Register
ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(2)>> 283-294     doi: 10.3866/PKU.WHXB201611071         中文摘要
Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts
Lü Yang1, SONG Yu-Jiang1, LIU Hui-Yuan1,2,3, LI Huan-Qiao2
1 State Key Laboratory of Fine Chemicals, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China;
2 Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, Liaoning Province, P. R. China;
3 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Full text: PDF (2582KB) HTML Export: BibTeX | EndNote (RIS)

Fuel cell vehicles (FCVs) have been a burgeoning industry in China, and are currently on the verge of widespread commercialization. The platinum-based electrocatalyst is one of the key materials in proton exchange membrane fuel cells (PEMFCs). The relatively low activity and durability, and high cost of the electrocatalyst impede the further development of PEMFCs as a clean energy technology. It has been widely anticipated that core-shell structured low-platinum electrocatalysts with high performance toward oxygen reduction reaction (ORR) will eventually resolve this bottleneck issue. Regardless of significant progress, there are still many remaining issues, such as complicated synthesis route, the large sizes of core materials like Pd, and lack of macroscopic characterization of the core-shell structures. Herein, we introduce two new synthetic methods (one pot synthesis and regioselective atomic layer deposition (ALD) combined with a wet chemical method) for the fabrication of core-shell structured Pd3Au@Pt/C electrocatalysts with high ORR performance. These two synthetic approaches allow us to well control the diameter of the core nanoparticle to around 5 nm. Cyclic voltammetry (CV) and formic acid oxidation reaction (FAOR) were found to be suitable for investigating the integrity of the Pt shell on the core particles. This work represents a new avenue for the macroscopic characterization of the core-shell structured electrocatalysts with Pd or Pd alloy as the core material.



Keywords: Proton exchange membrane fuel cell   Core-shell structured electrocatalyst   Oxygen reduction reaction   Formic acid oxidation reaction   Durability  
Received: 2016-08-08 Accepted: 2016-11-07 Publication Date (Web): 2016-11-07
Corresponding Authors: SONG Yu-Jiang Email: yjsong@dlut.edu.cn

Fund: The project was supported by the National Key Research & Development Program of China (2016YFB0101307), National Key Basic Research Program of China (973) (2012CB215502), National Natural Science Foundation of China (21003114, 21103163, 21306188, 21373211, 21306187), Liaoning BaiQianWan Talents Program, China (201519), Program for Liaoning Excellent Talents in University, China (LR2015014), Dalian Excellent Young Scientific and Technological Talents, China (2015R006), and Fundamental Research Funds for the Central Universities, China (DUT15RC(3)001, DUT15ZD225).

Cite this article: Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2017,33 (2): 283-294.    doi: 10.3866/PKU.WHXB201611071

(1) Yi, B. L. Fuel Cell-the Principle, Technique and Application, 1st ed.; Chemical Industry Press: Beijing, 2003; pp 5-8. [衣宝廉.燃料电池——原理、技术、应用. 第一版. 北京: 化学工业出版社, 2003: 5-8.]
