Please wait a minute...
Acta Phys. -Chim. Sin.  2016, Vol. 32 Issue (12): 2841-2870    DOI: 10.3866/PKU.WHXB201611021
REVIEW     
Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts
Rong-An HE1,2,Shao-Wen CAO1,Jia-Guo YU1,*()
1 State Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, P. R. China
2 Hunan Province Key Laboratory of Applied Environmental Photocatalysis, Changsha University, Changsha 410022, P. R. China
Download: HTML     PDF(8642KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Bi-based semiconductor photocatalysts are important visible-light-driven photocatalysts. However, the photocatalytic performance of bulk bismuth-containing compounds remains unsatisfactory. Many investigations indicate that morphology control and surface modification are effective methods for improving the photocatalytic activity of these compounds. Herein, we review recent advances in this field, including ultrathin nanoplate fabrication, facet ratio control, hierarchical and hollow architecture construction, functional group and quantum-sized nanoparticle modification, surface defect regulation, and in situ formation of metal bismuth and bismuth compounds. The characteristics and advantages of these modification methods are introduced. In addition, mechanisms for improving light absorption, separation, and utilization of excited carriers are discussed. Trends in the development of Bi-based photocatalysts using morphology control and surface modification, as well as the challenges involved, are also analyzed and summarized.



Key wordsBi-based compound      Photocatalysis      Morphology control      Surface modification     
Received: 16 September 2016      Published: 02 November 2016
MSC2000:  O643  
Fund:  the National Key Basic Research Program of China (973)(2013CB632402);the National Natural ScienceFoundation of China(51272199,51320105001,51372190,21433007,21407115)
Corresponding Authors: Jia-Guo YU     E-mail: jiaguoyu@yahoo.com
Cite this article:

Rong-An HE,Shao-Wen CAO,Jia-Guo YU. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts. Acta Phys. -Chim. Sin., 2016, 32(12): 2841-2870.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611021     OR     http://www.whxb.pku.edu.cn/Y2016/V32/I12/2841

Fig 1 (a) TEM,HRTEM (inset) and (b) AFM images of monolayer Bi2WO6 nanosheet[46]
Fig 2 Typical hierarchical structures of photocatalyst materials[60]
Fig 3 SEM images of Bi-containing compounds with hierarchical structures (a) BiOCl[99],(b) Bi2O3 [100],(c) BiVO4 [72],(d) Bi12TiO20 [15],(e) Bi2WO6 [79],(f) Bi2O2CO3 [66]
MaterialMethodRef.
Bi2S3solvothermal[61, 62]
Bi2O3ambient reaction, precipitation method,hydrothermal[63-65]
(BiO)2CO3reaction with refluxing, hydrothermal[66-71]
BiVO4hydrothermal, solvothermal[72-78]
Bi2WO6hydrothermal, solvothermal[79, 80]
BiPO4microwave-assisted hydrothermal[81, 82]
Bi23P4O44.5hydrothermal[83]
Bi12TiO20microwave-assisted hydrothermal[15]
Bi12TiO20Bi2SiO5PVP-assisted hydrothermal[84]
BiOClsolvothermal, PVA-assisted hydrothermal[85-89]
Bi12Oi17Cl2PVP-assisted hydrothermal[90]
BiOBrsolvothermal, SDS-assisted hydrothermal,PVP-assisted hydrothermal[91-93]
BiOIsolvothermal, microwave-assisted solvothermal[94-96]
Bi4O5I2solvothermal, microwave-assisted solvothermal[97, 98]
Table 1 Fabrication methods of Bi-based semiconductors with hierarchical structures Material
Fig 4 (a) Low-magnification and (b) high-magnification FESEM images of BiOBr obtained byhydrothermal method using PVP[91] PVP: polyvinyl pyrrolidone; PVA: polyvinyl alcohol; SDS: sodium dodecyl sulfate
Fig 5 FESEM images of Bi2WO6 (a,b),the photograph of erythrocyte (the inset of a),photodegradation dynamic curves (c) and ln(C0/C)-t curves (d) for RhB[101]
Fig 6 SEM images of different shaped BiVO4 hierarchical structures obtained by varying the pH values[75]
Fig 7 Schematic illustration of the influence of different pH values on the crystalline phase and morphology of the as-prepared BiVO4[104]
Fig 8 Schematic illustration of light reflection within the nano sheets and nano particles[110]
Fig 9  SEM images of some bismuth containing compounds (a) Bi2O3 [139],(b) Bi2S3 [140],(c) Bi2MoO6 [141],(d) Bi2WO6 [128],(e) BiOBr[142],(f) BiVO4[143]
Fig 10 FESEM (a,c,e,g) and TEM (b,d,f,h) images of BiOCl samples[145] pure BiOCl hollow structure without adding NaI (a,b),iodine-incorporated BiOCl microspheres with hollow (c,d),core-shell (e,f) and solid (g,h) structure
Fig 11 FESEM images of BiOCl HPs obtained at180 ℃,5 h[149]
ModifierBi-based materialMethodPerformance compared with un-modifiedRef.
noble metals & compound
PtBi2WOi6chemical reductionenhanced photocatalytic ability for removal of rhodamine 6G (Rh6G)[160]
Pthierarchical Bi2WOi6hydrothermal methodremoval of RhB was significantly enhanced[159]
PtBiVOi4/SiO2Photodeposition hydrothermal methodgreatly increased photocatalytic activity for acetaldehyde[166]
AgBi2WOi6hydrothermal and sonochemical methodswith 1.0% (w) Ag, higher activity than Bi2WOi6[167]
AgBi2WOi6 (001)sonochemical methodenhanced electron-transfer efficiency[168]
AgBiVOi4ramework replacement synthesissignificantly enhanced photocatalytic activity for RhB[169]
AgBi2MoOi6hydrothermal and sonochemical methodsgreatly enhanced photocatalytic activity for RhB[170]
AgBi4Ti3O12sonochemical method1.9 times higher than Ti doped Bi2O3[171]
AgTi doped Bi2O3ramework replacement synthesisgreatly enhance the absorption of visible light but deteriorates the photocatalytic activity[172]
AgBiOBrprecipitation-deposition methodgreatly enhanced photocatalytic activity and photocurrent[164]
AgBi2O2CO3hydrothermal methodgreatly enhanced photocatalytic activity for ciprofloxacin and[173]
Ag QDsBiOBrionic liquid assistedtetracycline hydrochloride[174]
Ag, Rh, Pt BiOClsolvothermal method photo-depositiononly Ag/BiOCl exhibited enhanced performance for RhB[162]
AuBiVOi4deposition-precipitationhigh photocatalytic efficiency for aqueous HCHO and RhB (Vis)[163]
AuBiOClphotodeposition processhighly enhanced visible light photocatalytic performance for NO[175]
AuBi2O2CO3in situ methodthe photocatalytic activity of co-modified Bi2WOi6, superior to[165]
Ag and CMK-3Bi2WOi6hydrothermal method with hard templateCMK-3/Bi2WOi6 and Ag/Bi2WOi6[176]
Ag and grapheneBi2WOi6hydrothermal processthe significantly enhanced photocatalytic activity[177]
Ag and grapheneBiVOi4solvothermal methodhigher photocatalytic activities than BiVOi4, Ag/BiVOi4 and[178]
PdBiOBrsolvothermal processgrapheme/BiVOi4 for RhB[161]
AgBiVOi4/C microtubesin situ reduction method6.6 times higher than BiOBr for RhB[179]
AgIBi2MoOi6deposition-precipitationhigher photocatalytic activity for RhB[180]
AgIBiPOi4deposition-precipitationhigher photocatalytic activities for RhB and bisphenol A (BPA)[181]
AgClBiOClion exchange routephotocatalytic activity three times as high as AgI for RhB,[182]
Ag@AgClBiVOi4in situ oxidationphotocatalytic activity improved for MO[183]
Ag@AgBrBi2WOi6oil-in-water self-assembly methodkinetic constant 300 times of pristine BiVOi4[184]
Ag/AgClBiOIO3higher photocatalytic activities for methylene blue (MB),[185]
Ag2OBi2WOi6solution precipitationphenol and salicylic acid[186]
Ag3POi4BiVOi4in situ precipitationenhanced activity for NO the constant 4.8 times as high as Bi2WOi6 for RhB[187]
C-based material
carbonBiVOi4impregnation, calcinationsmuch higher photocatalytic activities for RhB[188]
carbonBi4Ti3O12co-precipitation0.5% (w) of C-BiVOi4-cellulose degraded 88.7% of phenol[189]
carbonBi12TiO20hydrothermal process improved photocatalytic activity for MO[190]
CQDsBi2MoOi6followed by calcinations hydrothermaltotally decompose RhB after 120 min irradiation[191]
CQDsBiOCl, BiOBrhydrothermalkinetic constant k 5 times as that of the pure Bi2MoOi6[192]
CQDsBiOClsolvothermal methodmuch higher photocatalytic activity for RhB and ciprofloxacin[193]
CQDsBiOIhydrothermal processsignificantly enhanced photocatalytic performance for[194]
N-doped CQDsBiOIhydrothermal methodBPA and RhB[195]
GQDshollow Bi2MoOi6hydrothermal treatmentkinetic constant k was 2.5 times as high as BiOI for MO[196]
GQDsBiOBrsolvothermal methodhigher photocatalytic activity for MO[197]
