Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (2): 283-294    DOI: 10.3866/PKU.WHXB201611071
FEATURE ARTICLE     
Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts
Yang Lü1,Yu-Jiang SONG1,Hui-Yuan LIU1,2,3,Huan-Qiao LI2()
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(2582KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Fuel cell vehicles (FCVs) have been a burgeoning industry in China, and are currently on the verge of widespread commercialization. The platinum-based electrocatalyst is one of the key materials in proton exchange membrane fuel cells (PEMFCs). The relatively low activity and durability, and high cost of the electrocatalyst impede the further development of PEMFCs as a clean energy technology. It has been widely anticipated that core-shell structured low-platinum electrocatalysts with high performance toward oxygen reduction reaction (ORR) will eventually resolve this bottleneck issue. Regardless of significant progress, there are still many remaining issues, such as complicated synthesis route, the large sizes of core materials like Pd, and lack of macroscopic characterization of the core-shell structures. Herein, we introduce two new synthetic methods (one pot synthesis and regioselective atomic layer deposition (ALD) combined with a wet chemical method) for the fabrication of core-shell structured Pd3Au@Pt/C electrocatalysts with high ORR performance. These two synthetic approaches allow us to well control the diameter of the core nanoparticle to around 5 nm. Cyclic voltammetry (CV) and formic acid oxidation reaction (FAOR) were found to be suitable for investigating the integrity of the Pt shell on the core particles. This work represents a new avenue for the macroscopic characterization of the core-shell structured electrocatalysts with Pd or Pd alloy as the core material.



Key wordsProton exchange membrane fuel cell      Core-shell structured electrocatalyst      Oxygen reduction reaction      Formic acid oxidation reaction      Durability     
Received: 08 August 2016      Published: 07 November 2016
MSC2000:  O646  
Fund:  The project was supported by the National Key Research & Development Program of China(2016YFB0101307);National Key Basic Research Program of China (973)(2012CB215502);National Natural Science Foundation of China(21003114,21103163,21306188,21373211,21306187);Liaoning BaiQianWan Talents Program, China(201519);Program for Liaoning Excellent Talents in University, China(LR2015014);Dalian Excellent Young Scientific and Technological Talents, China(2015R006);Fundamental Research Funds for the Central Universities, China(DUT15RC(3)001,DUT15ZD225)
Corresponding Authors: Huan-Qiao LI     E-mail: yjsong@dlut.edu.cn
Cite this article:

Yang Lü,Yu-Jiang SONG,Hui-Yuan LIU,Huan-Qiao LI. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts. Acta Phys. -Chim. Sin., 2017, 33(2): 283-294.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611071     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/283

Fig 1 Schematic illustration of synthetic approaches of core-shell structured electrocatalysts adapted from Ref.3
Fig 2 (A) Transmission electron microscope (TEM) image of Pd3Au/C; (B) TEM image of Pd3Au@Pt/C electrocatalyst;(C) high resolution TEM (HRTEM) image of Pd3Au@Pt/C electrocatalyst adapted from Ref.45
Fig 3 High-angle annular dark-field scanning transmission electron microscopy (HAADF-STEM) image of Pd3Au@Pt/C electrocatalyst (A); elemental mapping of (B) Pt, (C) Pd and (D) Au for the selected area in (A)adapted from Ref.45