(2) Tollefson, J. Nature 2010, 464, 1262. doi: 10.1038/4641262a
(3) Debe, M. K. Nature 2012, 486, 43. doi: 10.1038/nature11115
(4) https://www.hydrogen.energy.gov/pdfs/review15/fc000_papageorgopoulos_2015_o.pdf (accessed Aug 5, 2016)
(5) Xia, W.; Mahmood, A.; Liang, Z. B.; Zou, R. Q.; Guo, S. J. Angew. Chem. Int. Ed. 2016, 55, 2650. doi: 10.1002/anie.201504830
(6) Nie, Y.; Li, L.; Wei, Z. D. Chem. Soc. Rev. 2015, 44, 2168. doi: 10.1039/c4cs00484a
(7) Li, S. S.; Liu, H. Y.; Wang, Y.; Xu, W.; Li, J.; Liu, Y.; Guo, X.W.; Song, Y. J. RSC Adv. 2015, 5, 8787. doi: 10.1039/c4ra16026f
(8) Li, J.; Xie, Y.; Li, S. S.; Bai, Y. Z.; Guo, X. W.; Yi, B. L.; Song, Y. J. Mater. Res. Express 2014, 1, 025045. doi: 10.1088/2053-1591/1/2/025045
(9) Si, W.; Li, J.; Li, H.; Li, S.; Yin, J.; Xu, H.; Guo, X.; Zhang, T.; Song, Y. Nano Res. 2013, 6, 720. doi: 10.1007/s12274-013-0349-z
(10) Li, S. S.; Li, H. Q.; Zhang, Y. S.; Garcia, R. M.; Li, J.; Xie, Y.; Yin, J.; Li, M. R.; Wang, J. H.; Shelnutt, J. A.; Zhang, T.; Song, Y. J. J. Mater. Chem. A 2015, 3, 21562. doi: 10.1039/c3ta10406k
(11) Wang, C.; Chi, M.; Wang, G.; van der Vliet, D.; Li, D.; More, K.; Wang, H. H.; Schlueter, J. A.; Markovic, N. M.; Stamenkovic, V. R. Adv. Funct. Mater. 2011, 21, 147. doi: 10.1002/adfm.201001138
(12) Stamenkovic, V. R.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M. J. Am. Chem. Soc. 2006, 128, 8813. doi: 10.1021/ja0600476
(13) Stamenkovic, V. R.; Fowler, B.; Mun, B. S.; Wang, G.; Ross, P.N.; Lucas, C. A.; Markovic, N. M. Science 2007, 315, 493. doi: 10.1126/science.1135941
(14) Chen, C.; Kang, Y. J.; Huo, Z. Y.; Zhu, Z. W.; Huang, W. Y.; Xin, H. L. L.; Snyder, J. D.; Li, D. G.; Herron, J. A.; Mavrikakis, M.; Chi, M. F.; More, K. L.; Li, Y. D.; Markovic, N.M.; Somorjai, G. A.; Yang, P. D.; Stamenkovic, V. R. Science 2014, 343, 1339. doi: 10.1126/science.1249061
(15) Colón-Mercado, H. R.; Popov, B. N. J. Power Sources 2006, 155, 253. doi: 10.1016/j.jpowsour.2005.05.011
(16) Cui, C.; Gan, L.; Heggen, M.; Rudi, S.; Strasser, P. Nat. Mater. 2013, 12, 765. doi: 10.1038/nmat3668
(17) Debe, M. K.; Schmoeckel, A. K.; Vernstrorn, G. D.; Atanasoski, R. J. Power Sources 2006, 161, 1002. doi: 10.1016/j.jpowsour.2006.05.033
(18) Shao, M. H.; Chang, Q. W.; Dodelet, J. P.; Chenitz, R. Chem. Rev. 2016, 116, 3594. doi: 10.1021/acs.chemrev.5b00462
(19) Nørskov, J. K.; Rossmeisl, J.; Logadottir, A.; Lindqvist, L.; Kitchin, J. R.; Bligaard, T.; Jonsson, H. J. Phys. Chem. B 2004, 108, 17886. doi: 10.1021/jp047349j
(20) Stamenkovic, V.; Mun, B. S.; Mayrhofer, K. J. J.; Ross, P. N.; Markovic, N. M.; Rossmeisl, J.; Greeley, J.; Norskov, J. K. Angew. Chem. Int. Ed. 2006, 45, 2897. doi: 10.1002/anie.200504386
