Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 370-376    DOI: 10.3866/PKU.WHXB201610311
ARTICLE     
Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell
Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO*()
Download: HTML     PDF(970KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Phosphomolybdic acid was investigated as a mediator for indirect carbon electrooxidation at low temperatures. Linear sweeping voltammetry and chronoamperometry experiments showed that the carbon electrooxidation process was influenced by the type of carbonaceous material, reaction conditions, reaction time, and phosphomolybdic acid concentration. The mechanism underlying indirect carbon electrooxidation was explored using cyclic voltammetry. The results showed that the reactivity of coconut-derived activated carbon was higher than that of coal-derived activated carbon or coal in the chemical reaction between phosphomolybdic acid and carbon materials. Sunlight and heating to 80℃ similarly improved the efficiency of the indirect carbon electrooxidation. The electrooxidation mechanism is as follows:MoVI in phosphomolybdic oxidizes carbon to form MoV, and is then electrooxidized back to MoVI in an anodic reaction, releasing the electron obtained from the carbon material. This process facilitated the indirect electrooxidation of carbon at low temperatures. Sunlight was found to enhance the rate of the chemical reaction between phosphomolybdic acid and carbon materials in two ways:1) thermally by increasing the reaction temperature and thus improving the reaction rate; 2) photocatalytically, as sunlight absorbed by phosphomolybdic acid is converted into chemical energy, which is the main effect. A full cell test with phosphomolybdic acid demonstrated a power density of 0.087 mW·cm-2 at room temperature, indicating that the concept of low-temperature carbon fuel cells is feasible.



Key wordsLow-temperature carbon fuel cell      Indirect electrooxidation      Phosphomolybdic acid      Activated carbon      Sunlight irradiation     
Received: 07 September 2016      Published: 31 October 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21306033,21476053)
Corresponding Authors: Dian-Xue CAO     E-mail: caodianxue@hrbeu.edu.cn
Cite this article:

Jin-Ling YIN,Jia LIU,Qing WEN,Gui-Ling WANG,Dian-Xue CAO. Phosphomolybdic Acid as a Mediator for Indirect Carbon Electrooxidation in LowTemperature Carbon Fuel Cell. Acta Physico-Chimica Sinca, 2017, 33(2): 370-376.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201610311     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/370

Fig 1  Color change of PMo12 reacted with different carbon materials (a) the color of PMo12; (b) the color of PMo12 reacted with coconut activated carbon; (c) the color of PMo12 reacted with coal derived activated carbon; (d) the color of PMo12 reacted with coal
Fig 2  Linear sweep voltammogram (LSV) curves (a) and the CA curves (b) of reduced PMo12 reacted at 80 ℃ with different types of carbon materials AC: activated carbon; CA: chronoamperometry
Fig 3  LSV curves of reduced PMo12 with coconut activated carbon at different conditions
Fig 4  Temperature comparison of coconut activated carbon with PMo12 solution and pure PMo12 solution under sunlight
Fig 5  LSV curves of PMo12 reacted with coconut activated carbon in absence and presence of water cool
Fig 6  LSV curves of reduced PMo12 reacted with coconut activated carbon at 80 ℃ after different reaction time The insert is the plot of current density and the reaction time of PMo12 reacted with coconut activated carbon at 80 ℃.
Fig 7  LSV curves of different concentrations of PMo12 reacted with coconut activated carbon The insert is the plot of current density and the concentration of PMo12 reacted with coconut activated carbon at 80 ℃ for 6 h.
Fig 8  Cyclic voltammetry (CV) curves of PMo12 on the carbon cloth
Fig 9  Performance curves of fuel cell with an anolyte of reduced PMo12 and a catholyte of (VO2) 2SO4 at 25 ℃