Fig 4 (A) Cyclic voltammetry (CV) curves of Pd3Au@Pt/C, Pt/C, Pd/C, Au/C, Pd3Au/C and commercial Pt/C electrocatalysts recorded in N2-saturated 0.1 mol?L-1 HClO4 aqueous solution; (B) CV curves of Pd3Au@Pt3/C, PtPd3/C,Pd3Au0.1@Pt3/C, Pd3Au@Pt0.5/C and Pd3Au@Pt/C (200H) recorded in N2-saturated 0.1 mol?L-1 HClO4 aqueous solution;(C) the corresponding enlarged hydrogen desorption region of Pd3Au/C, Pd3Au@Pt0.5/C and Pd3Au@Pt/C, which are intercepted from Fig.4(A) and Fig.4(B); (D) ORR polarization curves for the Pt/C, Pd/C, Au/C, Pd3Au/C, commercial Pt/C,Pd3Au@Pt/C and Pd3Au@Pt/C (200H) electrocatalysts obtained in an O2-saturated 0.1 mol?L-1 HClO4 aqueous solution
Fig 5 Linear sweep voltammogram curves of formic acid oxidation reaction (FAOR) for Pd3Au@Pt/C and commercial Pt/C in N2-saturated 0.1 mol?L-1 HClO4 + 0.5 mol?L-1 HCOOH aqueous solution In Fig.5(B), current densities normalized in reference to Pt mass for commercial Pt/C and Pd3Au@Pt/C. adapted from Ref.45
Fig 6 (A) XPS spectra of Pt/C, PtPd3/C, Pd3Au@Pt/C; (B) XRD patterns of Pt/C、Pd3Au/C and Pd3Au@Pt/C electrocatalysts adapted from Ref.45
Fig 7 (A) HAADF-STEM image of Pd3Au@Pt/C electrocatalyst; elemental mapping of (B) Pd, (C) Au, (D) Pt and (E) Pd3Au@Pt for the area in (A); (F) HAADF-STEM image of a typical Pd3Au@Pt nanoparticle on carbon black (The red line indicating the electron probe′s scanning direction); (G) line-scan profiles of Pt, Pd, and Au showing a core-shell structure adapted from Ref.48
Fig 8 (A) CV curves of commercial Pt/C and Pt/C-PT (ALD) collected in N2-saturated 0.1 mol?L-1 HClO4 aqueous solution; (B) ORR polarization curves of commercial Pt/C and Pt/C-PT (ALD) collected in O2-saturated 0.1 mol?L-1 HClO4 aqueous solution adapted from Ref.48
Fig 9 (A) CV curves of commercial Pt/C, Pd3Au@Pt/C,Pd3Au/C (heat) and Pd3Au/C collected in N2-saturated 0.1 mol?L-1 HClO4 aqueous solution; (B) ORR polarization curves of commercial Pt/C, Pd3Au@Pt/C, Pd3Au/C (heat) and Pd3Au/C collected in O2-saturated 0.1 mol?L-1 HClO4 aqueous solution; (C) mass activity (MA) given as kinetic current densities (jk) normalized in reference to Pt mass at 0.9 V (vs RHE) for commercial Pt/C and Pd3Au@Pt/C adapted from Ref.48
Fig 10 Linear sweep voltammogram curves of FAOR for commercial Pt/C and Pd3Au@Pt/C in N2-saturated 0.5 mol?L-1 H2SO4 aqueous solution containing 0.5 mol?L-1 formic acid In Fig.10(B), current densities normalized in reference to Pt mass for commercial Pt/C and Pd3Au@Pt/C. adapted from Ref.48
Fig 11 (A) XPS spectra of commercial Pt/C, Pd3Au@Pt/C; (B) XRD patterns of Pd3Au/C and Pd3Au@Pt/C Black, light gray and gray vertical lines represent fcc Pt (JCPDS file 04-0802), fcc Pd (JCPDS file 46-1043), andfcc Au (JCPDS file 04-0784), respectively. adapted from Ref.48
1 Yi B.L. Beijing: Chemical Industry Press, 2003, 5- 8.
1 衣宝廉. 燃料电池——原理、技术、应用, 北京: 化学工业出版社, 2003, 5- 8.
2 TollefsonJ. Nature 2010, 464, 1262.
3 De be ; M. K. Nature 2012, 486, 43.
4 https://www.hydrogen.energy.gov/pdfs/review15/fc000_papageorgopoulos_2015_o.pdf (accessed Aug 5, 2016)
5 X ia ; W.; Mahmood ; A.; Liang ; Z. B.; Zou ; R. Q.; Guo ; S. J. Angew. Chem. Int. Ed. 2016, 55, 2650.
6 N ie ; Y.; Li ; L.; Wei ; Z. D. Chem. Soc. Rev. 2015, 44, 2168.
7 L i ; S. S.; Liu ; H. Y.; Wang ; Y.; Xu ; W.; Li ; J.; Liu ; Y.; Guo ; X.W.; Song ; Y. J. RSC Adv. 2015, 5, 8787.
8 L i ; J.; Xie ; Y.; Li ; S. S.; Bai ; Y. Z.; Guo ; X. W.; Yi ; B. L.; Song ; Y. J. Mater. Res. Express 2014, 1, 025045.