(21) Xiao, L.; Huang, B.; Zhuang, L.; Lu, J. RSC Adv. 2011, 1, 1358. doi: 10.1039/c1ra00378j
(22) Ruban, A.; Hammer, B.; Stoltze, P.; Skriver, H. L.; Norskov, J.K. J. Mol. Catal. A-Chem. 1997, 115, 421. doi: 10.1016/s1381-1169(96)00348-2
(23) Kitchin, J. R.; Norskov, J. K.; Barteau, M. A.; Chen, J. G. Phys. Rev. Lett. 2004, 93, 156801. doi: 10.1103/PhysRevLett.93.156801
(24) Hammer, B.; Norskov, J. K. Adv. Catal. 2000, 45, 71. doi: 10.1016/S0360-0564(02)45013-4
(25) Norskov, J. K.; Bligaard, T.; Rossmeisl, J.; Christensen, C. H. Nat. Chem. 2009, 1, 37. doi: 10.1038/nchem.121
(26) Greeley, J.; Norskov, J. K.; Mavrikakis, M. Annu. Rev. Phys. Chem. 2002, 53, 319. doi: 10.1146/annurev.physchem.53.100301.131630
(27) Zhang, J. L.; Vukmirovic, M. B.; Xu, Y.; Mavrikakis, M.; Adzic, R. R. Angew. Chem. Int. Ed. 2005, 44, 2132. doi: 10.1002/anie.200462335
(28) Jiang, K.; Zhang, H. X.; Zou, S.; Cai, W. B. Phys. Chem. Chem. Phys. 2014, 16, 20360. doi: 10.1039/c4cp03151b
(29) Strasser, P.; Koh, S.; Anniyev, T.; Greeley, J.; More, K.; Yu, C.; Liu, Z.; Kaya, S.; Nordlund, D.; Ogasawara, H.; Toney, M. F.; Nilsson, A. Nat. Chem. 2010, 2, 454. doi: 10.1038/NCHEM.623
(30) Adzic, R. R.; Zhang, J.; Sasaki, K.; Vukmirovic, M. B.; Shao, M.; Wang, J. X.; Nilekar, A. U.; Mavrikakis, M.; Valerio, J. A.; Uribe, F. Top. Catal. 2007, 46, 249. doi: 10.1007/s11244-007-9003-x
(31) Oezaslan, M.; Hasche, F.; Strasser, P. J. Phys. Chem. Lett. 2013, 4, 3273. doi: 10.1021/jz4014135
(32) Peng, Z.; Yang, H. J. Am. Chem. Soc. 2009, 131, 7542. doi: 10.1021/ja902256a
(33) Price, S. W. T.; Speed, J. D.; Kannan, P.; Russell, A. E. J. Am. Chem. Soc. 2011, 133, 19448. doi: 10.1021/ja206763e
(34) Brimaud, S.; Behm, R. J. J. Am. Chem. Soc. 2013, 135, 11716. doi: 10.1021/ja4051795
(35) Jiang, X.; Gur, T. M.; Prinz, F. B.; Bent, S. F. Chem. Mater. 2010, 22, 3024. doi: 10.1021/cm902904u
(36) Wang, D.; Xin, H. L.; Yu, Y.; Wang, H.; Rus, E.; Muller, D. A.; Abruna, H. D. J. Am. Chem. Soc. 2010, 132, 17664. doi: 10.1021/ja107874u
(37) Zhang, L.; Iyyamperumal, R.; Yancey, D. F.; Crooks, R. M.; Henkelman, G. ACS Nano 2013, 7, 9168. doi: 10.1021/nn403788a
(38) Yang, J.; Yang, J.; Ying, J. Y. ACS Nano 2012, 6, 9373. doi: 10.1021/nn303298s
(39) Wang, G.; Huang, B.; Xiao, L.; Ren, Z.; Chen, H.; Wang, D.; Abruna, H. D.; Lu, J.; Zhuang, L. J. Am. Chem. Soc. 2014, 136, 9643. doi: 10.1021/ja503315s
(40) Wang, X.; Vara, M.; Luo, M.; Huang, H. W.; Ruditskiy, A.; Park, J.; Bao, S. X.; Liu, J. Y.; Howe, J.; Chi, M. F.; Xie, Z. X.; Xia, Y.N. J. Am. Chem. Soc. 2015, 137, 15036. doi: 10.1021/jacs.5b10059