GQDsInVOi4/BiVOi4chemical adsorptionmuch higher photocatalytic activity for RhB and BPA[198]
C-60Bi2TiOi4F2solvothermal methodhighly enhanced photocatalytic performance for RhB (Vis)[199]
C-60Bi2MoOi6hydrothermal methodenhanced photocatalytic performance for RhB (Vis)[200]
g-C3N4 QDsBiPOi4impregation, calcinationsmuch stronger photocatalytic performance for RhB[201]
g-C3N4Bi4O5I2solvothermal methodenhanced photocatalytic activity towards Br ions reduction[202]
g-C3N4BiOClhydrothermal processmuch better photocatalytic performance for MO[203]
g-C3N4BiVOi4ultrasonic dispersion methodhigher photocatalytic activity for RhB[204]
BNmicrospherical BiOIolvothermal methodsuperior activity for RhB (visible light)[205]
BNBi2WOi6impregnationbetter performance for CO2 reduction than g-C3N4 and BiVOi4[206]
organic compoundsenhanced photocatalytic activity for RhB, MB and 4-[207]
polyaniline,polypyrrole and polythiopheneBi2WOi6in situ deposition oxidativechlorophenol[208]
polypyrroleBi2WOi6polymerizationhigher photocatalytic activity for RhB[209]
polyanilineBi2WOi6in situ deposition oxidative polymerizationthe total yield of hydrocarbons is 2.8 times higher than that[210]
polyanilineBiVOi4chemical bath depositionover pure Bi2WOi6[211]
polyanilineBi12TiO20sonochemical approachphotocatalytic activities of PPy/ Bi2WOi6 were significantly[212]
polyanilineBiOCltemplate-free hydrothermal processenhanced[213]
conjugatedBi2WOi6 and Bi2MoOi6chemisorptions method precursor calcinationsexcellent performance towards RhB and gasous HCHO[214]
polyene poly(3-hexylthiophene)Bi2WOi6room temperature reactionnotable enhanced photocatalytic performance for[215]
PVPBi2WOi6solvothermal processRhB and phenol[216]
PVPBiOBrsolvothermal processenhanced photocatalytic performance for RhB[217]
molecularlyAgI/BiOI fanoflakekinetic constant k was 15 times that of pure BiOCl for MO[218]
imprinted polymer 1-buty-3-methylimidazolium iodideBiOIpolyol methodthe photocatalytic efficiencies are 4 and 2 times those of Bi2MoOi6 and Bi2WOi6, respectively,[219]
UiO-66 (MOF)Bi2WOi6two-step method[219]
Cu2+SBi2WOi6impregnation methodthan Bi2WOi6[220]
Cu2+OBi2O3low-temperature liquidphase methodenhanced photodegradation for tetracycline hydrochloride[221]
Cu2+OBi2MoOi6reductive solution chemistry routeenhance surface zeta potential and adsorption of RhB[222]
Cu2+OBiVOi4cilinationthe photoactive electrode exhibited high sensitivity and[223]
Cu2+OBiOClsolvothermal processselectivity for determination[224]
Cu2+O QDsBiOBrhydrothermal process followed by impregnationsuperior photocatalytic activity for MO[225]
CuOBiVOi4solvothermal methodenhanced photocatalytic activity for RhB[226]
Cu2+BiOClprecipitation and calcinationenhanced visible-light photocatalytic activity for RhB[227]
Fe3+Bi2WOi6impregnation methodenhanced photocatalytic activity for RhB[228]
Fe3+BiOBrhydrothermal processphotocatalytic activity 6.4 times higher than Bi2MoOi6[229]
Fe3+Bi2Ti2O7impregnating methodbetter photocatalytic performance for MO than BiVOi4 [230]
Fe2O3Bi2WOi6solvothermal methodCu2+O (Vis, LED)[231]
Fe2O3BiVOi4precipitation at presence of Fe3Oi4remarkedly improved efficiency for dye X-3B[232]
Fe2O3Bi2O3co-precipitation followed by calcinationsdegrade rate 11.8 times as high as BiOBr for phenol[233]
Fe2O3, Fe3Oi4BiOBrmetal-organic decompositionimproved photocatalytic activity for toluene[234]
Fe3Oi4BiOItwo-step hydrothermal methodshigher photocatalytic activity for MB and BPA[235]
Mn2+Bi2Ti2O7hydrothermalevidently improved activity of Bi2WOi6[236]
Co3(POi4)2SiO2/BiVOi4solvothermal approachactivities 25.3 and 3.7 times higher than CdS and Bi2MoOi6 for RhB[237]
CdSBi2MoOi6combination of sputtering,blade and photo-depositiongegradation efficiency of tetracycline is over 5 times that of the pure Bi2WOi6[238]
CdSeBi2WOi6mixing methodhigher photocatalytic activity than pure BiOBr (Vis)[239]
CdS QDsBiOBrsolvothermal methodproduced both O2 and H2 without bias potential or[240]
Co3Oi4 and PtBiVOi4/Pt/CaFe2Oi4in situ treatment withsacrificial agents (Vis)
bismuth compound and metel Biphotocatalytic oxidation of phenol were improved[241]
B2O3Bi2WOi6mixing methodphotocatalytic rate of 95.7% in 8 min for MO (UV)[242]
B2O3BiOClsolvothermal methodmuch higher photocatalytic activity than pure β-Bi2O3 and BiOI for MO[243]
B2O3BiOIhydriodic acid in situ etchinghigher photocatalytic activity for RhB[244]
B2S3BiOClsolvothermal methodgreatly enhanced photocatalytic activity for MO[245]
B2S3BiOBrsoft chemical routephoton-to-current conversion efficiency 3 times higher than pure BiOI[246]
B2S3BiOIanion-exchange strategyhighly enhanced photocatalytic activity for NO[247]
Bi2S3Bi2O2CO3hydrothermaleffectively improved photocatalytic activity of Bi2WOi6 and Bi2MoOi6[68]
Bi6Oi6(OH)3(NO3)3Bi2WOi6, Bi2MoOi6hydrothermal methodsuperior activities for phenol degradation[248]
BiOBrBiPOi4deposition-precipitationsuperior photocatalytic activities for MO[249]
BiOIBi2MoOi6anion exchange routesuperior photocatalytic activity for RhB and ciprofloxacin (Vis)[250]
Bi2WOi6BiOClsolvothermal methodthe degradation rate five times that of Bi2MoOi6[251]
Bi2WOi6 QDsBi2WOi6followed by calcinationssurface quantum dots play key roles in enhancing[252]
Bi2WOi6 QDsBi2WOi6hydrothermal methodenhanced the photocatalytic activity for MO (UV and Vis)[253]
metal BiBiOClchemical reductionenhanced photocatalytic degradation of MO, MB and RhB[254]
metal BiBiOClmicrowave reductionenhanced the photocatalytic activity for MO[255]
metal BiBiOClreduction under UVincreased specific surface areas and enhanced photocatalytic degradation of RhB[256]
metal BiBi2MoOi6 hollow microspheremicrowave reductionNO removal ratio 68.1% much higher than Bi2MoOi6[257]
metal BiBi2MoOi6 microspherehydrothermal reactionNO removal ratio 37.2%, higher than (BiO)2CO3 19.1%[258]
metal BiBi2O2CO3hydrothermal reactionstrong photooxidation properties toward phenol, 2,4-[259, 260]
metal BiBiOIO3chemical reductiondichlorophenol, BPA, RhB, gaseous NO (Vis)[261]
metal BiBiOIsolvothermal methodmuch higher photocatalytic performance toword BPA[262]
metal BiBi2WOi6hydrothermal reactionexcellent photocatalytic degradation of Rh6G[263]
Table 2 Effect of modification on photo catalytic activities of typical Bi-based semiconductors
Fig 12 Diagrams of (a) the working functions at a pH of 0 of noble metal and (b) illustrative band bending atthe interface between noble metals and BiOCl[162] EF and FS are the Fermi energy of the metal and semiconductor,respectively,and ΦM and ΦS are the work functions of metal and semiconductor.
Fig 13 (a) Low magnification and (b) high magnification TEM images of CQDs/Bi2MoO6 and(c) photocatalytic degradation curves of ciprofloxacin on CQDs/Bi2MoO6 under visible light irradiation[191]
Fig 14 (a) TEM and (b) HRTEM images of N-CQDs/BiOI sample[195]
Fig 15 TEM image of BiOBr (A) and TEM (B),HRTEM images (C) and XPS spectrum (D) of N-GQDs/BiOBr nanohybrids[197]
Fig 16 Photocatalytic performance of the as-preparedC60/Bi2TiO4F2 composite photocatalysts for degradingRhB as a function of the irradiation time undervisible light[199]
Fig 17 Molecular structures of conductive polymers[287]
MaterialConductivity/(S?cm-1)
polyacetylene10-1.7 × 105
polyaniline10-1-103
polypyrrole10-1-7.5 × 103
polythiophene10-103
poly(p-phenylene)102-103
metals (Cu, Au, Ag)105-106
polystyrene10-11-10-10
nylon10-12
Table 3 The conductivity of some conductive polymers,metals and plastics[289, 290]
Fig 18 TEM image (a),FT-IR spectrum (b) and degradation efficiency of RhB undersimulated solar light irradiation of (c) P3HT/Bi2WO6 composites[288]
Fig 19  Transition scheme of conduction band andvalence band position change with diameter (dW) ofthe bismuth [nanowire292](a) dW $ \gg $ 50 nm,(b) dW ≈ 50 nm,(c) dW $ \ll $ 50 nm
Fig 20 SEM (a),TEM (b,c) and HRTEM (d) images of Bi decorated Bi2O2CO3 by way of hydrothermal method[259]
Fig 21 Photocatalytic activities of Bi/Bi2MoO6 for NO degradation in air under visible light illumination (a),and the corresponding reaction kinetics constant (k) (b)[258]
MaterialEB(Bi0)/eVEB(Bi3+)/eVRef.