9 S i ; W.; Li ; J.; Li ; H.; Li ; S.; Yin ; J.; Xu ; H.; Guo ; X.; Zhang ; T.; Song ; Y Nano Res. 2013, 6, 720.
10 L i ; S. S.; Li ; H. Q.; Zhang ; Y. S.; Garcia ; R. M.; Li ; J.; Xie ; Y.; Yin ; J.; Li ; M. R.; Wang ; J. H.; Shelnutt ; J. A.; Zhang ; T.; Song ; Y. J. J. Mater. Chem. A 2015, 3, 21562.
11 Wa ng ; C.; Chi ; M.; Wang ; G.; van der Vliet ; D.; Li ; D.; More ; K.; Wang ; H. H.; Schlueter ; J. A.; Markovic ; N. M.; Stamenkovic ; V. R. Adv. Funct. Mater. 2011, 21, 147.
12 Stamenkovic ; V. R.; Mun ; B. S.; Mayrhofer ; K. J. J.; Ross ; P. N.; Markovic ; N. M. J. Am. Chem. Soc. 2006, 128, 8813.
13 Stamenkovic ; V. R.; Fowler ; B.; Mun ; B. S.; Wang ; G.; Ross ; P.N.; Lucas ; C. A.; Markovic ; N. M. Science 2007, 315, 493.
14 Ch en ; C.; Kang ; Y. J.; Huo ; Z. Y.; Zhu ; Z. W.; Huang ; W. Y.; Xin ; H. L. L.; Snyder ; J. D.; Li ; D. G.; Herron ; J. A.; Mavrikakis ; M.; Chi ; M. F.; More ; K. L.; Li ; Y. D.; Markovic ; N.M.; Somorjai ; G. A.; Yang ; P. D.; Stamenkovic ; V. R. Science 2014, 343, 1339.
15 Colón-Mercado ; H. R.; Popov ; B. N. J. Power Sources 2006, 155, 253.
16 C ui ; C.; Gan ; L.; Heggen ; M.; Rudi ; S.; Strasser ; P Nat. Mater. 2013, 12, 765.
17 De be ; M. K.; Schmoeckel ; A. K.; Vernstrorn ; G. D.; Atanasoski ; R J. Power Sources 2006, 161, 1002.
18 Sh ao ; M. H.; Chang ; Q. W.; Dodelet ; J. P.; Chenitz ; R Chem. Rev. 2016, 116, 3594.
19 N?rskov ; J. K.; Rossmeisl ; J.; Logadottir ; A.; Lindqvist ; L.; Kitchin ; J. R.; Bligaard ; T.; Jonsson ; H . J. Phys. Chem. B 2004, 108, 17886.
20 Stamenkovic ; V.; Mun ; B. S.; Mayrhofer ; K. J. J.; Ross ; P. N.; Markovic ; N. M.; Rossmeisl ; J.; Greeley ; J.; Norskov ; J. K. Angew. Chem. Int. Ed. 2006, 45, 2897.
