Sci. 2004, 59, 2457.
[1] Wenqiong CHEN,Yongji GUAN,Xiaoping ZHANG,Youquan DENG. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 912-919.
[2] Zhinan HU,Jiantao ZUO,Meichen XIA,Dawei FANG,Shuliang ZANG. Study on Solution Enthalpies of Ionic Liquids [Cnmim][H2PO4] (n= 3, 4, 5, 6) by Using Pitzer's Equation[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 933-937.
[3] Hui NING,Wenhang WANG,Qinhu MAO,Shirui ZHENG,Zhongxue YANG,Qingshan ZHAO,Mingbo WU. Catalytic Electroreduction of CO2 to C2H4 Using Cu2O Supported on 1-Octyl-3-methylimidazole Functionalized Graphite Sheets[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 938-944.
[4] Bihua CHEN,H. M. ELAGEED Elnazeer,Yongya ZHANG,Guohua GAO. BmmimOAc-Catalyzed Direct Condensation of 2-(Arylamino) Alcohols to Synthesize 3-Arylthiazolidine-2-thiones[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 952-958.
[5] Jing TONG,Ye QU,Liqiang JING,Lu LIU,Chunhui LIU. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 194-200.
[6] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[7] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1915-1922.
[8] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 736-744.
[9] Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 611-619.
[10] Ren-Jun MA,Qian-Jin GUO,Bo-Xuan LI,An-Dong XIA. Triplet Excited State Dynamics of Porphyrin in Ionic Liquid [Bmim][BF4][J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2191-2198.
[11] Wei-Jin YUAN,Zhen DONG,Long ZHAO,Tian-Lin YU,Mao-Lin ZHAI. γ-Ray-Induced Radiolysis of CMPO/[C2mim][NTf2] and Its Effect on Eu3+ Extraction[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2101-2107.
[12] Xiao-Di ZHENG,Yan-Li ZHU,Rui DONG,Qing-Jie JIAO. Effect of Alkyl Imidazole Ionic Liquids CnmimCl (n=4, 6, 8) on CL-20 Recrystallization[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1950-1959.
[13] Yang WU,Li-Li YUE,Qiao-Zhen LIU,Xia WANG. A Theoretical Study of the Thermodynamic Properties of Imidazolium Acetate Ionic Liquids[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1960-1966.
[14] Xiao-Ning ZHANG,Hong-Mei HU. Investigation of Interfaces of Ionic Liquid via Kelvin Probe Force Microscopy at Room Temperature[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1722-1726.
[15] Jun-Lin MAI,De-Lin SUN,Xue-Bo QUAN,Li-Bo LI,Jian ZHOU. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1649-1657.