Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (2): 283-294    DOI: 10.3866/PKU.WHXB201611071
FEATURE ARTICLE     
Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts
Lü Yang1, SONG Yu-Jiang1, LIU Hui-Yuan1,2,3, LI Huan-Qiao2
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China;
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download:   PDF(2582KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Fuel cell vehicles (FCVs) have been a burgeoning industry in China, and are currently on the verge of widespread commercialization. The platinum-based electrocatalyst is one of the key materials in proton exchange membrane fuel cells (PEMFCs). The relatively low activity and durability, and high cost of the electrocatalyst impede the further development of PEMFCs as a clean energy technology. It has been widely anticipated that core-shell structured low-platinum electrocatalysts with high performance toward oxygen reduction reaction (ORR) will eventually resolve this bottleneck issue. Regardless of significant progress, there are still many remaining issues, such as complicated synthesis route, the large sizes of core materials like Pd, and lack of macroscopic characterization of the core-shell structures. Herein, we introduce two new synthetic methods (one pot synthesis and regioselective atomic layer deposition (ALD) combined with a wet chemical method) for the fabrication of core-shell structured Pd3Au@Pt/C electrocatalysts with high ORR performance. These two synthetic approaches allow us to well control the diameter of the core nanoparticle to around 5 nm. Cyclic voltammetry (CV) and formic acid oxidation reaction (FAOR) were found to be suitable for investigating the integrity of the Pt shell on the core particles. This work represents a new avenue for the macroscopic characterization of the core-shell structured electrocatalysts with Pd or Pd alloy as the core material.



Key wordsProton exchange membrane fuel cell      Core-shell structured electrocatalyst      Oxygen reduction reaction      Formic acid oxidation reaction      Durability     
Received: 08 August 2016      Published: 07 November 2016
MSC2000:  O646  
Fund:  

The project was supported by the National Key Research & Development Program of China (2016YFB0101307), National Key Basic Research Program of China (973) (2012CB215502), National Natural Science Foundation of China (21003114, 21103163, 21306188, 21373211, 21306187), Liaoning BaiQianWan Talents Program, China (201519), Program for Liaoning Excellent Talents in University, China (LR2015014), Dalian Excellent Young Scientific and Technological Talents, China (2015R006), and Fundamental Research Funds for the Central Universities, China (DUT15RC(3)001, DUT15ZD225).

Corresponding Authors: SONG Yu-Jiang     E-mail: yjsong@dlut.edu.cn
Cite this article:

Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.

URL:

http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/10.3866/PKU.WHXB201611071     OR     http://www.whxb.pku.edu.cn/Jwk_wk/wlhx/Y2017/V33/I2/283