Bi 4f7/2Bi 4f5/2Bi 4f7/2Bi 4f5/2
Bi/Bi2MoO6156.7162.1158.8164.1[258]
Bi/Bi2WO6157.6162.9159.4164.7[263]
Bi/BiOBr158.8164.1160.7166.1[297]
Bi/Bi2O2CO3156.7162.1159.2164.5[259]
Bi/BiOI156.7162.0158.8164.1[262]
Table 4 Position of some reported Bi 4f5/2 and Bi 4f7/2 peaks of Bi/Bi-containing compounds
Fig 22 TEM and HRTEM images and scheme of anion exchange process of Bi2S3/(BiO)2CO3hierarchical microspheres [68]
Fig 23 (A) Time profiles of phenol degradation under UV light and (B) possible mechanism of the enhanced photocatalytic activity of Bi2O3/Bi2WO6[242] (a) no catalyst,(b) Bi2WO6,(c) 12.5% Bi2O3/Bi2WO6,(d) catalyst in the dark; pH=0
Fig 24 Visible-light-driven photocatalytic degradation curves of tetracycline on QDs modified Bi2WO6 samples[253]
Fig 25 (a) SEM and (b) TEM images of Bi2WO6 QDs/Bi2WO6,(c) illustration of the transfer process of photogenerated carriers for the samples calcined at200 ℃ and 500 ℃[252] BWO: Bi2WO6
1 Reddy P. ; Reddy P. ; Kwon E. ; Kim K. H. ; Akter T. ; Kalagara S. Environ. Int. 2016, 91, 94.
2 Cao S. ; Tao F. F. ; Tang Y. ; Li Y. ; Yu J. Chem. Soc. Rev. 2016, 45, 4747.
3 Trellu C. ; Mousset E. ; Pechaud Y. ; Huguenot D. ; vanHullebusch E. D. ; Esposito G. ; Oturan M. A. J. Hazard. Mater. 2016, 306, 149.
4 Xiang Q. J. ; Cheng B. ; Yu J. G. Angew. Chem. Int. Edit. 2015, 54, 11350.
5 Cao S.W. ; Low J. X. ; Yu J. G. ; Jaroniec M. Adv. Mater. 2015, 27, 2150.
6 Low J. X. ; Yu J. G. ; Ho W. K. J. Phys. Chem. Lett 2015, 6, 4244.
7 Cao S. ; Yu J. J. Photochem. Photobiol. C 2016, 27, 72.
8 Yuan L. ; Xu Y. J. Appl. Surf. Sci. 2015, 342, 154.
9 Ola O. ; Maroto-Valer M. M. J. Photochem. Photobiol. C 2015, 24, 16.
10 Zhou P. ; Yu J. G. ; Jaroniec M. Adv. Mater. 2014, 26, 4920.
11 Zhang L. S. ; Wang W. Z. ; Yang J. O. ; Chen Z. G. ; Zhang W.Q. ; Zhou L. ; Liu S. W. Appl. Catal. A-Gen. 2006, 308, 105.
12 Bao H. F. ; Cui X. Q. ; Li C. M. ; Gan Y. ; Zhang J. ; Guo J. J. Phys. Chem. C 2007, 111, 12279.
13 Zhang Z. J. ; Wang W. Z. ; Shang M. ; Yin W. Z. J. Hazard. Mater. 2010, 177, 1013.
14 Zhang L.W. ; Xu T. G. ; Zhao X. ; Zhu Y. F. Appl. Catal. BEnviron. 2010, 98, 138.
15 Yang Z. ; Fan H. ; Wang X. ; Long C. J. Phys. Chem. Solids 2013, 74, 1739.
16 Castillo N. C. ; Ding L. ; Heel A. ; Graule T. ; Pulgarin C. J. Photochem. Photobiol. A 2010, 216, 221.
17 Li G. F. ; Ding Y. ; Zhang Y. F. ; Lu Z. ; Sun H. Z. ; Chen R. J. Colloid Interface Sci. 2011, 363, 497.
18 Zhang K. L. ; Liu C. M. ; Huang F. Q. ; Zheng C. ; Wang W. D. Appl. Catal. B-Environ. 2006, 68, 125.
19 Shang M. ; Wang W. Z. ; Zhang L. J. Hazard. Mater. 2009, 167, 803.
20 Luz A. ; Feldmann C. Solid State Sci. 2011, 13, 1017.
21 He R. A. ; Cao S.W. ; Zhou P. ; Yu J. G. Chin. J. Catal 2014, 35, 989.
22 Ramachandran R. ; Sathiya M. ; Ramesha K. ; Prakash A. S. ; Madras G. ; Shukla A. K. J. Chem. Sci. 2011, 123, 517.
23 Wang W. J. ; Chen X. Q. ; Liu G. ; Shen Z. R. ; Xia D. H. ; Wong P. K. ; Yu J. C. Appl. Catal. B-Environ. 2015, 176, 444.
24 Zhang L. P. ; Yu an ; S . ; H u ; F . ; Chang X. F. Prog. Chem. 2010, 22, 1729.
24 张莉平; 袁实; 胡峰; 常晓峰. 化学进展, 2010, 22, 1729.
25 Li E. J. ; Chen L. ; Zhang Q. ; Li W. H. ; Yin S. F. Prog. Chem. 2010, 22, 2282.
25 李二军; 陈浪; 章强; 李文华; 尹双凤. 化学进展, 2010, 22, 2282.
26 Huang Z. F. ; Pan L. ; Zou J. J. ; Zhang X.W. ; Wang L. Nanoscale 2014, 6, 14044.
27 Lin X. ; Guo X. Y. ; Wang Q.W. ; Chang L. M. ; Zhai H. J. Acta Phys. -Chim. Sin. 2014, 30, 2113.
27 林雪; 郭晓宇; 王庆伟; 常利民; 翟宏菊. 物理化学学报, 2014, 30, 2113.
28 Li J. ; Yu Y. ; Zhang L. Nanoscale 2014, 6, 8473.
29 Ni Z. ; Sun Y. ; Zhang Y. ; Dong F. Appl. Surf. Sci. 2016, 365, 314.
30 Cheng H. F. ; Huang B. B. ; Dai Y. Nanoscale 2014, 6, 2009.
31 Chen L. ; He J. ; Liu Y. ; Chen P. ; Au C. ; Yin S. Chin. J. Catal 2016, 37, 780.
32 Zhang L.W. ; Zhu Y. F. Catal. Sci. Tech 2012, 2, 694.
33 Xu Y. ; Hu X. ; Zhu H. ; Zhang J. J. Mater. Sci. 2016, 51, 4342.
34 Zhong W.W. ; Li D. D. ; Jin S. F. ; Wang W. J. ; Yang X. A. Appl. Surf. Sci. 2015, 356, 1341.
35 Wu T. L. ; Liu L. ; Pi M. Y. ; Zhang D. K. ; Chen S. J. Appl. Surf. Sci. 2016, 377, 253.
36 Li Y. J. ; Wang Q. ; Liu B. C. ; Zhang J. Appl. Surf. Sci. 2015, 349, 957.
37 Wu S. J. ; Wang C. ; Cui Y. F. Appl. Surf. Sci. 2014, 289, 266.
38 Liu W. ; Zhao G. S. ; An M. Z. ; Chang L. M. Appl. Surf. Sci. 2015, 357, 1053.
39 Gao M. ; Zhang D. ; Pu X. ; Li M. ; Yu Y. M. ; Shim J. J. ; Cai P. ; Kim S. I. ; Seo H. J. J. Am. Ceram. Soc. 2015, 98, 1515.
40 Liu Y. Y. ; Wang Z. Y. ; Huang B. B. ; Yang K. S. ; Zhang X.Y. ; Qin X. Y. ; Dai Y. Appl. Surf. Sci. 2010, 257, 172.
41 Yu S. J. ; Zhang G. K. ; Gao Y. Y. ; Huang B. B. J. Colloid Interface Sci. 2011, 354, 322.
42 Jagdale P. ; Castellino M. ; Marrec F. ; Rodil S. E. ; Tagliaferro A. Appl. Surf. Sci. 2014, 303, 250.
43 Liu Z. S. ; Wu B. T. ; Niu J. N. ; Huang X. ; Zhu Y. B. Appl. Surf. Sci. 2014, 288, 369.
44 Li R. ; Gao X. Y. ; Fan C. M. ; Zhang X. C. ; Wang Y.W. ; Wang Y. F. Appl. Surf. Sci. 2015, 355, 1075.
45 Zhou Y. ; Tian Z. ; Zhao Z. ; Liu Q. ; Kou J. ; Chen X. ; Gao J. ; Yan S. ; Zou Z. ACS Appl. Mater. Interfaces 2011, 3, 3594.