1 Cao D. X. ; Sun Y. ; Wang G. L. J. Power Sources 2007, 167, 250.
2 Kacprzak A. ; Kobylecki R. ; Bis Z. J. Power Sources 2013, 239, 409.
3 Kacprzak A. ; Koby?ecki R. ; W?odarczyk R. ; Bis Z. J. Power Sources 2014, 255, 179.
4 Wang C. Q. ; Liu J. ; Zeng J. ; Yin J. L. ; Wang G. L. ; Cao D. X. J. Power Sources 2013, 233, 244.
5 Liu J. ; Ye K. ; Zeng J. ; Wang G. L. ; Yin J. L. ; Cao D. X. Electrochem. Commun. 2014, 38, 12.
6 Rady A. C. ; Gibbdey S. ; Kulkarni A. ; Badwal S. P. S. ; Bhattacharya S. ; Ladewig B. P. Appl. Energy 2014, 120, 56.
7 Kularni A. ; Giddey S. ; Badwal S. P. S. ; Paul G. Electrochim. Acta 2014, 121, 34.
8 Xu X. Y. ; Zhou W. ; Liang F. L. ; Zhu Z. H. Appl. Energy 2013, 108, 402.
9 Elleuch A. ; Yu J. S. ; Boussetta A. ; Halouani K. ; Li Y. D. Int. J. Hydrog. Energy 2013, 38, 8514.
10 Weibel D. B. ; Boulatov R. ; Lee A. ; Ferrigno R. ; Whitesides G. M. Angew. Chem. Int. Ed. 2005, 44, 5682.
11 Paraknowitsch J. P. ; Thomas A. ; Antonietti M. Chem. Mater. 2009, 21, 1170.
12 Kozhevnikov I. V. Chem. Rev. 1998, 98, 171.
13 Subba Reddy B. V. ; Narasimhulu G. ; Subba Lakshumma P. ; Vikram Reddy Y. ; Yadav J. S. Tetrahedron Lett. 2012, 53 (14), 1776.
14 Yadav J. S. ; Satyanarayana M. ; Balanarsaiah E. ; Raghavendra S. Tetrahedron Lett. 2006, 47 (34), 6095.
15 Wang B. ; Zhang J. ; Zou X. ; Dong H. G. ; Yao P. P. Chem. Eng. J. 2015, 260, 172.
16 Song X. J. ; Zhu W. C. ; Yan Y. ; Gao H. C. ; Gao W. X. ; Zhang W. X. ; Jia M. J. J. Mol. Catal. A: Chem. 2016, 413, 32.
17 Kendell S. M. ; Brown T. C. ; Burns R. C. Catal. Today 2008, 131 (1-4), 526.
18 Gao Y. Z. ; Syed J. A. ; Lu H. B. ; Meng X. K. Appl. Surf. Sci. A 2016, 360, 389.
19 Martínez-Morlanes M. J. ; Martos A. M. ; Várez A. ; Levenfeld B. J. Membr. Sci. 2015, 492, 371.
20 Gómez-Romero P. ; Asensio J. A. ; Borrós S. Electrochim. Acta 2005, 50 (24), 4715.
21 Sauk J. ; Byun J. ; Kim H. J. Power Sources 2005, 143 (1-2), 136.
22 Guo X. ; Guo D. J. ; Wang J. S. ; Qiu X. P. ; Chen L. Q. ; Zhu W. T. J. Electroanal. Chem. 2010, 638 (1), 167.
23 Zhu M. Y. ; Gao X. L. ; Luo G. Q. ; Dai B. J. Power Sources 2013, 225, 27.
24 Jin X. L. ; He B. ; Miao J. G. ; Yuan J. H. ; Zhang Q. X. ; Niu L. Carbon 2012, 50 (8), 3083.
25 Dong Q. ; Wang X. Y. ; Lu Y. M. ; Sun H. Y. ; Meng Q. L. ; Liu S. L. ; Feng W. ; Han X. K. J. Mol. Struct. 2014, 1075, 154.
26 He T. ; Yao J. Progress in Materials Science 2006, 51, 810.
27 Liu W. ; Mu W. ; Liu M. ; Zhang X. ; Cai H. ; Deng Y. Nat. Commun. 2014, 5, 3208.
28 Yamase T. Chem. Rev. 1998, 98, 307.
29 Pham M. C. ; Bouallala S. ; Lé L. A. ; Dang V. M. ; Lacaze P. C. Electrochim. Acta 1997, 42 (3), 439.
30 Sun C. Q. ; Zhang J. D. Electrochim. Acta 1998, 43 (8), 943.
31 Wang, Y. Q. Study of Methanol Oxidation on Pt-Au Electrode Enhanced by Phosphomolybdic Acid. M. S. Dissertation, Chongqing University, Chongqing, 2007.
31 王耀琼. Pt-Au电极上磷钼酸增强甲醇电化学氧化的研究[D].重庆:重庆大学, 2007.
