Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (2): 305-313    DOI: 10.3866/PKU.WHXB201611012
REVIEW     
Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance
Zhong WU1,2,Xin-Bo ZHANG1,*()
1 State Key Laboratory of Rare Earth Resource Utilization, Changchun Institute of Applied Chemistry, Changchun 130022, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(1545KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Supercapacitors (SCs) have been explored as one of the electrical sources because of their fast charge and discharge rates, good safety, and long cycle life. However, the limited energy densities of SCs hinder their further application. Thus, current research on SCs focuses on increasing their energy density. Enhancing specific capacitance is an effective way to increase energy density. In this review, we describe several approaches to achieve superior electrochemical properties by optimizing electrode materials and electrolytes. Considering electrode materials, their electrochemical performance is related to their specific surface area, pore structure, and electroconductivity. On one hand, the optimization of specific surface area and pore structure can increase their content of exposed active sites as well as electrolyte ion conductivity, which is beneficial for improved specific capacitance. On the other hand, enhanced electroconductivity leads to higher specific capacitance. The specific capacitances of electric double-layer capacitors and pseudocapacitors have been increased by optimizing carbon-based materials and metal hydroxides/oxides, respectively. Moreover, specific capacitance can be further enhanced by adding a redox mediator to the electrolyte as a pseudocapacitive source. This review offers perspectives to aid the development of next-generation supercapacitors with high specific capacitance.



Key wordsSupercapacitor      Specific capacitance      Electrode material      Electrolyte      ELectrical doublelayer capacitor      Pseudocapacitor     
Received: 07 July 2016      Published: 01 November 2016
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(21422108,21271168,51472232)
Corresponding Authors: Xin-Bo ZHANG     E-mail: xbzhang@ciac.ac.cn
Cite this article:

Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611012     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/305

Fig 1 (a) SEM image of the as-prepared carbon aerogel on Ni foam (inset is the photo image of Ni foam before and after the deposition of carbon aerogel); (b) cyclic voltammetry (CV) curves of carbon aerogel/Ni foam in 6 mol?L-1 KOH; (c) variation in the specific capacitance of carbon aerogel/Ni foam as a function scan rate in 6 mol?L-1 KOH;(d) CV curves of carbon aerogel/Ni foam in 1 mol?L-1 TEABF4/AN30 TEABF4/AN: tetraethylammonium tetrafluoroborate/acetonitrile
Fig 2 (a) SEM and (b) TEM images of NOPCSs; (c) deconvolution of N 1s spectrum of NOPCSs; (d) CV curves of the NOPCSs and CNS at a scan rate of 20 mV?s-1 in 1 mol?L-1 H2SO4; in the redox-active electrolyte, (e) CV curves of NOPCSs and (f) variation of specific capacitances with scan rates of NOPCSs and CNS (inset plots are CV curves of NOPCSs and CNS at a scan rate of 20 mV?s-1)33
Fig 3 (a) Schematic illustration of Ni(OH)2 nanoplates stretch growth on graphene; (b) XRD patterns of precursor Ni(OH)2, pure Ni(OH)2 and the Ni(OH)2/GS-5 composite; (c) XRD patterns of the Ni(OH)2/GS composites; TEM images of (d) Ni(OH)2/GS-20, (e) Ni(OH)2/GS-5, (f) Ni(OH)2/GS-2 composites38
Fig 4 (a) CV curves of Ni(OH)2/GS-5; (b) average specific capacitances of Ni(OH)2/GS-5 and pure Ni(OH)2 at various scan rates; (c) galvanostatic charge and discharge curves of Ni(OH)2/GS-20, Ni(OH)2/GS-5, and Ni(OH)2/GS-2 at 1 A?g-1;(d) average specific capacitances of Ni(OH)2/GS-20, Ni(OH)2/GS-5, and Ni(OH)2/GS-2 at various current densities38
Fig 5 (a) Schematic representation of the synthesis of NiO/OCNT films; (b) CV curves of NiO/OCNT-3;(c) average specific capacitances of the NiO/OCNT composites at various scan rates;(d) galvanostatic discharge curves of the NiO/OCNT composites at 1 A?g-147