46 Zhou Y. ; Zhang Y. ; Lin M. ; Long J. ; Zhang Z. ; Lin H. ; Wu J. C. ; Wang X. Nat. Commun 2015, 6, 8340.
47 Jiang J. ; Zhao K. ; Xiao X. Y. ; Zhang L. Z. J. Am. Chem. Soc 2012, 134, 4473.
48 Li J. ; Zhang L. Z. ; Li Y. J. ; Yu Y. Nanoscale 2014, 6, 167.
49 Wang W. J. ; Huang B. B. ; Ma X. C. ; Wang Z. Y. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. ; Whangbo M. H. Chem.-Eur. J. 2013, 19, 14777.
50 Wang W. J. ; Cheng H. F. ; Huang B. B. ; Liu X. L. ; Qin X.Y. ; Zhang X. Y. ; Dai Y. J. Colloid Interface Sci. 2015, 442, 97.
51 Huang H.W. ; He Y. ; Lin Z. S. ; Kang L. ; Zhang Y. H. J. Phys. Chem. C 2013, 117, 22986.
52 Zhang R. ; Dai Y. ; Lou Z. Z. ; Li Z. J. ; Wang Z. Y. ; Yang Y.M. ; Qin X. Y. ; Zhang X. Y. ; Huang B. B. CrystEngComm 2014, 16, 4931.
53 Su Y. ; Zhang L. ; Wang W. Z. Int. J. Hydrog. Energy 2016, 41, 10170.
54 He R. ; Zhang J. ; Yu J. ; Cao S. J. Colloid Interface Sci 2016, 478, 201.
55 Ai Z. H. ; Wang J. L. ; Zhang L. Z. Chin. J. Catal 2015, 36, 2145.
56 Liang L. ; Lei F. C. ; Gao S. ; Sun Y. F. ; Jiao X. C. ; Wu J. ; Qamar S. ; Xie Y. Angew. Chem. Int. Edit. 2015, 54, 13971.
57 Guan M. ; Xiao C. ; Zhang J. ; Fan S. ; An R. ; Cheng Q. ; Xie J. ; Zhou M. ; Ye B. ; Xie Y. J. Am. Chem. Soc 2013, 135, 10411.
58 Wang J. ; Zhang Y. ; Tian L. ; Liu F. ; Xia Q. J. Nanopart. Res 2014, 16, 2691.
59 Zhao Z. Y. ; Dai W. W. Inorg. Chem. 2015, 54, 10732.
60 Li X. ; Yu J. ; Jaroniec M. Chem. Soc. Rev. 2016, 45, 2603.
61 Kawade U. V. ; Panmand R. P. ; Sethi Y. A. ; Kulkarni M. V. ; Apte S. K. ; Naik S. D. ; Kale B. B. RSC Adv 2014, 4, 49295.
62 Chen J. ; Qin S. ; Song G. ; Xiang T. ; Xin F. ; Yin X. Dalton T 2013, 42, 15133.
63 Zhang J. ; Han Q. ; Wang X. ; Zhu J. ; Duan G. Mater. Lett. 2016, 162, 218.
64 Yang L. ; Han Q. ; Zhao J. ; Zhu J. ; Wang X. ; Ma W. J. Alloy. Compd 2014, 614, 353.
65 Wang J. L. ; Yang X. D. ; Zhao K. ; Xu P. F. ; Zong L. B. ; Yu R. B. ; Wang D. ; Deng J. X. ; Chen J. ; Xing X. R. J. Mater. Chem. A 2013, 1, 9069.
66 Selvamani T. ; Raj B. ; Anandan S. ; Wu J. J. ; Ashokkumar M. Phys. Chem. Chem. Phys. 2016, 18, 7768.
67 Xiong T. ; Huang H. ; Sun Y. ; Dong F. J. Mater. Chem. A 2015, 3, 6118.
68 Dong F. ; Feng X. ; Zhang Y. ; Gao C. ; Wu Z. RSC Adv 2015, 5, 11714.
69 Yang L. ; Han Q. ; Zhu J. ; Wang X. Mater. Lett. 2015, 138, 235.
70 Xiong T. ; Dong F. ; Wu Z. RSC Adv 2014, 4, 56307.
71 Tang J. ; Zhao H. ; Li G. ; Lu Z. ; Xiao S. ; Chen R. Ind. Eng. Chem. Res. 2013, 52, 12604.
72 Ying Y. ; Tao F. ; Hong T. ; Wang L. Mat. Sci. Semicon. Proc. 2015, 32, 82.
73 Wang B. ; Guo L. ; He T. RSC Adv 2016, 6, 30115.
74 Ma L. ; Xu L. ; Zhang L. Micro Nano Lett 2014, 9, 451.
75 Dong S. ; Feng J. ; Li Y. ; Hu L. ; Liu M. ; Wang Y. ; Pi Y. ; Sun J. ; Sun J. Appl. Catal. B-Environ. 2014, 152, 413.
76 Xing X. ; Ma Y. ; Li J. ; Fan G. ; Ding H. ; Ma X. ; Yang L. ; Xi G. CrystEngComm 2014, 16, 10218.
77 Wei W. ; Yue X. ; Cui H. ; Lu X. ; Xie J. J. Mater. Res. 2013, 28, 3408.
78 Madhusudan P. ; Kumar M. V. ; Ishigaki T. ; Toda K. ; Uematsu K. ; Sato M. Environ. Sci. Pollut. R 2013, 20, 6638.
79 Zeng S. ; Tang R. ; Duan S. ; Li L. ; Liu C. ; Gu X. ; Wang S. ; Sun D. J. Colloid Interface Sci. 2014, 432, 236.
80 Sheng J. Y. ; Li X. J. ; Xu Y. M. Acta Phys. -Chim. Sin. 2014, 30, 508.
80 盛珈怡; 李晓金; 许宜铭. 物理化学学报, 2014, 30, 508.
81 Lv H. ; Guang J. ; Liu Y. ; Tang H. ; Zhang P. ; Lu Y. ; Wang J. RSC Adv 2015, 5, 100625.
82 Ma L. ; Xu L. ; Xu X. ; Zhou X. ; Zhang L. Chem. Lett. 2014, 43, 1306.
83 Pei L. ; Wei T. ; Lin N. ; Yu H. Int. J. Mater. Res 2016, 107, 477.
84 Wei W. ; Xie J. M. ; Meng S. C. ; Lu X. M. ; Yan Z. X. ; Zhu J. J. ; Cui H. L. J. Mater. Res. 2013, 28, 1658.
85 Li T. ; Lin L. ; Wei H. ; Liang G. ; Kuang X. ; Liu T. Physica E 2016, 76, 198.
86 Sun D. ; Wang T. ; Xu Y. ; Li R. ; Sato T. Mat. Sci. Semicon. Proc. 2015, 31, 666.
87 Hao H. ; Xu Y. ; Liu P. ; Zhang G. Chin. Chem. Lett 2015, 26, 133.
88 Li G. ; Jiang B. ; Xiao S. ; Lian Z. ; Zhang D. ; Yu J. C. ; Li H. Environ. Sci. Proc. Impacts 2014, 16, 1975.
89 Xie Y. ; Chang F. ; Li C. ; Chen J. ; Luo J. ; Li L. ; Hu X. Clean-Soil Air Water 2014, 42, 521.
90 Chang F. ; Luo J. ; Wang X. ; Xie Y. ; Deng B. ; Hu X. J. Colloid Interface Sci. 2015, 459, 136.
91 Shi X. J. ; Chen X. ; Chen X. L. ; Zhou S. M. ; Lou S. Y. ; Wang Y. Q. ; Yuan L. Chem. Eng. J. 2013, 222, 120.
92 Li H. ; Liu J. ; Hu T. ; Du N. ; Song S. ; Hou W. Mater. Res. Bull. 2016, 77, 171.
93 Zhao Y. ; Tan X. ; Yu T. ; Wang S. Mater. Lett. 2016, 164, 243.
94 Jia M. ; Hu X. ; Wang S. ; Huang Y. ; Song L. J. Environ. Sci 2015, 35, 172.
95 Ai L. ; Zeng Y. ; Jiang J. Chem. Eng. J. 2014, 235, 331.
96 Liu Q. ; Ma D. ; Hu Y. ; Zeng Y. ; Huang S. ACS Appl. Mater. Interfaces 2013, 5, 11927.
97 Xiao X. ; Xing C. ; He G. ; Zuo X. ; Nan J. ; Wang L. Appl. Catal. B-Environ. 2014, 148, 154.
98 He R. ; Cao S. ; Yu J. ; Yang Y. Catal. Today 2016, 264, 221.
99 Cui Z. K. ; Mi L.W. ; Zeng D. W. J. Alloy. Compd 2013, 549, 70.
100 Wang Y. ; Zhao J. ; Zhu Y. ; Zhou B. ; Zhao X. ; Wang Z. Colloids Surf. A 2013, 434, 296.
101 Li C. ; Chen G. ; Sun J. ; Feng Y. ; Liu J. ; Dong H. Appl. Catal. B-Environ. 2015, 163, 415.
102 Chen L. ; Huang R. ; Xiong M. ; Yuan Q. ; He J. ; Jia J. ; Yao M. ; Luo S. ; Au C. ; Yin S. Inorg. Chem. 2013, 52, 11118.