(41) Sasaki, K.; Naohara, H.; Choi, Y.; Cai, Y.; Chen, W. F.; Liu, P.; Adzic, R. R. Nat. Commun. 2012, 3, 1115. doi: 10.1038/ncomms2124
(42) Shao, M.; He, G.; Peles, A.; Odell, J. H.; Zeng, J.; Su, D.; Tao, J.; Yu, T.; Zhu, Y.; Xia, Y. Chem. Commun. 2013, 49, 9030. doi: 10.1039/c3cc43276a
(43) Xie, S.; Choi, S. I.; Lu, N.; Roling, L. T.; Herron, J. A.; Zhang, L.; Park, J.; Wang, J.; Kim, M. J.; Xie, Z.; Mavrikakis, M.; Xia, Y. Nano Lett. 2014, 14, 3570. doi: 10.1021/nl501205j
(44) Park, J.; Zhang, L.; Choi, S. I.; Roling, L. T.; Lu, N.; Herron, J.A.; Xie, S.; Wang, J.; Kim, M. J.; Mavrikakis, M.; Xia, Y. ACS Nano 2015, 9, 2635. doi: 10.1021/nn506387w
(45) Li, H.; Yao, R.; Wang, D.; He, J.; Li, M.; Song, Y. J. Phys. Chem. C 2015, 119, 4052. doi: 10.1021/jp5106168
(46) Ataee-Esfahani, H.; Imura, M.; Yamauchi, Y. Angew. Chem. Int. Ed. 2013, 52, 13611. doi: 10.1002/anie.201307126
(47) Wang, L.; Yamauchi, Y. J. Am. Chem. Soc. 2010, 132, 13636. doi: 10.1021/ja105640p
(48) Liu, H.; Song, Y.; Li, S.; Li, J.; Liu, Y.; Jiang, Y. B.; Guo, X. RSC Adv. 2016, 6, 66712. doi: 10.1039/c6ra04990g
(49) Song, Y.; Garcia, R. M.; Dorin, R. M.; Wang, H. R.; Qiu, Y.; Coker, E. N.; Steen, W. A.; Miller, J. E.; Shelnutt, J. A. Nano Lett. 2007, 7, 3650. doi: 10.1021/nl0719123
(50) Mackus, A. J. M.; Dielissen, S. A. F.; Mulders, J. J. L.; Kessels, W. M. M. Nanoscale 2012, 4, 4477. doi: 10.1039/c2nr30664f
(51) Lu, J.; Low, K. B.; Lei, Y.; Libera, J. A.; Nicholls, A.; Stair, P.C.; Elam, J. W. Nat. Commun. 2014, 5, 3264. doi: 10.1038/ncomms4264
(52) Mackus, A. J. M.; Mulders, J. J. L.; van de Sanden, M. C. M.; Kessels, W. M. M. J. Appl. Phys. 2010, 107, 116102. doi: 10.1063/1.3431351
(53) Lei, Y.; Liu, B.; Lu, J.; Lobo-Lapidus, R. J.; Wu, T.; Feng, H.; Xia, X.; Mane, A. U.; Libera, J. A.; Greeley, J. P.; Miller, J. T.; Elam, J. W. Chem. Mater. 2012, 24, 3525. doi: 10.1021/cm300080w
(54) Cao, K.; Zhu, Q.; Shan, B.; Chen, R. Sci. Rep. 2015, 5, 8470. doi: 10.1038/srep08470

1. CHEN Chi, ZHANG Xue, ZHOU Zhi-You, ZHANG Xin-Sheng, SUN Shi-Gang.Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Phys. -Chim. Sin., 2017,33(9): 1875-1883
2. ZHOU Yang, CHENG Qing-Qing, HUANG Qing-Hong, ZOU Zhi-Qing, YAN Liu-Ming, YANG Hui.Highly Dispersed Cobalt-Nitrogen Co-doped Carbon Nanofiber as Oxygen Reduction Reaction Catalyst[J]. Acta Phys. -Chim. Sin., 2017,33(7): 1429-1435
3. WANG Jun, WEI Zi-Dong.Recent Progress in Non-Precious Metal Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017,33(5): 886-902
4. XUAN Cui-Juan, WANG Jie, ZHU Jing, WANG De-Li.Recent Progress of Metal Organic Frameworks-Based Nanomaterials for Electrocatalysis[J]. Acta Phys. -Chim. Sin., 2017,33(1): 149-164
5. CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua.Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2017,33(1): 9-17
6. TIAN Chun-Xia, YANG Jun-Shuai, LI Li, ZHANG Xiao-Hua, CHEN Jin-Hua.New Methanol-Tolerant Oxygen Reduction Electrocatalyst——Nitrogen-Doped Hollow Carbon Microspheres@Platinum Nanoparticles Hybrids[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1473-1481
7. MENG You-Quan, WANG Chao, ZHANG Qing-Lei, SHEN Shui-Yun, ZHU Feng-Juan, YANG Hong, ZHANG Jun-Liang.The Effects of Cathode Platinum Loading and Operating Backpressure on PEMFC Performance[J]. Acta Phys. -Chim. Sin., 2016,32(6): 1460-1466
8. YANG Yi, LUO Lai-Ming, DU Juan-Juan, ZHANG Rong-Hua, DAI Zhong-Xu, ZHOU Xin-Wen.Hollow Pt-Based Nanocatalysts Synthesized through Galvanic Replacement Reaction for Application in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016,32(4): 834-847
9. ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan.Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Phys. -Chim. Sin., 2016,32(10): 2462-2474
10. WANG Jun, LI Li, WEI Zi-Dong.Density Functional Theory Study of Oxygen Reduction Reaction on Different Types of N-Doped Graphene[J]. Acta Phys. -Chim. Sin., 2016,32(1): 321-328
11. HAYIERBIEK Kulisong, ZHAO Shu-Xian, YANG Yang, ZENG Han.Performance of Nitrogen-Doped Carbon Nanocomposite with Entrapped Enzyme-Based Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015,31(9): 1715-1726
12. SHANG Ming-Feng, DUAN Pei-Quan, ZHAO Tian-Tian, TANG Wen-Chao, LIN Rui, HUANG Yu-Ying, WANG Jian-Qiang.In Situ XAFS Methods for Characterizing Catalyst Structure in Proton Exchange Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2015,31(8): 1609-1614
13. QIAN Yang, XU Jiang.Properties of Zr Nanocrystalline Coating on Ti Alloy Bipolar Plates in Simulated PEMFC Environments[J]. Acta Phys. -Chim. Sin., 2015,31(2): 291-301
14. YANG Mei-Ni, LIN Rui, FAN Ren-Jie, ZHAO Tian-Tian, ZENG Hao.Preparation and Application of Pt-Ni Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Phys. -Chim. Sin., 2015,31(11): 2131-2138
15. PENG San, GUO Hui-Lin, KANG Xiao-Feng.Preparation of Nitrogen-Doped Graphene and Its Electrocatalytic Activity for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2014,30(9): 1778-1786
16. FAN Ren-Jie, LIN Rui, HUANG Zhen, ZHAO Tian-Tian, MA Jian-Xin.Preparation and Characterization of Pt Catalysts Supported on Cobalt-Polypyrrole-Carbon for Fuel Cells[J]. Acta Phys. -Chim. Sin., 2014,30(7): 1259-1266
17. XU Li, PAN Guo-Shun, LIANG Xiao-Lu, LUO Gui-Hai, ZOU Chun-Li, LUO Hai-Mei.Electrocatalytic Activity of Fe-N/C-TsOH Catalyst for the Oxygen Reduction Reaction in Alkaline Media[J]. Acta Phys. -Chim. Sin., 2014,30(2): 318-324