1 Kuang Q ; Jiang Z.Y. ; Xie Z.X. ; Zheng L. Acc. Chem. Res 2014, 47, 308.
2 Jing M. J. ; Hou H. S. ; Yang Y. C. ; Zhu Y. R. ; Wu Z. B. ; Ji X. B.Electrochim. Acta 2015, 165, 198.
3 Burke A. J. Power Sources 2000, 91, 37.
4 Yu D. ; Qian Q. ; Wei L. ; Jiang W. ; Goh K. ; Wei J. ; Zhang J. ; Chen Y. Chem. Soc. Rev 2015, 44, 647.
5 Simon P. ; Gogotsi Y. Nat. Mate 2008, 7, 845.
6 Ashok Kumar N. ; Baek J. B. Chem. Commu 2014, 50, 6298.
7 Jiang H. ; Lee P. S. ; Li C. Energy Environ. Sci 2013, 6, 41.
8 Rakhi R. B. ; Chen W. ; Cha D. ; Alshareef H. N. Adv. EnergyMater 2012, 2, 381.
9 Xia X. ; Tu J. ; Zhang Y. ; Chen J. ; Wang X. ; Gu C. ; Guan C. ; Luo J. ; Fan H. J. Chem. Mater 2012, 24, 3793.
10 Augustyn V. ; Simon P. ; Dunn B. Energy Environ. Sci 2014, 7, 1597.
11 Yu M. ; Huang Y. ; Li C. ; Zeng Y. ; Wang W. ; Li Y. ; Fang P. ; Lu X. ; Tong Y. Adv. Funct. Mater 2015, 25, 324.
12 Kaempgen M. ; Chan C. K. ; Ma J. ; Cui Y. ; Gruner G. NanoLett 2009, 9, 1872.
13 Zhang L. L. ; Zhou R. ; Zhao X. S. J. Mater. Chem 2010, 20, 5983.
14 Jing M. J. ; Wang C. W. ; Hou H. S. ; Wu Z. B. ; Zhu Y. R. ; Yang Y. C. ; Jia X. N. ; Zhang Y. ; Ji X. B. J. Power Sources 2015, 298, 241.
15 Chen H. ; Hu L. ; Yan Y. ; Che R. ; Chen M. ; Wu L. Adv.Energy Mate 2013, 3, 1636.
16 Su D. ; Kim H. S. ; Kim W. S. ; Wang G. Chemistry 2012, 18, 8224.
17 Liu C. ; Li F. ; Ma L. P. ; Cheng H. M. Adv. Mate 2010, 22, E28.
18 Hall P. J. ; Mirzaeian M. ; Fletcher S. I. ; Sillars F. B. ; Rennie A. J. R. ; Shitta-Bey G. O. ; Wilson G. ; Cruden A. ; Carter R. Energy Environ. Sci 2010, 3, 1238.
19 Chaudhuri R. G. ; Paria S. Chem. Rev 2012, 112, 2373.
20 Lee S. W. ; Gallant B. M. ; Byon H. R. ; Hammond P. T. ; ShaoHorn Y. Energy Environ. Sci 2011, 4, 1972.
21 Fang B. ; Kim J. H. ; Kim M. S. ; Bonakdarpour A. ; Lam A. ; Wilkinson D. P. ; Yu J. S. J. Mater. Chem 2012, 22, 19031.
22 Wu Z. B. ; Pu X. L. ; Ji X. B. ; Zhu Y. R. ; Jing M. J. ; Chen Q.Y. ; Jiao F. P. Electrochim. Acta 2015, 174, 238.
23 Arruda T. M. ; Heon M. ; Presser V. ; Hillesheim P. C. ; Dai S. ; Gogotsi Y. ; Kalinin S. V. ; Balke N. Energy Environ. Sci 2013, 6, 225.
24 Chen S. ; Liu Y. ; Ch en ; J Chem. Soc. Rev 2014, 43, 5372.
25 Zhang J. ; Zhao X. S. ChemSusChem 2012, 5, 818.
26 Xu Y. ; Chen C. Y. ; Zhao Z. ; Lin Z. ; Lee C. ; Xu X. ; Wang C. ; Huang Y. ; Shakir M. I. ; Duan X. Nano Lett 2015, 15, 4605.
27 Zhu J. ; Yang D. ; Yin Z. ; Yan Q. ; Zhang H. Small 2014, 10, 3480.
28 Peng L. ; Xu Z. ; Liu Z. ; Wei Y. ; Sun H. ; Li Z. ; Zhao X. ; Gao C. Nat. Commun 2015, 6, 5716.
29 Wang L. J. ; El-Kady M. F. ; Dubin S. ; Hwang J. Y. ; Shao Y. ; Marsh K. ; McVerry B. ; Kowal M. D. ; Mousavi M. F. ; Kaner R. B. Adv. Energy Mater 2015, 5, 1500786.
30 Wu Z. ; Zhang X. B. J. Electrochem 2015, 21, 554.
30 吴中张新波. 电化学, 2015, 21, 554.
31 Yang Z. ; Ren J. ; Zhang Z. ; Chen X. ; Guan G. ; Qiu L. ; Zhang Y. ; Peng H. Chem. Rev 2015, 115, 5159.
32 Zou R. ; Zhang Z. ; Yu L. ; Tian Q. ; Chen Z. ; Hu J. Chemistry 2011, 17, 13912.
33 Senthilkumar S. T. ; Selvan R. K. ; Lee Y. S. ; Melo J. S. J. Mater. Chem. A 2013, 1, 1086.
34 Pham V. H. ; Gebre T. ; Dickerson J. H. Nanoscale 2015, 7, 5947.
35 uang J. ; Wang J. ; Wang C. ; Zhang H. ; Lu C. ; Wa ng ; J Chem. Mater 2015, 27, 2107.