103 Qin X. Y. ; Cheng H. F. ; Wang W. J. ; Huang B. B. ; Zhang X.Y. ; Dai Y. Mater. Lett. 2013, 100, 285.
104 Tan G. Q. ; Zhang L. L. ; Ren H. J. ; Wei S. S. ; Huang J. ; Xia A. ACS Appl. Mater. Interfaces 2013, 5, 5186.
105 Chen F. ; Cao Y. ; Jia D. J. Colloid Interface Sci. 2013, 404, 110.
106 Xu M. ; Zhao Y. ; Yan Q. Water Sci. Technol. 2015, 72, 2122.
107 Bhat S. S. M. ; Sundaram N. G. New J. Chem. 2015, 39, 3956.
108 Lin H. ; Zhou C. ; Cao J. ; Chen S. Chin. Sci. Bull 2014, 59, 3420.
109 Han G. ; Chen Z. ; Ye D. ; Yang L. ; Wang L. ; Drennan J. ; Zou J. J. Mater. Chem. A 2014, 2, 7109.
110 Zhang P. ; Shao C. ; Zhang M. ; Guo Z. ; Mu J. ; Zhang Z. ; Zhang X. ; Liu Y. J. Hazard. Mater. 2012, 217
111 Rauf A. ; Shah M. S. A. S. ; Choi G. H. ; Humayoun U. B. ; Yoon D. H. ; Bae J.W. ; Park J. ; Kim W. ; Yoo P. J. ACS Sustain. Chem. Eng 2015, 3, 2847.
112 Zhang J. ; Han Q. ; Zhu J. ; Wang X. J. Colloid Interface Sci. 2016, 477, 25.
113 Wu T. ; Li X. ; Zhang D. ; Dong F. ; Chen S. J. Alloy. Compd 2016, 671, 318.
114 Gnayem H. ; Sasson Y. ACS Catal 2013, 3, 186.
115 Ou M. ; Dong F. ; Zhang W. ; Wu Z. Chem. Eng. J. 2014, 255, 650.
116 Zhu Z. ; Yan Y. ; Li J. Micro. Nano Lett 2015, 10, 460.
117 He G. ; Xing C. ; Xiao X. ; Hu R. ; Zuo X. ; Nan J. Appl. Catal. B-Environ. 2015, 170, 1.
118 Dai Z. ; Qin F. ; Zhao H. P. ; Tian F. ; Liu Y. L. ; Chen R. Nanoscale 2015, 7, 11991.
119 Peng Y. ; Yan M. ; Chen Q. ; Fan C. ; Zhou H. ; Xu A. J. Mater. Chem. A 2014, 2, 8517.
120 Tu S. ; Lu M. ; Xiao X. ; Zheng C. ; Zhong H. ; Zuo X. ; Nan J. RSC Adv 2016, 6, 44552.
121 Li J. ; Guo Z. ; Wang Y. ; Zhu Z. Micro Nano Lett 2014, 9, 65.
122 Chen L. ; He J. ; Yuan Q. ; Zhang Y. ; Wang F. ; Au C. ; Yin S. RSC Adv 2015, 5, 33747.
123 Lei S. ; Wang C. ; Cheng D. ; Gao X. ; Chen L. ; Yan Y. ; Zhou J. ; Xiao Y. ; Cheng B. J. Phys. Chem. C 2015, 119, 502.
124 Wang W. J. ; Cheng H. F. ; Huang B. B. ; Lin X. J. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. J. Colloid Interface Sci. 2013, 402, 34.
125 Xu X. ; Shen X. P. ; Zhu G. X. ; Jing L. Q. ; Liu X. S. ; Chen K. M. Chem. Eng. J. 2012, 200, 521.
126 Liu H. Y. ; Guo Y. P. ; Guo B. ; Dong W. ; Zhang D. J. Eur. Ceram. Soc. 2012, 32, 4335.
127 Li C. ; Chen G. ; Sun J. ; Feng Y. ; Dong H. ; Han Z. ; Hu Y. ; Lv C. New J. Chem. 2015, 39, 4384.
128 Wang X. ; Wan X. ; Chang L. Catal. Lett. 2014, 144, 1268.
129 Zhang P. ; Zhang J. ; Xie A. ; Li S. ; Song J. ; Shen Y. RSC Adv 2015, 5, 23080.
130 Hu S. ; Xu C. ; Zhen L. Mater. Lett. 2013, 95, 117.
131 Hou L. ; Hua H. ; Gan L. ; Yuan C. Mater. Lett. 2015, 159, 35.
132 Tian G. ; Chen Y. ; Zhou W. ; Pan K. ; Dong Y. ; Tian C. ; Fu H. J. Mater. Chem. 2011, 21, 887.
133 Wang Z. ; Qi Y. ; Qi H. ; Lu C. ; Wang S. J. Mater. Sci.-Mater. El. 2010, 21, 523.
134 Yu J. G. ; Yu H. G. ; Guo H. T. ; Li M. ; Mann S. Small 2008, 4, 87.
135 Yu J. G. ; Zhang J. Dalton T 2010, 39, 5860.
136 Yu J. G. ; Guo H. T. ; Davis S. A. ; Mann S. Adv. Funct. Mater. 2006, 16, 2035.
137 Cheng H. ; Huang B. ; Liu Y. ; Wang Z. ; Qin X. ; Zhang X. ; Dai Y. Chem Commun 2012, 48, 9729.
138 Ma D. ; Zhou S. ; Hu X. ; Jiang Q. ; Huang S. Mater. Chem. Phys. 2013, 140, 11.
139 Yan Y. ; Zhou Z. ; Cheng Y. ; Qiu L. ; Gao C. ; Zhou J. J. Alloy. Compd 2014, 605, 102.
140 Jin R. ; Li G. ; Xu Y. ; Liu J. ; Chen G. Int. J. Hydrog. Energy 2014, 39, 356.
141 Li J. ; Liu X. ; Sun Z. ; Pan L. Ceram. Int. 2015, 41, 8592.
142 Cheng H. ; Huang B. ; Wang Z. ; Qin X. ; Zhang X. ; Dai Y. Chem.-Eur. J. 2011, 17, 8039.
143 Li J. ; Cui M. ; Liu Z. ; Du J. ; Zhu Z. Phys. Status Solidi A 2013, 210, 1881.
144 Li X. ; Huang R. ; Hu Y. ; Chen Y. ; Liu W. ; Yuan R. ; Li Z. Inorg. Chem. 2012, 51, 6245.
145 Zhang K. ; Zhang D. ; Liu J. ; Ren K. ; Luo H. ; Peng Y. ; Li G. ; Yu X. CrystEngComm 2012, 14, 700.
146 Li J. ; Liu X. ; Sun Z. ; Sun Y. ; Pan L. J. Colloid Interface Sci. 2015, 452, 109.
147 Sun S. ; Wang W. ; Zhang L. J. Mater. Chem. 2012, 22, 19244.
148 Ai Z. ; Lu G. ; Lee S. J. Alloy. Compd 2014, 613, 260.
149 Ding L. Y. ; Chen H. ; Wang Q. Q. ; Zhou T. F. ; Jiang Q. Q. ; Yuan Y. H. ; Li J. L. ; Hu J. C. Chem. Commun. 2016, 52, 994.
150 Yin C. ; Zhu S. M. ; Chen Z. X. ; Zhang W. ; Gu J. J. ; Zhang D. J. Mater. Chem. A 2013, 1, 8367.
151 Tian Y. ; Zhang L. D. ; Zhang J. X. J. Alloy. Compd 2012, 537, 24.
152 Luo Y. Y. ; Tan G. Q. ; Dong G. H. ; Zhang L. L. ; Huang J. ; Yang W. ; Zhao C. C. ; Ren H. J. Appl. Surf. Sci. 2015, 324, 505.
153 Luo X. C. ; Zhu G. Q. ; Peng J. H. ; Wei X. M. ; Hojamberdiev M. ; Jin L. ; Liu P. Appl. Surf. Sci. 2015, 351, 260.
154 Zhang Z. ; Wang W. ; Gao E. ; Sun S. ; Zhang L. J. Phys. Chem. C 2012, 116, 25898.
155 Sun S. M. ; Wang W. Z. ; Zhang L. ; Shang M. ; Wang L. Catal. Commun 2009, 11, 290.
156 Takami A. ; Hideaki Kurita A. ; Koda S. J. Phys. Chem. B 1999, 103, 1226.
157 Roper D. K. ; Ahn W. ; Hoepfner M. J. Phys. Chem. C 2007, 111, 3636.
158 Gao M. Y. ; Jiang D. ; Sun D. K. ; Hou B. ; Li D. B. Acta Chim. Sin 2014, 72, 1092.
158 高梦语; 姜东; 孙德魁; 侯博; 李德宝. 化学学报, 2014, 72, 1092.