18. HAN Shuai-Yuan, YUE Bao-Hua, YAN Liu-Ming.Research Progress in the Development of High-Temperature Proton Exchange Membranes Based on Phosphonic Acid Group[J]. Acta Phys. -Chim. Sin., 2014,30(1): 8-21
19. ZHAO Tian-Tian, LIN Rui, ZHANG Lu, CAO Chui-Hui, MA Jian-Xin.Effects of Pt Content on the Catalytic Performance of Co@Pt/C Core-Shell Structured Electrocatalysts[J]. Acta Phys. -Chim. Sin., 2013,29(08): 1745-1752
20. DAI Xian-Feng, ZHEN Ming-Fu, XU Pan, SHI Jing-Jing, MA Cheng-Yu, QIAO Jin-Li.Electrochemical Behavior of Pyridine-Doped Carbon-Supported Co-Phthalocyanine (Py-CoPc/C) for Oxygen Reduction Reaction and Its Application to Fuel Cell[J]. Acta Phys. -Chim. Sin., 2013,29(08): 1753-1761
21. ZHANG Xiao-Hua, ZHONG Jin-Di, YU Ya-Ming, ZHANG Yun-Song, LIU Bo, CHEN Jin-Hua.Well-Dispersed Platinum Nanoparticles Supported on Nitrogen-Doped Hollow Carbon Microspheres for Oxygen-Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013,29(06): 1297-1304
22. LI Shang, WANG Jia-Tang, CHEN Rui-Xin, ZHAO Wei, QIAN Liu, PAN Mu.Catalytic Performance of Heat-Treated Fe-Melamine/C and Fe-g-C3N4/C Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2013,29(04): 792-798
23. CHEN Qiu-Xiang, ZHANG Jie-Jing, WANG Yu-Xin.Micro-Modelling of PEMFC Taking Account of Gaseous and Liquid Water inside the Catalyst Layer[J]. Acta Phys. -Chim. Sin., 2013,29(03): 559-568
24. CAO Chun-Hui, LIN Rui, ZHAO Tian-Tian, HUANG Zhen, MA Jian-Xin.Preparation and Characterization of Core-Shell Co@Pt/C Catalysts for Fuel Cell[J]. Acta Phys. -Chim. Sin., 2013,29(01): 95-101
25. WANG Wan-Li, MA Zi-Feng.Synthesis and Characteristics of Pt/graphene by Co-Reduction Method for Oxygen Reduction Reactions[J]. Acta Phys. -Chim. Sin., 2012,28(12): 2879-2884
26. LI Qiang, ZHAO Hui, JIANG Rui, GUO Li-Fan.Synthesis and Electrochemical Properties of La1.6Sr0.4Ni1-xCuxO4 as Cathode Materials for Intermediate Temperature Solid Oxide Fuel Cells[J]. Acta Phys. -Chim. Sin., 2012,28(09): 2065-2070
27. YIN Shi-Bin, LUO Lin, JING Sheng-Yu, ZHU Qiang-Qiang, QIANG Ying-Huai.Effect of Intermittent Microwave Heating on the Performance of Catalysts for Oxygen Reduction Reaction[J]. Acta Phys. -Chim. Sin., 2012,28(01): 85-89
28. XU Li, QIAO Jin-Li, DING Lei, HU Long-Yu, LIU Ling-Ling, WANG Hai-Jiang.Electrocatalytic Activity of CoPy/C Catalyst for the Oxygen Reduction Reaction in Alkaline Electrolyte[J]. Acta Phys. -Chim. Sin., 2011,27(10): 2251-2254
29. ZHANG Min, LI Jing-Jian, PAN Mu, XU Dong-Sheng.Catalytic Performance of Pt Nanowire Arrays for Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2011,27(07): 1685-1688