36 Zheng X. ; Luo J. ; Lv W. ; Wang D. W. ; Yang Q. H. Adv.Mater 2015, 27, 5388.
37 Yang J. ; Yu C. ; Fan X. ; Zhao C. ; Qiu J. Adv. Funct. Mater 2015, 25, 2109.
38 Wu Z. ; Huang X. L. ; Wang Z. L. ; Xu J. J. ; Wang H. G. ; Zhang X. B. Sci. Rep 2014, 4, 3669.
39 Huang H. S. ; Chang K. H. ; Suzuki N. ; Yamauchi Y. ; Hu C.C. ; Wu K. C. W. Small 2013, 9, 2520.
40 You B. ; Li N. ; Zhu H. ; Zhu X. ; Yang J. ChemSusChem 2013, 6, 474.
41 Gao Z. ; Song N. ; Li X. J. Mater. Chem. A 2015, 3, 14833.
42 Lu Q. ; Lattanzi M. W. ; Chen Y. ; Kou X. ; Li W. ; Fan X. ; Unruh K. M. ; Chen J. G. ; Xiao J. Q. Angew. Chem. Int. Ed 2011, 50, 6847.
43 Zhang G. ; Yu L. ; Hoster H. E. ; Lou X. W. Nanoscale 2013, 5, 877.
44 Xia X. H. ; Tu J. P. ; Wang X. L. ; Gu C. D. ; Zhao X. B. J. Mater. Chem 2011, 21, 671.
45 Wang B. ; Chen J. S. ; Wang Z. ; Madhavi S. ; Lou X. W. D. Adv. Energy Mater 2012, 2, 1188.
46 Brown B. ; Cordova I. A. ; Parker C. B. ; Stoner B. R. ; Glass J. T.Chem. Mater 2015, 27, 2430.
47 Wu Z. ; Li L. ; Huang X. L. ; Zhang X. B. ; Yan J. M. ChemNanoMat 2016, 2, 698.
48 Zeng Y. ; Han Y. ; Zhao Y. ; Zeng Y. ; Yu M. ; Liu Y. ; Tang H. ; Tong Y. ; Lu X. Adv. Energy Mater 2015, 5, 1402176.
49 Shen L. ; Che Q. ; Li H. ; Zhang X. Adv. Funct. Mater 2014, 24, 2630.
50 Shen L. ; Yu L. ; Wu H. B. ; Yu X. Y. ; Zhang X. ; Lou X. W. Nat. Commun 2015, 6, 6694.
[1] Xiangyan SHEN,Jianjiang HE,Ning WANG,Changshui HUANG. Graphdiyne for Electrochemical Energy Storage Devices[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1029-1047.
[2] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[3] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[4] Hai-Yan WANG,Gao-Quan SHI. Layered Double Hydroxide/Graphene Composites and Their Applications for Energy Storage and Conversion[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 22-35.
[5] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1828-1837.
[6] Li-Ping ZHAO,Wei-Shuai MENG,Hong-Yu WANG,Li QI. MoS2-C Composite as Negative Electrode Material for Sodium-Ion Supercapattery[J]. Acta Phys. -Chim. Sin., 2017, 33(4): 787-794.
[7] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[8] Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.
[9] Chun-Rong LIAO,Feng XIONG,Xian-Jun LI,Yi-Qiang WU,Yong-Feng LUO. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 329-343.
[10] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[11] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[12] Dao-Yan LI,Ji-Chen ZHANG,Zhi-Yong WANG,Xian-Bo JIN. Preparation of Activated Carbon from Honeycomb-Like Porous Gelatin for High-Performance Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2245-2252.
[13] Cui-Ping YU,Yan WANG,Jie-Wu CUI,Jia-Qin LIU,Yu-Cheng WU. Recent Advances in the Multi-Modification of TiO2 Nanotube Arrays and Their Application in Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 1944-1959.
[14] Xiang-Dong ZENG,Xiao-Yu ZHAO,Hui-Ge WEI,Yan-Fei WANG,Na TANG,Zuo-Liang SHA. Specific Capacitance and Supercapacitive Properties of Polyaniline-Reduced Graphene Oxide Composite[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2035-2041.
[15] Xue-Qin LI,Lin CHANG,Shen-Long ZHAO,Chang-Long HAO,Chen-Guang LU,Yi-Hua ZHU,Zhi-Yong TANG. Research on Carbon-Based Electrode Materials for Supercapacitors[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 130-148.