159 Qamar M. ; Khan A. RSC Adv 2014, 4, 9542.
160 Yu Y. ; Lu S. ; Bao S. J. Nanopart. Res 2015, 17, 323.
161 Wang R. ; Li X.W. ; Cui W. ; Zhang Y. X. ; Dong F. New J. Chem. 2015, 39, 8446.
162 Di J. ; Xia J. X. ; Yin S. ; Xu H. ; Xu L. ; Xu Y. G. ; He M. Q. ; Li H. M. ; Wang J. G. Mater. Technol. 2015, 30, 113.
163 Kong L. ; Jiang Z. ; Lai H. H. C. ; Xiao T. ; Edwards P. P. Prog. Nat. Sci 2013, 23, 286.
164 Long M. ; Jiang J. ; Li Y. ; Cao R. ; Zhang L. ; Cai W. Nano- Micro. Lett 2011, 3, 171.
165 Lu L. ; Kong L. ; Jiang Z. ; Lai H. H. C. ; Xiao T. ; Edwards P. P. Catal. Lett. 2012, 142, 771.
166 Murakami N. ; Takebe N. ; Tsubota T. ; Ohno T. J. Hazard. Mater. 2012, 211, 83.
167 Li J. ; Guo Z. ; Zhu Z. Ceram. Int. 2014, 40, 6495.
168 Wang F. ; Cao K. ; Wu Y. ; Zhang K. H. ; Zhou Y. Appl. Surf. Sci. 2016, 360, 1075.
169 Li J. ; Zhou J. ; Hao H. ; Zhu Z. Mater. Lett. 2016, 170, 163.
170 Phuruangrat A. ; Putdum S. ; Dumrongrojthanath P. ; Ekthammathat N. ; Thongtem S. ; Thongtem T. Mat. Sci. Semicon. Proc. 2015, 34, 175.
171 Dutta D. P. ; Tyagi A. K. Mater. Res. Bull. 2016, 74, 397.
172 Zhang L. ; Niu J. ; Li D. ; Gao D. ; Shi J. Adv. Cond. Matter. Phys 2014, 749354
173 Dong F. ; Li Q. ; Zhou Y. ; Sun Y. ; Zhang H. ; Wu Z. Dalton T 2014, 43, 9468.
174 Di J. ; Xia J. ; Ji M. ; Wang B. ; Yin S. ; Huang Y. ; Chen Z. ; Li H. Appl. Catal. B-Environ. 2016, 188, 376.
175 Yan X. ; Zhu X. ; Li R. ; Chen W. J. Hazard. Mater. 2016, 303, 1.
176 Zhao Q. ; Gong M. ; Liu W. ; Mao Y. ; Le S. ; Ju S. ; Long F. ; Liu X. ; Liu K. ; Jiang T. Appl. Surf. Sci. 2015, 332, 138.
177 Low J. ; Yu J. ; Li Q. ; Cheng B. Phys. Chem. Chem. Phys. 2014, 16, 1111.
178 Xu L. ; Wei Y. G. ; Guo W. ; Guo Y. H. ; Guo Y. N. Appl. Surf. Sci. 2015, 332, 682.
179 Zhang M. ; Shao C. ; Li X. ; Zhang P. ; Sun Y. ; Su C. ; Zhang X. ; Ren J. ; Liu Y. Nanoscale 2012, 4, 7501.
180 Xu M. ; Zhang W. Eur. J. Inorg. Chem. 2016, 2016, 826.
181 Ye H. ; Lin H. ; Cao J. ; Chen S. ; Chen Y. J. Mol. Catal. AChem 2015, 397, 85.
182 Cheng J. ; Wang C. ; Cui Y. ; Sun Y. ; Zuo Y. ; Wang T. Mater. Lett. 2014, 127, 28.
183 Li H. ; Sun Y. ; Cai B. ; Gan S. ; Han D. ; Niu L. ; Wu T. Appl. Catal. B-Environ. 2015, 170, 206.
184 Lin S. L. ; Liu L. ; Hu J. S. ; Liang Y. H. ; Cui W. Q. Appl. Surf. Sci. 2015, 324, 20.
185 Xiong T. ; Zhang H. J. ; Zhang Y. X. ; Dong F. Chin. J. Catal 2015, 36, 2155.
186 Liu C. ; Liu J. ; Zhang G. ; Zhang J. ; Wu Q. ; Xu Y. ; Sun Y. RSC Adv 2015, 5, 32333.
187 Ge M. ; Tan M. L. ; Cui G. H. Acta Phys. -Chim. Sin. 2014, 30, 2107.
187 葛明; 谭勉勉; 崔广华. 物理化学学报, 2014, 30, 2107.
188 Niu M. ; Zhu R. ; Tian F. ; Song K. ; Cao G. ; Ouyang F. Catal. Today 2015, 258, 585.
189 Chen J. ; Mei W. ; Liu C. ; Hu C. ; Huang Q. ; Chen N. ; Chen J. ; Zhang R. ; Hou W. Mater. Lett. 2016, 172, 184.
190 Hou J. ; Jiao S. ; Zhu H. ; Kumar R. V. CrystEngComm 2011, 13, 4735.
191 Di J. ; Xia J. ; Ji M. ; Li H. ; Xu H. ; Li H. ; Chen R. Nanoscale 2015, 7, 11433.
192 Xia J. X. ; Di J. ; Li H. T. ; Xu H. ; Li H. M. ; Guo S. J. Appl. Catal. B-Environ. 2016, 181, 260.
193 Di J. ; Xia J. ; Ji M. ; Wang B. ; Yin S. ; Zhang Q. ; Chen Z. ; Li H. ACS Appl. Mater. Interfaces 2015, 7, 20111.
194 Chen Y. ; Lu Q. ; Yan X. ; Mo Q. ; Chen Y. ; Liu B. ; Teng L. ; Xiao W. ; Ge L. ; Wang Q. Nanoscale Res. Lett 2016, 11, 60.
195 Di J. ; Xia J. ; Ji M. ; Xu L. ; Yin S. ; Chen Z. ; Li H. J. Mater. Chem. A 2016, 4, 5051.
196 Hao Y. C. ; Dong X. L. ; Wang X. Y. ; Zhai S. R. ; Ma H. C. ; Zhang X. F. J. Mater. Chem. A 2016, 4, 8298.
197 Yin Y. Y. ; Liu Q. ; Jiang D. ; Du X. J. ; Qian J. ; Mao H. P. ; Wang K. Carbon 2016, 96, 1157.
198 Lin X. ; Wang Y. S. ; Zheng J. ; Liu C. ; Yang Y. ; Che G. B. Dalton T 2015, 44, 19185.
199 Li G. ; Jiang B. ; Li X. ; Lian Z. ; Xiao S. ; Zhu J. ; Zhang D. ; Li H. ACS Appl. Mater. Interfaces 2013, 5, 7190.
200 Zhao X. ; Liu H. ; Shen Y. ; Qu J. Appl. Catal. B-Environ. 2011, 106, 63.
201 Li Z. S. ; Li B. L. ; Peng S. H. ; Li D. H. ; Yang S. Y. ; Fang Y. P. RSC Adv 2014, 4, 35144.
202 Xia J. ; Ji M. ; Di J. ; Wang B. ; Yin S. ; Zhang Q. ; He M. ; Li H. Appl. Catal. B-Environ. 2016, 191, 235.
203 Shi S. ; Gondal M. A. ; Al-Saadi A. A. ; Fajgar R. ; Kupcik J. ; Chang X. ; Shen K. ; Xu Q. ; Seddigi Z. S. J. Colloid Interface Sci. 2014, 416, 212.
204 Huang Y. ; Fu M. ; He T. Acta Phys. -Chim. Sin. 2015, 31, 1145.
204 黄艳; 傅敏; 贺涛. 物理化学学报, 2015, 31, 1145.
