Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 393-398    DOI: 10.3866/PKU.WHXB201611033
ARTICLE     
Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface
Li WANG1,He-Xia SHI1,Wen-Yuan WANG1,Hong SHI1,Xiang SHAO1,2,*()
1 Department of Chemical Physics, CAS Key Laboratory of Urban Pollutant Conversion, University of Science and Technology of China, Hefei 230026, P. R. China
2 Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei 230026, P. R. China
Download: HTML     PDF(1595KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Melamine and melem molecules are widely used precursors for synthesizing graphitic carbon nitride (g-C3N4), the latter also a hot two-dimensional material with photocatalytic applications. The molecular structures of both are respectively identical to the repeating units of two distinct g-C3N4 phases. In this work, the adsorption and self-assembly of melamine and melem on an Au(111) surface were investigated with low-temperature scanning tunneling microscopy (STM). Particularly, the patterns of hydrogen bonds (HBs) in their assemblies were identified and compared. It was found that melamine can only form one type of HB and two kinds of assembly structures, whereas melem can form three types of HBs and six kinds of assembly structures in total. Moreover, the involved HBs can be transformed by tip manipulation. These findings may provide a new strategy for tuning the functionality of surface self-assemblies by manipulating intermolecular hydrogen bonds. This also paves a route for the in situ synthesis of g-C3N4 on metallic surfaces and subsequent investigations of their physicochemical properties.



Key wordsMelamine      Melem      Au(111)      Scanning tunneling microscopy      Hydrogen bond      Selfassembly     
Received: 28 October 2016      Published: 03 November 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(91227117,21333001,91545128)
Corresponding Authors: Xiang SHAO     E-mail: shaox@ustc.edu.cn
Cite this article:

Li WANG,He-Xia SHI,Wen-Yuan WANG,Hong SHI,Xiang SHAO. Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface. Acta Physico-Chimica Sinca, 2017, 33(2): 393-398.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611033     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/393

Fig 1  Basic hydrogen bonds for melamine (a) and melem (b-d) molecules (b)“side-by-side”hydrogen bonds ; (c)“alternative side-by-side”hydrogen bonds; (d)“head-to-tail”hydrogen bonds. The dashed lines indicate hydrogen bonds. The white,blue and gray circles represent H,N and C atoms,respectively.color online
Fig 2  Typical assembly structures of melamine on Au(111) surface (a) STM image of coexisting structures I and II; (b) tentative molecular model of structure I; (c) tentative model of structure II. The dashed lines indicate hydrogen bonds.The black and red parallelograms represent unit cells of structure I and structure II,respectively. tunneling parameters: Vs = 1.0 V,It = 100 pA. color online
Fig 3  STM images and corresponding unit cell models of melem self-assembly structures on Au(111) surface (a,b) honeycomb structure; (c,d) pin-wheel structure; (e,f) close-packed structure.tunneling parameters: (a) Vs = 10 mV,It = 100 pA,(c) Vs = 1.0 V,It = 100 pA,(e) Vs = 1.0 V,It = 200 pA. color online
Fig 4  Flower-type structure of melem on Au(111) surface (a) wide-area STM image; (b) zoom in of (a); (c) corresponding unit cell model. The filled melem molecules are highlighted by yellow circles.The black and red dash lines respectively represent the hydrogen bonds of Mele-HC structure and the filled melem molecules with other melem molecules.tunneling parameters: Vs = 0.5 V,It = 160 pA. color online
Fig 5  STM images of the ASS-HBs of melem on Au(111) surface (a-c) anti-phase domain boundaries between the Mele-HC phases. (d-f) formation of squashed hexagonal pores after annealing to 380 K.(b) and (e) are the amplified square regions in (a) and (d),respectively. (c) and (f) are the proposed models of the two structures.tunneling parameters: (a,b) Vs = 1.0 V,It = 100 pA,(d,e) Vs = 10 mV,It = 100 pA. color online
Fig 6  Transition of the ASS-HBs to SS-HBs under tip manipulation continuous STM images scanned at different biases: (a) +1.7 V; (b)-2.7 V; (c) +1.7 V. current setpoint: 100 pA. color online
1 Kudernac T. ; Lei S. ; Elemans J. A. ; De Feyter S. Chem. Soc. Rev. 2009, 38, 402.
2 Bonifazi D. ; Mohnani S. ; Llanes-Pallas A. Chem. -Eur. J. 2009, 15, 7004.
3 Furukawa S. ; Uji-i H. ; Tahara K. ; Ichikawa T. ; Sonoda M. ; De Schryver F. C. ; Tobe Y. ; De Feyter S. J. Am. Chem. Soc. 2006, 128, 3502.