30. WANG Xi-Zhao, ZHENG Jun-Sheng, FU Rong, MA Jian-Xin.Pulse-Microwave Assisted Chemical Reduction Synthesis of Pt/C Catalyst and Its Electrocatalytic Oxygen Reduction Activity[J]. Acta Phys. -Chim. Sin., 2011,27(01): 85-90
31. LIANG Peng, XU Hong-Feng, LIU Ming, LU Lu, FU Jie.Electrochemical Performance Testing and Characterization of Silver-Plated and Graphite-Coated 316L Stainless Steel Bipolar Plates[J]. Acta Phys. -Chim. Sin., 2010,26(03): 595-600
32. ZHENG Gen-Wen, GONG Chun-Li, WEN Sheng, ZHOU Huan-Bo, XIE Xiao-Lin.Preparation and Properties of Sulfonated Poly(ether sulfone)/Boron Phosphate Composite Proton Exchange Membranes[J]. Acta Phys. -Chim. Sin., 2009,25(03): 575-582
33. ZHANG Xiao-Di; LI Wei-Shan; HUANG You-Ju; PENG Hai-Yan.Promotion of Oxygen Reduction Reaction on Vitreous Carbon Electrode by DTAB[J]. Acta Phys. -Chim. Sin., 2008,24(04): 691-694
34. TIAN Juan;ZHENG Dan;ZHANG Xi-Gui;ZHANG Bao-Hong;XIA Bao-Jia;YANG Hui.Preparation of Pt Nanoparticle Modified Porous Silicon Electrode and Its Electrocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2007,23(01): 68-72
35. HUANG Jian-Shu;ZHANG Xiao-Gang.Microwave Synthesis of Pt-Au/MWCNTs Electrocatalyst and Its Catalytic Properties for Oxygen Reduction[J]. Acta Phys. -Chim. Sin., 2006,22(12): 1551-1554
36. ZHAO Feng-Ming;MA Chun-An;CHU You-Qun;XU Ying-Hua.Oxygen Reduction on Ni-MnO2 Electrode in Alkaline Solution[J]. Acta Phys. -Chim. Sin., 2006,22(06): 716-720
37. LI Li;WU Gang;YE Qing;DENG Wei;XU Bo-Qing.Electrochemical Modification of Pt/C Catalyst by Silicomolybdic Acid[J]. Acta Phys. -Chim. Sin., 2006,22(04): 419-423
38. LI Li; XU Bo-qing.Electrooxidation of CO Adsorbed on PtMo/C Catalyst:Effect of Catalyst Preparation[J]. Acta Phys. -Chim. Sin., 2005,21(10): 1132-1137
39. Chu You-Qun;Ma Chun-An;Zhu Ying-Hong.Electrocatalytic Reduction of Oxygen on Carbon Nanotubes Electrode[J]. Acta Phys. -Chim. Sin., 2004,20(03): 331-335
40. Li Xu-Guang;Han Fei;Xing Wei;Tang Ya-Wen;Lu Tian-Hong.Influence of Methanol on the Kinetics of Oxygen Reduction on Pt/C and CoPcTc/C[J]. Acta Phys. -Chim. Sin., 2003,19(04): 380-384
41. Li Li;Wang Heng-Xiu;Xu Bo-Qing;Li Jin-Lu;Xing Wei;Mao Zong-Qiang.Studies on PEMFC Electrocatalysts: Physicochemical Characterization of Homemade Pt/C Electrocatalyst[J]. Acta Phys. -Chim. Sin., 2003,19(04): 342-346
42. Sun Shi-Gang,Yang Yi-Yun.Kinetics of Irreversible Reactions on Platinum Single Crystal Electrodes II.Data Processing and Kinetics Parameters for HCOOH Oxidation on Pt(100) Electrode[J]. Acta Phys. -Chim. Sin., 1997,13(08): 673-679
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388 Email:whxb@pku.edu.cn
^ Top