205 Liu D. ; Jiang Z. ; Zhu C. ; Qian K. ; Wu Z. ; Xie J. Dalton T 2016, 45, 2505.
206 Li W. ; Wang Q. ; Huang L. ; Li Y. ; Xu Y. ; Song Y. ; Zhang Q. ; Xu H. ; Li H. RSC Adv 2015, 5, 88832.
207 Dai W. ; Xu H. ; Yu J. ; Hu X. ; Luo X. ; Tu X. ; Yang L. Appl. Surf. Sci. 2015, 356, 173.
208 Duan F. ; Zhang Q. ; Shi D. ; Chen M. Appl. Surf. Sci. 2013, 268, 129.
209 Wang W. ; Xu J. ; Zhang L. ; Sun S. Catal. Today 2014, 224, 147.
210 Shang M. ; Wang W. ; Sun S. ; Ren J. ; Zhou L. ; Zhang L. J. Phys. Chem. C 2009, 113, 20228.
211 Hou J. ; Cao R. ; Jiao S. ; Zhu H. ; Kumar R. V. Appl. Catal. BEnviron. 2011, 104, 399.
212 Wang Q. ; Hui J. ; Li J. ; Cai Y. ; Yin S. ; Wang F. ; Su B. Appl. Surf. Sci. 2013, 283, 577.
213 Li H. ; Hou W. ; Tao X. ; Du N. Appl. Catal. B-Environ. 2015, 172, 27.
214 Zheng T. ; Xu J. ; Zhang Z. ; Zeng H. Mater. Lett. 2016, 164, 640.
215 Zhong S. ; Zhang F. ; Yu B. ; Zhao P. ; Jia L. ; Zhang S. J. Mater. Sci.-Mater. El. 2016, 27, 3011.
216 Li Y. Q. ; Wang Z. Y. ; Huang B. B. ; Dai Y. ; Zhang X. Y. ; Qin X. Y. Appl. Surf. Sci. 2015, 347, 258.
217 Gong J. ; Fang T. ; Peng D. ; Li A. ; Zhang L. Biosens. Bioelectron 2015, 73, 256.
218 Wang Y. ; Deng K. ; Zhang L. J. Phys. Chem. C 2011, 115, 14300.
219 Sha Z. ; Sun J. L. ; Chan H. ; Jaenicke S. ; Wu J. S. RSC Adv 2014, 4, 64977.
220 Wang H. ; Liu L. ; Wang Y. ; Lin S. ; An W. ; Cui W. ; Liang Y. Mater. Lett. 2015, 160, 351.
221 Luo Y. D. ; Huang Q. Q. ; Li B. ; Dong L. H. ; Fan M. G. ; Zhang F. Y. Appl. Surf. Sci. 2015, 357, 1072.
222 Yang Z. R. ; Peng J. T. ; Han Y. Q. ; Wang F. ; Liu Q. ; Zhang Y. ; Min S. X. Acta Phys. -Chim. Sin. 2013, 29, 813.
222 杨自嵘; 彭杰庭; 韩玉琦; 王芳; 刘倩; 张扬; 敏世雄. 物理化学学报, 2013, 29, 813.
223 Aguilera-Ruiz E. ; Garcia-Perez U. M. ; de la Garza-Galvan M. ; Zambrano-Robledo P. ; Bermudez-Reyes B. ; Peral J. Appl. Surf. Sci. 2015, 328, 361.
224 Cao C. H. ; Xiao L. ; Chen C. H. ; Cao Q. H. Appl. Surf. Sci. 2015, 357, 1171.
225 Cui W. ; An W. ; Liu L. ; Hu J. ; Liang Y. J. Hazard. Mater. 2014, 280, 417.
226 Zhao W. R. ; Zeng W. Y. ; Xi H. P. ; Yu X. X. Acta Phys. -Chim. Sin. 2014, 30, 761.
226 赵伟荣; 曾婉昀; 奚海萍; 余纤纤. 物理化学学报, 2014, 30, 761.
227 Di J. ; Xia J. ; Yin S. ; Xu H. ; Xu L. ; Xu Y. ; He M. ; Li H. RSC Adv 2014, 4, 14281.
228 Guo S. ; Li X. ; Wang H. ; Dong F. ; Wu Z. J. Colloid Interface Sci. 2012, 369, 373.
229 Liu Z. ; Wu B. ; Zhu Y. ; Yin D. ; Wang L. Catal. Lett. 2012, 142, 1489.
230 Ragsdale W. ; Gupta S. ; Conard K. ; Delacruz S. ; Subramanian V. R. Appl. Catal. B-Environ. 2016, 180, 442.
231 Wu Q. ; Feng Y. ; Zhang G. ; Sun Y. ; Xu Y. ; Gao D. Mater. Res. Bull. 2014, 49, 440.
232 Cai P. ; Zhou S. ; Ma D. ; Liu S. ; Chen W. ; Huang S. Nano- Micro. Lett 2015, 7, 183.
233 Li J. Z. ; Zhong J. B. ; He X. Y. ; Huang S. T. ; Zeng J. ; He J.J. ; Shi W. L. Appl. Surf. Sci. 2013, 284, 527.
234 Guo C. S. ; He Y. ; Du P. ; Zhao X. ; Lv J. P. ; Meng W. ; Zhang Y. ; Xu J. Appl. Surf. Sci. 2014, 320, 383.
235 Li X.W. ; Niu C. G. ; Huang D.W. ; Wang X. Y. ; Zhang X.G. ; Zeng G. M. ; Niu Q. Y. Appl. Surf. Sci. 2013, 286, 40.
236 Gupta S. ; De Leon L. ; Subramanian V. R. Phys. Chem. Chem. Phys. 2014, 16, 12719.
237 Pilli S. K. ; Deutsch T. G. ; Furtak T. E. ; Turner J. A. ; Brown L. D. ; Herring A. M. Phys. Chem. Chem. Phys. 2012, 14, 7032.
238 Feng Y. ; Yan X. ; Liu C. B. ; Hong Y. Z. ; Zhu L. ; Zhou M.J. ; Shi W. D. Appl. Surf. Sci. 2015, 353, 87.
239 Liu X. ; Zhou M. ; Yao G. ; Shi W. ; Ma C. ; Lv P. ; Tang Y. ; Yan Y. RSC Adv 2014, 4, 18264.
240 Liu Z. S. ; Wu B. T. ; Zhu Y. B. ; Wang F. ; Wang L. G. J. Colloid Interface Sci. 2013, 392, 337.
241 Srinivasan N. ; Sakai E. ; Miyauchi M. ACS Catal 2016, 6, 2197.
242 Li X. J. ; Sheng J. Y. ; Cheng H. H. ; Xu Y. M. Acta Phys. -Chim. Sin. 2015, 31, 540.
242 李晓金; 盛珈怡; 陈海航; 许宜铭. 物理化学学报, 2015, 31, 540.
243 Hu J. ; Xu G. ; Wang J. ; Lv J. ; Zhang X. ; Xie T. ; Zheng Z. ; Wu Y. Dalton T 2015, 44, 5386.
244 Han S. Q. ; Li J. ; Yang K. L. ; Lin J. Chin. J. Catal 2015, 36, 2119.
245 Jiang S. H. ; Zhou K. Q. ; Shi Y. Q. ; Lo S. M. ; Xu H. Y. ; Hu Y. ; Gui Z. Appl. Surf. Sci. 2014, 290, 313.
246 Cui Y. M. ; Jia Q. F. ; Li H. Q. ; Han J. Y. ; Zhu L. J. ; Li S. G. ; Zou Y. ; Yang J. Appl. Surf. Sci. 2014, 290, 233.
247 Fang M. ; Jia H. ; He W. ; Lei Y. ; Zhang L. ; Zheng Z. Phys. Chem. Chem. Phys. 2015, 17, 13531.
248 Cui Y. ; Yang L. ; Zhang G. ; Feng Y. Catal. Commun 2015, 59, 83.
249 An W. J. ; Cui W. Q. ; Liang Y. H. ; Hu J. S. ; Liu L. Appl. Surf. Sci. 2015, 351, 1131.
250 Chen F. ; Niu C. ; Yang Q. ; Li X. ; Zeng G. Ceram. Int. 2016, 42, 2515.
251 Ma Y. C. ; Chen Z.W. ; Qu D. ; Shi J. S. Appl. Surf. Sci. 2016, 361, 63.
252 Cui Z. ; Zeng D. ; Tang T. ; Liu J. ; Xie C. J. Hazard. Mater. 2010, 183, 211.
253 Yan Y. ; Wu Y. ; Yan Y. ; Guan W. ; Shi W. J. Phys. Chem. C 2013, 117, 20017.
254 Hu J. ; Xu G. ; Wang J. ; Lv J. ; Zhang X. ; Zheng Z. ; Xie T. ; Wu Y. New J. Chem. 2014, 38, 4913.
255 Chen D. ; Zhang M. ; Lu Q. ; Chen J. ; Liu B. ; Wang Z. J. Alloy. Compd 2015, 646, 647.
256 Weng S. X. ; Chen B. B. ; Xie L. Y. ; Zheng Z. Y. ; Liu P. J. Mater. Chem. A 2013, 1, 3068.
257 Li J. ; Liu X. ; Pan L. ; Qin W. ; Sun Z. RSC Adv 2014, 4, 62387.
258 Zhao Z.W. ; Zhang W. D. ; Sun Y. J. ; Yu J. Y. ; Zhang Y. X. ; Wang H. ; Dong F. ; Wu Z. B. J. Phys. Chem. C 2016, 120, 11889.
259 Sun Y. ; Zhao Z. ; Dong F. ; Zhang W. Phys. Chem. Chem. Phys. 2015, 17, 10383.
260 Dong F. ; Li Q. ; Sun Y. ; Ho W. ACS Catal 2014, 4, 4341.
261 Yu S. ; Huang H. ; Dong F. ; Li M. ; Tian N. ; Zhang T. ; Zhang Y. ACS Appl. Mater. Interfaces 2015, 7, 27925.
262 Chang C. ; Zhu L. ; Fu Y. ; Chu X. Chem. Eng. J. 2013, 233, 305.
263 Lu S. ; Yu Y. ; Bao S. ; Liao S. RSC Adv 2015, 5, 85500.
264 Etacheri V. ; Di Valentin C. ; Schneider J. ; Bahnemann D. ; Pillai S. C. J. Photochem. Photobiol. C 2015, 25, 1.
265 Li Q. ; Li X. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. G. Adv. Energy Mater 2015, 5, 1500010.
266 He R. A. ; Cao S.W. ; Guo D. P. ; Cheng B. ; Wageh S. ; Al-Ghamdi A. A. ; Yu J. G. Ceram. Int. 2015, 41, 3511.
267 Yu H. G. ; Chen F. Y. ; Chen F. ; Wang X. F. Appl. Surf. Sci. 2015, 358, 385.
268 Ma Y. N. ; Liu E. Z. ; Hu X. Y. ; Tang C. N. ; Wan J. ; Li J. ; Fan J. Appl. Surf. Sci. 2015, 358, 246.
269 Kuang P. Y. ; Su Y. Z. ; Chen G. F. ; Luo Z. ; Xing S. Y. ; Li N. ; Liu Z. Q. Appl. Surf. Sci. 2015, 358, 296.
270 Miao R. ; Luo Z. ; Zhong W. ; Chen S. Y. ; Jiang T. ; Dutta B. ; Nasr Y. ; Zhang Y. S. ; Suib S. L. Appl. Catal. B-Environ. 2016, 189, 26.