4 Lei S. ; Tahara K. ; Feng X. ; Furukawa S. ; De Schryver F. C. ; Müllen K. ; Tobe Y. ; De Feyter S. J. Am. Chem. Soc. 2008, 130, 7119.
5 Chen T. ; Yan H. J. ; Pan G. B. ; Wan L. J. ; Wang Q. Q. ; Wang M. X. Chem. J. Chin. Univ. 2008, 29, 113.
5 陈婷; 严会娟; 潘革波; 万立骏; 王其强; 王梅祥. 高等学校化学学报, 2008, 29, 113.
6 Madueno R. ; R?is?nen M. T. ; Silien C. ; Buck M. Nature 2008, 454, 618.
7 Theobald J. A. ; Oxtoby N. S. ; Phillips M. A. ; Champness N.R. ; Beton P. H. Nature 2003, 424, 1029.
8 Ye Y. ; Sun W. ; Wang Y. ; Shao X. ; Xu X. ; Cheng F. ; Li J. ; Wu K. J. Phys. Chem. C 2007, 111, 10138.
9 Langner A. ; Tait S. L. ; Lin N. ; Chandrasekar R. ; Meded V. ; Fink K. ; Ruben M. ; Kern K. Angew. Chem. 2012, 124, 4403.
10 Lin T. ; Shang X. S. ; Adisoejoso J. ; Liu P. N. ; Lin N. J. Am. Chem. Soc. 2013, 135, 3576.
11 Zheng Q. N. ; Liu X. H. ; Chen T. ; Yan H. J. ; Cook T. ; Wang D. ; Stang P. J. ; Wan L. J. J. Am. Chem. Soc. 2015, 137, 6128.
12 Shang J. ; Wang Y. ; Chen M. ; Dai J. ; Zhou X. ; Kuttner J. ; Hilt G. ; Shao X. ; Gottfried J. M. ; Wu K. Nat. Chem. 2015, 7, 389.
13 Grill L. ; Dyer M. ; Lafferentz L. ; Persson M. ; Peters M. V. ; Hecht S. Nat. Nano 2007, 2, 687.
14 Yang B. ; Bj?rk J. ; Lin H. ; Zhang X. ; Zhang H. ; Li Y. ; Fan J. ; Li Q. ; Chi L. J. Am. Chem. Soc. 2015, 137, 490410.
15 Silly F. ; Shaw A. Q. ; Castell M. R. ; Briggs G. A. D. ; Mura M. ; Martsinovich N. ; Kantorovich L. J. Phys. Chem. C 2008, 112, 11476.
16 Schmitz C. H. ; Ikonomov J. ; Sokolowski M. Surf. Sci. 2011, 605, 1.
17 Swarbrick J. ; Rogers B. ; Champness N. ; Beton P. J. Phys. Chem. B 2006, 110, 6110.
18 Bombis C. ; Kalashnyk N. ; Xu W. ; L?gsgaard E. ; Besenbacher F. ; Linderoth T. R. Small 2009, 5, 2177.
19 Zhang H. M. ; Xie Z. X. ; Long L. S. ; Zhong H. P. ; Zhao W. ; Mao B. W. ; Xu X. ; Zheng L. S. J. Phys. Chem. C 2008, 112, 4209.
20 Staniec P. ; Perdigao L. ; Rogers B. ; Champness N. ; Beton P. J. Phys. Chem. C 2007, 111, 886.
21 Perdig?o L. M. ; Champness N. R. ; Beton P. H. Chem. Commun. 2006, 538
22 Xu W. ; Dong M. ; Gersen H. ; Rauls E. ; Vázquez-Campos S. ; Crego-Calama M. ; Reinhoudt D. N. ; Stensgaard I. ; Laegsgaard E. ; Linderoth T. R. Small 2007, 3, 854.
