Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 377-385    DOI: 10.3866/PKU.WHXB201610272
ARTICLE     
3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery
Xue-Jun BAI1,*(),Min HOU1,Chan LIU1,Biao WANG2,Hui CAO1,3,Dong WANG1,3
1 Shanghai Aerospace Power Technology LTD, Shanghai 201615, P. R. China
2 College of Material Science and Engineering, Donghua University, Shanghai 201620, P. R. China
3 Shanghai Institute of Space Power Source, Shanghai 200245, P. R. China
Download: HTML     PDF(2620KB) Export: BibTeX | EndNote (RIS)      

Abstract  

With the widespread use of mobile electronic devices and increasing demand for electric energy storage in the transportation and energy sectors, lithium-ion batteries (LIBs) have become a major research and development focus in recent years. The current generation of LIBs use graphite as the anode material, which has a theoretical capacity of 372 mAh·g-1. Tin-based materials are considered promising anode materials for next-generation LIBs because of their favorable working voltage and unsurpassed theoretical specific capacity. However, overcoming the rapid storage capacity degradation of tin caused by its large volumetric changes (>200%) during cycling remains a major challenge to the successful implementation of such materials. In this paper, SnO2 nanoparticles with a diameter of 2-3 nm were used as active materials in LIB anodes and a threedimensional (3D) graphene hydrogel (GH) was used as a buffer to decrease the volumetric change. Typically, SnCl4 aqueous solution (18 mL, 6.4 mmol·L-1) and graphene oxide (GO) suspension (0.5% (w, mass fraction), 2 mL) were mixed together via sonication. NaOH aqueous solution (11.4 mmol·L-1, 40 mL) was slowly added and then the mixture was stirred for 2 h to obtain a stable suspension. Vitamin C (VC, 80 mg) was then added as a reductant. The mixture was kept at 80℃ for 24 h to reduce and self-assemble. The resulting black block was washed repeatedly with distilled deionized water and freeze-dried to obtain SnO2-GH. In this composite, GH provides large specific surface area for efficient loading (54% (w)) and uniform distribution of nanoparticles. SnO2-GH delivered a capacity of 500 mAh·g-1 at 5000 mA·g-1 and 865 mAh·g-1 at 50 mA·g-1 after rate cycling.This outstanding electrochemical performance is attributed to the 3D structure of GH, which provides large internal space to accommodate volumetric changes, an electrically conducting structural porous network, a large amount of lithium-ion diffusion channels, fast electron transport kinetics, and excellent penetration of electrolyte solution. This study demonstrates that 3D GH is a potential carbon matrix for LIBs.



Key wordsGraphene hydrogel      SnO2      Lithium-ion battery      Anode      Three-dimension     
Received: 26 September 2016      Published: 27 October 2016
MSC2000:  O646  
Fund:  the Shanghai Science and Technology Innovation Plan, China(15DZ1201001,16111106001)
Corresponding Authors: Xue-Jun BAI     E-mail: renee1125@163.com
Cite this article:

Xue-Jun BAI,Min HOU,Chan LIU,Biao WANG,Hui CAO,Dong WANG. 3D SnO2/Graphene Hydrogel Anode Material for Lithium-Ion Battery. Acta Physico-Chimica Sinca, 2017, 33(2): 377-385.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610272     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/377