271 Li Q. ; Cui C. ; Meng H. ; Yu J. G. Chem.-Asian J 2014, 9, 1766.
272 Zhang H. C. ; Huang H. ; Ming H. ; Li H. T. ; Zhang L. L. ; Liu Y. ; Kang Z. H. J. Mater. Chem. 2012, 22, 10501.
273 Li K. ; Su F. Y. ; Zhang W. D. Appl. Surf. Sci. 2016, 375, 110.
274 Zhou L. ; Zhang L. M. ; Liao L. ; Yang M. M. ; Xie Q. ; Liu Z.F. ; Peng H. L. ; Liu Z. R. Acta Chim. Sin 2014, 72, 289.
274 周琳; 张黎明; 廖磊; 杨明媚; 谢芹; 刘忠范; 彭海琳; 刘志荣. 化学学报, 2014, 72, 289.
275 Putri L. K. ; Ong W. J. ; Chang W. S. ; Chai S. P. Appl. Surf. Sci. 2015, 358, 2.
276 Qu A. L. ; Xie H. L. ; Xu X. M. ; Zhang Y. Y. ; Wen S.W. ; Cui Y. F. Appl. Surf. Sci. 2016, 375, 230.
277 Ma Z. J. ; Sa R. J. ; Li Q. H. ; Wu K. C. Phys. Chem. Chem. Phys. 2016, 18, 1050.
278 Roushani M. ; Mavaei M. ; Rajabi H. R. J. Mol. Catal. AChem. 2015, 409, 102.
279 Wei S. ; Zhang R. ; Liu Y. ; Ding H. ; Zhang Y. L. Catal. Commun 2016, 74, 104.
280 Yeh T. F. ; Chen S. J. ; Teng H. S. Nano Energy 2015, 12, 476.
281 Hummers W. S. ; Offeman R. E. J. Am. Chem. Soc 1958, 80, 1339.
282 Choi W. ; Termin A. ; Hoffmann M. R. J. Phys. Chem 1994, 98, 13669.
283 Zhu J. ; Zheng W. ; He B. ; Zhang J. ; Anpo M. J. Mol. Catal. A-Chem. 2004, 216, 35.
284 Wang Q. ; Jiao D. ; Bai Y. ; Zhong J. ; Zhao L. ; Yong X. ; Tong J. ; Li J. Mater. Lett. 2015, 161, 267.
285 Jin J. ; Yu J. G. ; Guo D. P. ; Cui C. ; Ho W. K. Small 2015, 11, 5262.
286 Liu X. ; Zeng J. ; Zhong J. ; Li J. Appl. Phys. A 2015, 120, 977.
287 Su D. ; Di F. ; Xing J. ; Che J. F. ; Xiao Y. H. Prog. Chem. 2014, 26, 1962.
287 宿丹; 第凤; 邢季; 车剑飞; 肖迎红. 化学进展, 2014, 26, 1962.
288 Zheng T. ; Xu J. ; Zhang Z. ; Zeng H. RSC Adv 2015, 5, 99658.
289 Balint R. ; Cassidy N. J. ; Cartmell S. H. Acta Biomater 2014, 10, 2341.
290 Dallas P. ; Georgakilas V. Adv. Colloid Interface 2015, 224, 46.
291 Wang Z. ; Bai F. ; Wang X. ; Shang D. ; Xing Y. Spectrochim. Acta A 2016, 163, 73.
292 Dresselhaus M. S. ; Lin Y. M. ; Rabin O. ; Jorio A. ; Souza A.G. ; Pimenta M. A. ; Saito R. ; Samsonidze G. G. ; Dresselhaus G. Mat. Sci. Eng. 2003, 23, 129.
293 Dong F. ; Xiong T. ; Sun Y. ; Zhao Z. ; Zhou Y. ; Feng X. ; Wu Z. Chem. Commun. 2014, 50, 10386.
294 Zhang Q. ; Zhou Y. ; Wang F. ; Dong F. ; Li W. ; Li H. ; Patzke G. R. J. Mater. Chem. A 2014, 2, 11065.
295 Ma D. ; Zhao Y. ; Zhao J. ; Li Y. ; Lu Y. ; Zhao D. Superlattice Microst. 2015, 83, 411.
296 Gao F. ; Zhao Y. ; Li Y. ; Wu G. ; Lu W. Y. ; Song Y. ; Huang Z. ; Li N. ; Zhao J. J. Colloid Interface Sci. 2015, 448, 564.
297 Ma H. C. ; Zhao M. ; Xing H. M. ; Fu Y. H. ; Zhang X. F. ; Dong X. L. J. Mater. Sci.-Mater. El. 2015, 26, 10002.
298 Zhang X. ; Zhang L. ; Hu J. S. ; Pan C. L. ; Hou C. M. Appl. Surf. Sci. 2015, 346, 33.
299 Huang Y. ; Wang W. ; Zhang Q. ; Lee S. C. Sci. Rep-UK 2016, 6, 23435.
300 Liu X. L. ; Wang W. J. ; Liu Y. Y. ; Huang B. B. ; Dai Y. ; Qin X. Y. ; Zhang X. Y. RSC Adv 2015, 5, 55957.
301 Cheng H. F. ; Huang B. B. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. Chem. Commun. 2012, 48, 97.
302 Cheng H. F. ; Wang W. J. ; Huang B. B. ; Wang Z. Y. ; Zhan J. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. J. Mater. Chem. A 2013, 1, 7131.
303 Cheng H. F. ; Huang B. B. ; Dai Y. ; Qin X. Y. ; Zhang X. Y. Langmuir 2010, 26, 6618.
304 Cheng H. F. ; Huang B. B. ; Wang P. ; Wang Z. Y. ; Lou Z. Z. ; Wang J. P. ; Qin X. Y. ; Zhang X. Y. ; Dai Y. Chem. Commun. 2011, 47, 7054.
305 Wang J. ; Jiang W. J. ; Liu D. ; Wei Z. ; Zhu Y. F. Appl. Catal. B-Environ. 2015, 176, 306.
306 Huang Y. C. ; Li H. B. ; Balogun M. S. ; Liu W. Y. ; Tong Y.X. ; Lu X. H. ; Ji H. B. ACS Appl. Mater. Interfaces 2014, 6, 22920.
307 Jing T. ; Dai Y. ; Wei W. ; Ma X. ; Huang B. Phys. Chem. Chem. Phys. 2014, 16, 18596.
308 Lai K. ; Wei W. ; Zhu Y. ; Guo M. ; Dai Y. ; Huang B. J. Solid State Chem. 2012, 187, 103.
309 Zhang Y. ; Guo Y. ; Duan H. ; Li H. ; Sun C. ; Liu H. Phys. Chem. Chem. Phys. 2014, 16, 24519.
310 Sun Z. X. ; Yang Z. M. ; Liu H. F. ; Wang H. Q. ; Wu Z. B. Appl. Surf. Sci. 2014, 315, 360.
311 Zhu Y. ; Ling Q. ; Liu Y. ; Wang H. ; Zhu Y. Appl. Catal. BEnviron. 2016, 187, 204.
312 Singh A. P. ; Kodan N. ; Dey A. ; Krishnamurthy S. ; Mehta B. R. Int. J. Hydrog. Energy 2015, 40, 4311.
[1] Jingyuan ZHOU,Jin ZHANG,Zhongfan LIU. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 977-991.
[2] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[3] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[4] Jie HAN,Qiuju LIANG,Yi QU,Jiangang LIU,Yanchun HAN. Morphology Control of Non-fullerene Blend Systems Based on Perylene[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 391-406.
[5] Teng LU,Yongxiang ZHOU,Hongxia GUO. Deformation of Polymer-Grafted Janus Nanosheet: A Dissipative Particle Dynamic Simulations Study[J]. Acta Phys. -Chim. Sin., 2018, 34(10): 1144-1150.
[6] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Phys. -Chim. Sin., 2018, 34(1): 99-107.
[7] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[8] Xue-Hui HUANG,Xiao-Hui SHANG,Peng-Ju NIU. Surface Modification of SBA-15 and Its Effect on the Structure and Properties of Mesoporous La0.8Sr0.2CoO3[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1462-1473.
[9] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[10] Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.
[11] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[12] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[13] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[14] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[15] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.