23 Zhang X. ; Chen T. ; Chen Q. ; Wang L. ; Wan L. J. Phys. Chem. Chem. Phys. 2009, 11, 7708.
24 Jensen S. ; Greenwood J. ; Früchtl H. A. ; Baddeley C. J. J. Phys. Chem. C 2011, 115, 8630.
25 Eichhorn J. ; Schl?gl S. ; Lotsch B. V. ; Schnick W. ; Heckl W.M. ; Lackinger M. CrystEngComm 2011, 13, 5559.
26 Uemura S. ; Aono M. ; Komatsu T. ; Kunitake M. Langmuir 2010, 27, 1336.
27 Uemura S. ; Aono M. ; Sakata K. ; Komatsu T. ; Kunitake M. J. Phys. Chem. C 2013, 117, 24815.
28 Uemura S. ; Sakata K. ; Aono M. ; Nakamura Y. ; Kunitake M. Front. Chem. Sci. Eng. 2016, 10, 294.
29 Zheng Y. ; Lin L. ; Wang B. ; Wang X. Angew. Chem. Int. Ed. 2015, 54, 12868.
30 Wang X. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8, 76.
31 Zhang X. ; Wang H. ; Wang H. ; Zhang Q. ; Xie J. ; Tian Y. ; Wang J. ; Xie Y. Adv. Mater. 2014, 26, 4438.
32 Wang L. ; Chen Q. ; Shi H. ; Liu H. ; Ren X. ; Wang B. ; Wu K. ; Shao X. Phys. Chem. Chem. Phys. 2016, 18, 2324.
33 Mura M. ; Silly F. ; Burlakov V. ; Castell M. R. ; Briggs G. A.D. ; Kantorovich L. N. Phys. Rev. Lett. 2012, 108, 176103.
[1] Xiaoyu JIANG,Wei WU,Yirong MO. Strength of Intramolecular Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 278-285.
[2] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[3] Rui GUO,Jialin ZHANG,Songtao ZHAO,Xiaojiang YU,Shu ZHONG,Shuo SUN,Zhenyu LI,Wei CHEN. LT-STM Investigation of the Self-Assembled F16CuPc-Corannulene Binary System on Ag (111) and Grap[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 627-632.
[4] Hong YUAN,Jing ZHANG,Xue-Hong WEI,Hui-Min FANG,Shi-Fang YUAN,Li-Xin WU. Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 407-412.
[5] Yi-Ran SUN,Fei YU,Jie MA. Research Progress of Nanoconfined Water[J]. Acta Physico-Chimica Sinca, 2017, 33(11): 2173-2183.
[6] LIU Shan-Shan, JI Shan, CHEN Qi-Bin, PENG Chang-Jun, LIU Hong-Lai. Surface Patterning and Force-Induced Reversible Structural Transformation of a PVP-Chol Supramolecular Polymer Brush[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2318-2326.
[7] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2255-2263.
[8] WU Shao-Gui, FENG Dan. Free Energy Calculation for Base Pair Dissociation in a DNA Duplex[J]. Acta Physico-Chimica Sinca, 2016, 32(5): 1282-1288.
[9] WANG Su-Min, ZHAO Rong-Na, WANG Qi-Guan, GUO Hao, LI Jin-Hua, ZHANG Wen-Hui. Ureidopyrimidinone Quadruple Hydrogen-Bonded Ferrocene Dimer: Control of Electronic Communication[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 611-616.
[10] HU Ai-Bin, PAN Zhi-Quan, CHENG Qing-Rong, ZHOU Hong. Experimental and Theoretical Evidence for Supramolecular Self-Assembly and Hydrogen Bonding between Squaric Acid and 2,6-Bis(2-benzimidazolyl)pyridine[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 665-670.
[11] YE Juan, SUN Kai, TAO Min-Long, TU Yu-Bing, XIE Zheng-Bo, WANG Ya-Li, HAO Shao-Jie, XIAO Hua-Fang, WANG Jun-Zhong. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2593-2598.
[12] ZHOU Yu, XU Jing, WANG Nan-Nan, YU Zhi-Wu. Excess Spectroscopy: Concept and Applications[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 239-248.
[13] GU Gao-Chen, LI Na, ZHANG Xue, HOU Shi-Min, WANG Yong-Feng, WU Kai. Sierpiński Triangle Fractal Structures Investigated by STM[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 195-200.
[14] WANG Hong, ZHANG Hai-Ming, CHI Li-Feng. Surface Assisted Reaction under Ultra High Vacuum Conditions[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 154-170.
[15] ZHENG Dong, YUAN Xiang-Ai, MA Jing. Rationalization of pH-Dependent Absorption Spectrum of o-Methyl Red in Aqueous Solutions: TD-DFT Calculation and Experiment Study[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 290-300.