21 Xi ao ; L.; Huang ; B.; Zhuang ; L.; Lu ; J RSC Adv. 2011, 1, 1358.
22 Ruban ; A.; Hammer ; B.; Stoltze ; P.; Skriver ; H. L.; Norskov ; J .K. J. Mol. Catal. A-Chem. 1997, 115, 421.
23 Kitchin ; J. R.; Norskov ; J. K.; Barteau ; M. A.; Chen ; J. G. Phys. Rev. Lett. 2004, 93, 156801.
24 Hammer ; B.; Norskov ; J. K. Adv. Catal. 2000, 45, 71.
25 Norskov ; J. K.; Bligaard ; T.; Rossmeisl ; J.; Christensen ; C. H. Nat. Chem. 2009, 1, 37.
26 Greeley ; J.; Norskov ; J. K.; Mavrikakis ; M Annu. Rev. Phys. 2002, 53, 319.
27 Zhang ; J. L.; Vukmirovic ; M. B.; Xu ; Y.; Mavrikakis ; M.; Adzic ; R. R. Angew. Chem. Int. Ed. 2005, 44, 2132.
28 Jiang ; K.; Zhang ; H. X.; Zou ; S.; Cai ; W. B. Phys. Chem. Chem. Phys. 2014, 16, 20360.
29 Strasser ; P.; Koh ; S.; Anniyev ; T.; Greeley ; J.; More ; K.; Yu ; C.; Liu ; Z.; Kaya ; S.; Nordlund ; D.; Ogasawara ; H.; Toney ; M. F.; Nilsson ; A Nat. Chem. 2010, 2, 454.
30 Adzic ; R. R.; Zhang ; J.; Sasaki ; K.; Vukmirovic ; M. B.; Shao ; M.; Wang ; J. X.; Nilekar ; A. U.; Mavrikakis ; M.; Valerio ; J. A.; Uribe ; F Top. Catal. 2007, 46, 249.
31 Oezaslan ; M.; Hasche ; F.; Strasser ; P J. Phys. Chem. Lett. 2013, 4, 3273.
32 Pe ng ; Z.; Yang ; H J. Am. Chem. Soc. 2009, 131, 7542.
33 Price ; S. W. T.; Speed ; J. D.; Kannan ; P.; Russell ; A. E. J. Am. Chem. Soc. 2011, 133, 19448.
34 Brimaud ; S.; Behm ; R. J. J. Am. Chem. Soc. 2013, 135, 11716.
35 Jiang ; X.; Gur ; T. M.; Prinz ; F. B.; Bent ; S. F. Chem. Mater. 2010, 22, 3024.
36 Wa ng ; D.; Xin ; H. L.; Yu ; Y.; Wang ; H.; Rus ; E.; Muller ; D. A.; Abruna ; H. D. J. Am. Chem. Soc. 2010, 132, 17664.
37 Zhang ; L.; Iyyamperumal ; R.; Yancey ; D. F.; Crooks ; R. M.; Henkelman ; G ACS Nano 2013, 7, 9168.
38 Ya ng ; J.; Yang ; J.; Ying ; J. Y. ACS Nano 2012, 6, 9373.
39 Wa ng ; G.; Huang ; B.; Xiao ; L.; Ren ; Z.; Chen ; H.; Wang ; D.; Abruna ; H. D.; Lu ; J.; Zhuang ; L J. Am. Chem. Soc. 2014, 136, 9643.
40 Wa ng ; X.; Vara ; M.; Luo ; M.; Huang ; H. W.; Ruditskiy ; A.; Park ; J.; Bao ; S. X.; Liu ; J. Y.; Howe ; J.; Chi ; M. F.; Xie ; Z. X.; Xia ; Y .N. J. Am. Chem. Soc. 2015, 137, 15036.
41 Sasaki ; K.; Naohara ; H.; Choi ; Y.; Cai ; Y.; Chen ; W. F.; Liu ; P.; Adzic ; R. R. Nat. Commun. 2012, 3, 1115.
42 Sh ao ; M.; He ; G.; Peles ; A.; Odell ; J. H.; Zeng ; J.; Su ; D.; Tao ; J.; Yu ; T.; Zhu ; Y.; Xia ; Y Chem. Commun. 2013, 49, 9030.
43 X ie ; S.; Choi ; S. I.; Lu ; N.; Roling ; L. T.; Herron ; J. A.; Zhang ; L.; Park ; J.; Wang ; J.; Kim ; M. J.; Xie ; Z.; Mavrikakis ; M.; Xia ; Y Nano Lett. 2014, 14, 3570.
44 Pa rk ; J.; Zhang ; L.; Choi ; S. I.; Roling ; L. T.; Lu ; N.; Herron ; J.A.; Xie ; S.; Wang ; J.; Kim ; M. J.; Mavrikakis ; M.; Xia ; Y ACS Nano 2015, 9, 2635.