32 Zhang, H. B.; Wu, T. H.; Yan, X. B.; Leng, Y. C.; Li, S. J. Chem. J. Chin. Univ. 1990, 11 (10), 1096.
32 张恒彬,吴通好,阎晓斌,冷玉春,李树家.高等学校化学学报, 1990, 11 (10), 1096.
33 Jing S. B. ; Zhang H. B. ; Zhu W. C. ; Wang Z. L. ; Wang G. J. J. Jilin Univ.(Science Edition) 2003, 41 (4), 534.
33 井淑波; 张恒彬; 朱万春; 王振旅; 王国甲. 吉林大学学报(理学版), 2003, 41 (4), 534.
34 Unoura K. ; Tanaka N. Inorg. Chem. 1983, 22, 2963.
[1] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 787-794.
[2] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2245-2252.
[3] WANG Yong-Fang, ZUO Song-Lin. Electrochemical Properties of Phosphorus-Containing Activated Carbon Electrodes on Electrical Double-Layer Capacitors[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 481-492.
[4] LI Ya-Jie, NI Xing-Yuan, SHEN Jun, LIU Dong, LIU Nian-Ping, ZHOU Xiao-Wei . Preparation and Performance of Polypyrrole/Nitric Acid Activated Carbon Aerogel Nanocomposite Materials for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2016, 32(2): 493-502.
[5] TONG Li, XU Wen-Qing, QI Hao, ZHOU Xuan, LIU Rui-Hui, ZHU Ting-Yu. Enhanced Effect of O/N Groups on the Hg0 Removal Efficiency over the HNO3-Modified Activated Carbon[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 512-518.
[6] YANG Jie-Yang, HUANG Zhang-Gen, HAN Xiao-Jin, JING Wen, ZENG Ze-Quan. Effect of Activated Carbon Pore Structure on the Adsorption of Pb(II) from Aqueous Solution[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1956-1962.
[7] XIAO Bo, LIU Shou-Qing. Photocatalytic Oxidation of Ammonia via an Activated Carbon-Nickel Ferrite Hybrid Catalyst under Visible Light Irradiation[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1697-1705.
[8] SUN Xian-Zhong, HUANG Bo, ZHANG Xiong, ZHANG Da-Cheng, ZHANG Hai-Tao, MA Yan-Wei. Experimental Investigation of Electrochemical Impedance Spectroscopy of Electrical Double Layer Capacitor[J]. Acta Physico-Chimica Sinca, 2014, 30(11): 2071-2076.
[9] HUANG Bo, SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Organic Electrolytes for Activated Carbon-Based Supercapacitors with Flexible Package[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1998-2004.
[10] JIN Wei-Yang, CHENG Dang-Guo, CHEN Feng-Qiu, ZHAN Xiao-Li. Synthesis of MFI-Type Zeolite Membrane Encapsulated Activated Carbon Particles Using a Modified Seeded Method[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 139-143.
[11] ZhONG Hao-Xiang, ZHAO Chun-Bao, LUO Hao, ZHANG Ling-Zhi. Novel Organosilicon Ionic Liquid Based Electrolytes for Supercapacitors[J]. Acta Physico-Chimica Sinca, 2012, 28(11): 2641-2647.
[12] PING Li-Na, ZHENG Jia-Ming, SHI Zhi-Qiang, WANG Cheng-Yang. Electrochemical Performance of Lithium Ion Capacitors Using Li+-Intercalated Mesocarbon Microbeads as the Negative Electrode[J]. Acta Physico-Chimica Sinca, 2012, 28(07): 1733-1738.
[13] TANG Jing, ZENG Qiao, CHEN Zhen-Dong, HUANG Xiang-Qian. Electrochemical Indirect Measurement for the Study of Glutathione Adsorption on Multiwalled Carbon Nanotubes and Activated Carbon[J]. Acta Physico-Chimica Sinca, 2012, 28(05): 1269-1274.
[14] SUN Xian-Zhong, ZHANG Xiong, ZHANG Da-Cheng, MA Yan-Wei. Activated Carbon-Based Supercapacitors Using Li2SO4 Aqueous Electrolyte[J]. Acta Physico-Chimica Sinca, 2012, 28(02): 367-372.
[15] XU San-Kui, LI Li-Min, GUO Nan-Nan, SU Yun-Lai, ZHANGPeng. Hydrogenation of Glucose Using Ru/Activated Carbon Catalysts: Effects of Modification Methods on Surface Properties of Activated Carbon[J]. Acta Physico-Chimica Sinca, 2012, 28(01): 177-183.