(1) Yi, B. L. Fuel Cell-the Principle, Technique and Application, 1st ed.; Chemical Industry Press: Beijing, 2003; pp 5-8. [衣宝廉.燃料电池——原理、技术、应用. 第一版. 北京: 化学工业出版社, 2003: 5-8.]
(2) Tollefson, J. Nature 2010, 464, 1262. doi: 10.1038/4641262a
(3) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
(4) https://www.hydrogen.energy.gov/pdfs/review15/fc000_papageorgopoulos_2015_o.pdf (accessed Aug 5, 2016)
(5) Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Angew. Chem. Int. Ed. 2016, 55, 2650. doi: 10.1002/anie.201504830
(6) Nie, Y.; Li, L.; Wei, Z. D. Chem. Soc. Rev. 2015, 44, 2168. doi: 10.1039/c4cs00484a
(7) Li, S. S.; Liu, H. Y.; Wang, Y.; Xu, W.; Li, J.; Liu, Y.; Guo, X.W.; Song, Y. J. RSC Adv. 2015, 5, 8787. doi: 10.1039/c4ra16026f
(8) Li, J.; Xie, Y.; Li, S. S.; Bai, Y. Z.; Guo, X. W.; Yi, B. L.; Song, Y. J. Mater. Res. Express 2014, 1, 025045. doi: 10.1088/2053-1591/1/2/025045
(9) Si, W.; Li, J.; Li, H.; Li, S.; Yin, J.; Xu, H.; Guo, X.; Zhang, T.; Song, Y. Nano Res. 2013, 6, 720. doi: 10.1007/s12274-013-0349-z
(10) Li, S. S.; Li, H. Q.; Zhang, Y. S.; Garcia, R. M.; Li, J.; Xie, Y.; Yin, J.; Li, M. R.; Wang, J. H.; Shelnutt, J. A.; Zhang, T.; Song, Y. J. J. Mater. Chem. A 2015, 3, 21562. doi: 10.1039/c3ta10406k
(11) Wang, C.; Chi, M.; Wang, G.; van der Vliet, D.; Li, D.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Adv. Funct. Mater. 2011, 21, 147. doi: 10.1002/adfm.201001138
(12) Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2006, 128, 8813. doi: 10.1021/ja0600476
(13) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P.N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
(14) Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M. F.; More, K. L.; Li, Y. D.; Markovic, N.M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061
(15) Colón-Mercado, H. R.; Popov, B. N. J. Power Sources 2006, 155, 253. doi: 10.1016/j.jpowsour.2005.05.011
(16) Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nat. Mater. 2013, 12, 765. doi: 10.1038/nmat3668
(17) Debe, M. K.; Schmoeckel, A. K.; Vernstrorn, G. D.; Atanasoski, R. J. Power Sources 2006, 161, 1002. doi: 10.1016/j.jpowsour.2006.05.033
(18) Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Chem. Rev. 2016, 116, 3594. doi: 10.1021/acs.chemrev.5b00462
(19) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
(20) Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Angew. Chem. Int. Ed. 2006, 45, 2897. doi: 10.1002/anie.200504386
(21) Xiao, L.; Huang, B.; Zhuang, L.; Lu, J. RSC Adv. 2011, 1, 1358. doi: 10.1039/c1ra00378j
(22) Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J.K. J. Mol. Catal. A-Chem. 1997, 115, 421. doi: 10.1016/s1381-1169(96)00348-2
(23) Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. Phys. Rev. Lett. 2004, 93, 156801. doi: 10.1103/PhysRevLett.93.156801
(24) Hammer, B.; Norskov, J. K. Adv. Catal. 2000, 45, 71. doi: 10.1016/S0360-0564(02)45013-4
(25) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121
(26) Greeley, J.; Norskov, J. K.; Mavrikakis, M. Annu. Rev. Phys. Chem. 2002, 53, 319. doi: 10.1146/annurev.physchem.53.100301.131630
(27) Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Ed. 2005, 44, 2132. doi: 10.1002/anie.200462335
(28) Jiang, K.; Zhang, H. X.; Zou, S.; Cai, W. B. Phys. Chem. Chem. Phys. 2014, 16, 20360. doi: 10.1039/c4cp03151b
(29) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A. Nat. Chem. 2010, 2, 454. doi: 10.1038/NCHEM.623
(30) Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Top. Catal. 2007, 46, 249. doi: 10.1007/s11244-007-9003-x
(31) Oezaslan, M.; Hasche, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273. doi: 10.1021/jz4014135
(32) Peng, Z.; Yang, H. J. Am. Chem. Soc. 2009, 131, 7542. doi: 10.1021/ja902256a
(33) Price, S. W. T.; Speed, J. D.; Kannan, P.; Russell, A. E. J. Am. Chem. Soc. 2011, 133, 19448. doi: 10.1021/ja206763e