45 L i ; H.; Yao ; R.; Wang ; D.; He ; J.; Li ; M.; Song ; Y J. Phys. Chem. C 2015, 119, 4052.
46 Ataee-Esfahani ; H.; Imura ; M.; Yamauchi ; Y Angew. Chem. Int. Ed. 2013, 52, 13611.
47 Wa ng ; L.; Yamauchi ; Y J. Am. Chem. Soc. 2010, 132, 13636.
48 L iu ; H.; Song ; Y.; Li ; S.; Li ; J.; Liu ; Y.; Jiang ; Y. B.; Guo ; X RSC Adv. 2016, 6, 66712.
49 So ng ; Y.; Garcia ; R. M.; Dorin ; R. M.; Wang ; H. R.; Qiu ; Y.; Coker ; E. N.; Steen ; W. A.; Miller ; J. E.; Shelnutt ; J. A. Nano Lett. 2007, 7, 3650.
50 Mackus ; A. J. M.; Dielissen ; S. A. F.; Mulders ; J. J. L.; Kessels ; W. M. M. Nanoscale 2012, 4, 4477.
51 L u ; J.; Low ; K. B.; Lei ; Y.; Libera ; J. A.; Nicholls ; A.; Stair ; P.C.; Elam ; J. W. Nat. Commun. 2014, 5, 3264.
52 Mackus ; A. J. M.; Mulders ; J. J. L.; van de Sanden ; M. C. M.; Kessels ; W. M. M. J. Appl. Phys. 2010, 107, 116102.
53 L ei ; Y.; Liu ; B.; Lu ; J.; Lobo-Lapidus ; R. J.; Wu ; T.; Feng ; H.; Xia ; X.; Mane ; A. U.; Libera ; J. A.; Greeley ; J. P.; Miller ; J. T.; Elam ; J. W. Chem. Mater. 2012, 24, 3525.
54 C ao ; K.; Zhu ; Q.; Shan ; B.; Chen ; R Sci. Rep. 2015, 5, 8470.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[2] Hai-Bo SHEN,Hao JIANG,Yi-Si LIU,Jia-Yu HAO,Wen-Zhang LI,Jie LI. Cobalt@cobalt Carbide Supported on Nitrogen and Sulfur Co-Doped Carbon: an Efficient Non-Precious Metal Electrocatalyst for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1811-1821.
[3] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1875-1883.
[4] Yang ZHOU,Qing-Qing CHENG,Qing-Hong HUANG,Zhi-Qing ZOU,Liu-Ming YAN,Hui YANG. Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1429-1435.
[5] Xiao ZHAI,Yi DING. Nanoporous Metal Electrocatalysts for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1366-1378.
[6] Jun WANG,Zi-Dong WEI. Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 886-902.
[7] Qiao-Wan CHANG,Fei XIAO,Yuan XU,Min-Hua SHAO. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 9-17.
[8] Cui-Juan XUAN,Jie WANG,Jing ZHU,De-Li WANG. Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 149-164.
[9] Yang LI,Jia-Dao WANG,Li-Ning FAN,Da-Rong CHEN. Feasible Fabrication of a Durable Superhydrophobic Coating on Polyester Fabrics for Oil-Water Separation[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 990-996.
[10] Yi YANG,Lai-Ming LUO,Juan-Juan DU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 834-847.
[11] Hong ZHU,Ming-Chuan LUO,Ye-Zheng CAI,Zhao-Nan SUN. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2462-2474.
[12] Jun WANG,Li LI,Zi-Dong WEI. Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 321-328.
[13] Jie. ZHANG,Mei-Ling. DOU,Feng. WANG,Jing-Jun. LIU,Zhi-Lin. LI,Jing. JI,Ye. SONG. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1727-1732.
[14] HAYIERBIEK Kulisong,Shu-Xian ZHAO,Yang YANG,Han ZENG. Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1715-1726.
[15] Ming-Feng. SHANG,Pei-Quan. DUAN,Tian-Tian. ZHAO,Wen-Chao. TANG,Rui. LIN,Yu-Ying. HUANG,Jian-Qiang. WANG. In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015, 31(8): 1609-1614.