Anode materialVC : GO mass ratioReaction time/h
GH-14 : 13
GH-28 : 13
GH-38 : 18
GH-48 : 18
Table 1  Experiment parameters of graphene hydrogel (GH) in aqueous solution
Anode materialSn+ concentration/(mmol?L-1)NaOH solution volume/mL
SnO2-GH-16.440
SnO2-GH-23.220
SnO2-GH-31.610
SnO2-GH-40.85
Table 2  Experiment parameters of SnO2-GH anode materials in aqueous solution
Fig 1  Schematic illustration of structure change in the process of preparation of SnO2-GH anode materials
Fig 2  X-ray photoelectron spectroscopy (XPS) high resolution C 1s spectra of GH with different experiment parameters in aqueous solution
Fig 3  Field emission scanning electron microscopy (FESEM) images of GH with different experiment parameters in aqueous solution (a) GH-1,(b) GH-2,(c) GH-3 (with an inset of the digital photo of GH under compression),(d) GH-4
Fig 4  (a) X-ray diffraction (XRD) patterns and (b) Raman spectra of SnO2-GH-1 and GH-4 anode materials
Fig 5  XPS spectra of SnO2-GH-1 anode materials (a) survey spectrum,(b) high resolution C 1s spectrum,(c) high resolution Sn 3d spectrum
Fig 6  Thermogravimetic analysis (TGA) curves of SnO2-GH and GH-4 anode materials
Fig 7  FESEM images of various SnO2-GH anode materials (a,b) SnO2-GH-1,(c,d) SnO2-GH-2,(e,f) SnO2-GH-3,(g,h) SnO2-GH-4
Fig 8  Transmission electron microscope (TEM) images of various SnO2-GH anode materials (a,b) SnO2-GH-1,(c) SnO2-GH-2,(d) SnO2-GH-3,(e,f) SnO2-GH-4
Fig 9  Cyclic voltammetry (CV) curves of SnO2-GH-1 anode materials
Fig 10  (a) Cycle capacity of GH-4 anode materials at 100 mA?g-1,(b) rate capacity of SnO2-GH anode materials,and (c) galvanostatic charge-discharge profiles of SnO2-GH-1 anode materials
Fig 11  FESEM images of SnO2-GH-1 anode materials after rate cycling test Inset is the energy dispersive spectrum (EDS).
Fig 12  EIS spectra of SnO2-GH anode materials post-cycles The inset is the equivalent circuit. CPE: constant phase angle element;Wo:Warburg resistance; Rs: contact resistance inside the battery; RSEI:solid electrolyte interface film resistance; Rct: charge transfer resistance
Anode materialRsRSEIRct
SnO2-GH-17.041.976.9
SnO2-GH-25.530.070.2
SnO2-GH-35.028.467.1
SnO2-GH-44.229.060.0
Table 3  Electrochemical impedance spectroscopy (EIS) fitting results of SnO2-GH anode materials
1 Goodenough J. B. ; Kim Y. Chem. Mater. 2010, 22, 587.
2 Dunn B. ; Kamath H. ; Tarascon J. M. Science 2011, 334, 928.
3 Li H. ; Wang Z. ; Chen L. ; Huang X. Adv. Mater. 2009, 21, 4593.
4 Wang J. T. ; Wang Y. ; Huang B. ; Yang Y. J. ; Tan X. ; Lu S. G. Acta Phys. -Chim. Sin. 2014, 30, 305.
4 王建涛; 王耀; 黄斌; 杨娟玉; 谭翱; 卢世刚. 物理化学学报, 2014, 30, 305d.
5 Huang J. J. ; Dong Z. J. ; Zhang X. ; Yuan G. M. ; Cong Y. ; Cui Z. W. ; Li X. K. Acta Phys. -Chim. Sin. 2016, 32, 1699.
5 黄家骏; 董志军; 张旭; 袁观明; 丛野; 崔正威; 李轩科. 物理化学学报, 2016, 32, 1699.
6 Tarascon J. M. ; Armand M. Nature 2001, 414, 359.
7 Eom K. S. ; Jung J. ; Lee J. T. ; Lair V. ; Joshi T. ; Lee S. W. ; Lin Z. ; Fuller T. F. Nano Energy 2015, 12, 314.
8 Yang Z. ; Zhang W. ; Shen Y. ; Yuan L. X. ; Huang Y. H. Acta Phys. -Chim. Sin. 2016, 32, 1062.
8 杨泽; 张旺; 沈越; 袁利霞; 黄云辉. 物理化学学报, 2016, 32, 1062.
9 Bai X. J. ; Wang B. ; Cheng X. ; Jiang J. M. J. Donghua Univ. (Eng. Ed.) 2015, 32, 379.
10 Zhong Y. ; Li X. ; Zhang Y. ; Li R. ; Cai M. ; Sun X. Appl. Surf. Sci. 2015, 332, 192.
11 Wang M. S. ; Lei M. ; Wang Z. Q. ; Zhao X. ; Xu J. ; Yang W. ; Huang Y. ; Li X. J. Power Sources 2016, 309, 238.
12 Guo W. ; Li F. ; Duan X. ; Ma J. Mater. Lett. 2016, 166, 210.
13 Shao Q. G. ; Chen W. M. ; Wang Z. H. ; Qie L. ; Yuan L. X. ; Zhang W. X. ; Hu X. L. ; Huang Y. H. Electrochem. Commun. 2011, 13, 1431.
14 Kim J. G. ; Nam S. H. ; Lee S. H. ; Choi S. M. ; Kim W. B. ACS Appl. Mater. Interf. 2011, 3, 828.