(34) Brimaud, S.; Behm, R. J. J. Am. Chem. Soc. 2013, 135, 11716. doi: 10.1021/ja4051795
(35) Jiang, X.; Gur, T. M.; Prinz, F. B.; Bent, S. F. Chem. Mater. 2010, 22, 3024. doi: 10.1021/cm902904u
(36) Wang, D.; Xin, H. L.; Yu, Y.; Wang, H.; Rus, E.; Muller, D. A.; Abruna, H. D. J. Am. Chem. Soc. 2010, 132, 17664. doi: 10.1021/ja107874u
(37) Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168. doi: 10.1021/nn403788a
(38) Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373. doi: 10.1021/nn303298s
(39) Wang, G.; Huang, B.; Xiao, L.; Ren, Z.; Chen, H.; Wang, D.; Abruna, H. D.; Lu, J.; Zhuang, L. J. Am. Chem. Soc. 2014, 136, 9643. doi: 10.1021/ja503315s
(40) Wang, X.; Vara, M.; Luo, M.; Huang, H. W.; Ruditskiy, A.; Park, J.; Bao, S. X.; Liu, J. Y.; Howe, J.; Chi, M. F.; Xie, Z. X.; Xia, Y.N. J. Am. Chem. Soc. 2015, 137, 15036. doi: 10.1021/jacs.5b10059
(41) Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Nat. Commun. 2012, 3, 1115. doi: 10.1038/ncomms2124
(42) Shao, M.; He, G.; Peles, A.; Odell, J. H.; Zeng, J.; Su, D.; Tao, J.; Yu, T.; Zhu, Y.; Xia, Y. Chem. Commun. 2013, 49, 9030. doi: 10.1039/c3cc43276a
(43) Xie, S.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570. doi: 10.1021/nl501205j
(44) Park, J.; Zhang, L.; Choi, S. I.; Roling, L. T.; Lu, N.; Herron, J.A.; Xie, S.; Wang, J.; Kim, M. J.; Mavrikakis, M.; Xia, Y. ACS Nano 2015, 9, 2635. doi: 10.1021/nn506387w
(45) Li, H.; Yao, R.; Wang, D.; He, J.; Li, M.; Song, Y. J. Phys. Chem. C 2015, 119, 4052. doi: 10.1021/jp5106168
(46) Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. Angew. Chem. Int. Ed. 2013, 52, 13611. doi: 10.1002/anie.201307126
(47) Wang, L.; Yamauchi, Y. J. Am. Chem. Soc. 2010, 132, 13636. doi: 10.1021/ja105640p
(48) Liu, H.; Song, Y.; Li, S.; Li, J.; Liu, Y.; Jiang, Y. B.; Guo, X. RSC Adv. 2016, 6, 66712. doi: 10.1039/c6ra04990g
(49) Song, Y.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Nano Lett. 2007, 7, 3650. doi: 10.1021/nl0719123
(50) Mackus, A. J. M.; Dielissen, S. A. F.; Mulders, J. J. L.; Kessels, W. M. M. Nanoscale 2012, 4, 4477. doi: 10.1039/c2nr30664f
(51) Lu, J.; Low, K. B.; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P.C.; Elam, J. W. Nat. Commun. 2014, 5, 3264. doi: 10.1038/ncomms4264
(52) Mackus, A. J. M.; Mulders, J. J. L.; van de Sanden, M. C. M.; Kessels, W. M. M. J. Appl. Phys. 2010, 107, 116102. doi: 10.1063/1.3431351
(53) Lei, Y.; Liu, B.; Lu, J.; Lobo-Lapidus, R. J.; Wu, T.; Feng, H.; Xia, X.; Mane, A. U.; Libera, J. A.; Greeley, J. P.; Miller, J. T.; Elam, J. W. Chem. Mater. 2012, 24, 3525. doi: 10.1021/cm300080w
(54) Cao, K.; Zhu, Q.; Shan, B.; Chen, R. Sci. Rep. 2015, 5, 8470. doi: 10.1038/srep08470

[1] SHEN Hai-Bo, JIANG Hao, LIU Yi-Si, HAO Jia-Yu, LI Wen-Zhang, LI Jie. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[2] CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[3] ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[4] ZHAI Xiao, DING Yi. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[5] WANG Jun, WEI Zi-Dong. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[6] XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 149-164.
[7] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17.
[8] LI Yang, WANG Jia-Dao, FAN Li-Ning, CHEN Da-Rong. Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 990-996.
[9] YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 834-847.
[10] ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2462-2474.
[11] WANG Jun, LI Li, WEI Zi-Dong. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 321-328.
[12] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1727-1732.
[13] HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1715-1726.
[14] SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1609-1614.
[15] QIAN Yang, XU Jiang. Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments[J]. Acta Phys. -Chim. Sin., 2015, 31(2): 291-301.