15 Yu Y. ; Chen C. H. ; Shi Y. Adv. Mater. 2007, 19, 993.
16 Lou X. W. ; Li C. M. ; Archer L. A. Adv. Mater. 2009, 21, 2536.
17 Han Y. ; Wu X. ; Ma Y. ; Gong L. ; Qu F. ; Fan H. CrystEngComm 2011, 13, 3506.
18 Lei D. ; Zhang M. ; Hao Q. ; Chen L. ; Li Q. ; Zhang E. ; Wang T. Mater. Lett. 2011, 65, 1154.
19 Zhou X. ; Zou Y. ; Yang J. J. Power Sources 2014, 253, 287.
20 Wang R. H. ; Xu C. H. ; Sun J. ; Gao L. ; Yao H. L. ACS Appl. Mater. Interf. 2014, 6, 3427.
21 Billaud D. ; Balan L. ; Schneider R. ; Willmann P. Carbon 2006, 44, 2508.
22 Du G. ; Zhong C. ; Zhang P. ; Guo Z. ; Chen Z. ; Liu H. Electrochem. Acta 2010, 55, 2582.
23 Hassoun J. ; Panero S. ; Mulas G. ; Scrosati B. J. Power Sources 2007, 171, 928.
24 Lee W. J. ; Park M. H. ; Wang Y. ; Lee J. Y. ; Cho J. Chem. Commun. 2010, 46, 622.
25 Park J. ; Eom J. ; Kwon H. Electrochem. Commun. 2009, 11, 596.
26 Yang Q. H. Acta Phys. -Chim. Sin. 2016, 32, 1051.
26 杨全红. 物理化学学报, 2016, 32, 1051.
27 Gong Y. ; Yang S. ; Zhan L. ; Ma L. ; Vajtai R. ; Ajayan P. M. Adv. Funct. Mater. 2014, 24, 125.
28 Xiao L. ; Wu D. ; Han S. ; Huang Y. ; Li S. ; He M. ; Zhang F. ; Feng X. ACS Appl. Mater. Interf. 2013, 5, 3764.
29 Zhang Z. ; Xiao F. ; Guo Y. ; Wang S. ; Liu Y. ACS Appl. Mater. Interf. 2013, 5, 2227.
30 Bai X. ; Yu Y. ; Kung H. H. ; Wang B. ; Jiang J. M. J. Power Sources 2016, 306, 42.
31 Zhao X. ; Hayner C. M. ; Kung M. C. ; Kung H. H. Adv. Energy Mater. 2011, 1, 1079.
[1] Xiyue ZHANG,Yalan HUANG,Shuwei WU,Yinxiang ZENG,Minghao YU,Faliang CHENG,Xihong LU,Yexiang TONG. Engineering Oxygen-Deficient Na2Ti3O7 Nanobelt Arrays on Carbon Cloth as Advanced Flexible Anodes for Sodium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 219-226.
[2] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[3] Lei. HE,Jun-Min. XU,Yong-Jian. WANG,Chang-Jin. ZHANG. LiFePO4-Coated Li1.2Mn0.54Ni0.13Co0.13O2 as Cathode Materials with High Coulombic Efficiency and Improved Cyclability for Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1605-1613.
[4] Ai-Hua TIAN,Wei WEI,Peng QU,Qiu-Ping XIA,Qi SHEN. One-Step Synthesis of SnS2 Nanoflower/Graphene Nanocomposites with Enhanced Lithium Ion Storage Performance[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1621-1627.
[5] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[6] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[7] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[8] Yong-Ping GAN,Pei-Pei LIN,Hui HUANG,Yang XIA,Chu LIANG,Jun ZHANG,Yi-Shun WANG,Jian-Feng HAN,Cai-Hong ZHOU,Wen-Kui ZHANG. The Effects of Surfactants on Al2O3-Modified Li-rich Layered Metal Oxide Cathode Materials for Advanced Li-ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1189-1196.
[9] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[10] Xu ZHEN,Xue-Jing GUO. Synthesis and Lithium Storage Performance of Three-Dimensional Mesostructured ZnCo2O4 Cubes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 845-852.
[11] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 486-499.
[12] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2510-2516.
[13] Shuai LIU,Lu YAO,Qin ZHANG,Lu-Lu LI,Nan-Tao HU,Liang-Ming WEI,Hao WEI. Advances in High-Performance Lithium-Sulfur Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2339-2358.
[14] Xiao-Ye NIU,Xiao-Qin DU,Qin-Chao WANG,Xiao-Jing WU,Xin ZHANG,Yong-Ning ZHOU. AlN-Fe Nanocomposite Thin Film:A New Anode Material for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2517-2522.
[15] Bo PENG,Yao-Lin XU,Fokko M. MULDER. Improving the Performance of Si-Based Li-Ion Battery Anodes by Utilizing Phosphorene Encapsulation[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2127-2132.