Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 364-369    DOI: 10.3866/PKU.WHXB201611082
ARTICLE     
EXELFS Analysis of Lattice Structure of Uranium Dioxide
Ao-Ke JIANG1,Ya-Wen ZHAO2,Zhong LONG2,Lei ZHANG2,Yin HU1,Rong-Guang ZENG2,Yan-Zhi ZHANG1,Hong XIAO2,Kang-Wei ZHU1,*(),Ke-Zhao LIU2,*()
1 Science and Technology on Surface Physics and Chemistry Laboratory, Mianyang 621900, Sichuan Province, P. R. China
2 China Academy of Engineering Physics, Mianyang 621900, Sichuan Province, P. R. China
Download: HTML     PDF(1255KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The present work demonstrates that extended energy loss fine structure (EXELFS) analysis can be used to investigate the microstructure of Uranium dioxide. First, EXELFS was extracted by IFEFFIT package from oxygen-K edge in electron energy-loss spectrometry (EELS) spectrum of UO2. Next, the EXELFS was Fourier transformed to obtain the experimental real-space spectrum, which was then back-Fourier transformed to obtain the experimental reciprocal-space spectrum. In the next step, the two experimental spectra were fitted with the IFEFFIT package to obtain information about the local structure of the oxygen atoms. Finally, the lattice constant of UO2 determined by EXELFS analysis was found to be merely 1.4% lower than that experimentally obtained by X-ray diffraction (XRD). This result confirms that EXELFS analysis is a feasible method of investigating UO2 microstructural information.



Key wordsActinide element      Uranium oxide      Electron energy-loss spectrometry      Extended energy loss fine structure      Radial structural function     
Received: 05 September 2016      Published: 08 November 2016
MSC2000:  O641  
  O766  
Fund:  the National Natural Science Foundation of China(11404295,11404296,11305148)
Corresponding Authors: Kang-Wei ZHU,Ke-Zhao LIU     E-mail: zhukw07@qq.com;liukz@hotmail.com
Cite this article:

Ao-Ke JIANG,Ya-Wen ZHAO,Zhong LONG,Lei ZHANG,Yin HU,Rong-Guang ZENG,Yan-Zhi ZHANG,Hong XIAO,Kang-Wei ZHU,Ke-Zhao LIU. EXELFS Analysis of Lattice Structure of Uranium Dioxide. Acta Physico-Chimica Sinca, 2017, 33(2): 364-369.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611082     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/364

Fig 1  Auger electron spectrum (AES) and X-ray diffraction (XRD) spectrum for O2± x powder sample (a) AES indicates U : O atomic ratio 1 : 2; meanwhile,(b) XRD spectrum reveals its face centered cubic (fcc) structure.
Fig 2  Transmission electronic microscopy (TEM) images of UO2 sample (a) A high-resolution transmission electronic microscopy (HRTEM) image and (b) a high-angle annular dark-field (HAADF) image of UO2 sample obtained under 300 kV. inset: the HAADF image′s fast Fourier transformation (FFT)
Fig 3  Electron energy-loss spectrum (EELS) of UO2 sample O-K edge onset occurs at around 532 eV,and effective extended energy loss fine structure (EXELFS) range is less than 200 eV due to occurrence of U-N5 edge,which is located at 745 eV approximately.
Fig 4  Weighted spectrum k?χ(k) and radial structural function (RSF) Fourier transforming (a) the weighted EXELFS spectrum k?χ(k) versus k derived from O-K edge oscillation into (b) RSF,where the dash line in the RSF illustrates the range which will be back-Fourier transformed into k′ space.
Effective radiusc/nmFitting parameterb
Nr/nmσ2/nm2S02ΔE0/eV
path 1d0.236440.2326(7)0.000150.98.6
path 2e0.273060.2686(8)0.000160.9-6.3
path 30.3729
Table 1  O-K edge fit resultsa
Fig 5  First three scattering paths in UO2 lattice First two paths correspond to the first shell and the second shell respectively,while in the third path,electron wave propagates from origin to another oxygen atom,which is on the second shell,and then to a uranium atom,which is on the first shell,and finally scatters to the origin.
Fig 6  Fitting results obtained by two methods Although the spectrum in k′ space was fitted well,there was a variance between experimental and calculated spectra through the first path.On the other hand,both RSF and the spectrum in k′ space through the first two paths were fitted well.
1 He H. ; Shoesmith D. Phys. Chem. Chem. Phys. 2010, 12 (28), 8108.
2 Rundle R. E. ; Baenziger N. C. ; Wilson A. S. ; McDonald R. A. J. Am. Chem. Soc 1948, 70 (1), 99.
3 Willis B. T. M. J. Phys 1964, 25 (5), 431.
4 Higgs J. D. ; Thompson W. T. ; Lewis B. J. ; Vogel S. C. J. Nucl. Mater. 2007, 366 (3), 297.
5 Hartel P. ; Rose H. ; Dinges C. Ultramicroscopy 1996, 63 (2), 93.
6 Muller D. A. Nat. Mater. 2009, 8 (4), 263.
7 Fitting Kourkoutis L. ; Xin H. L. ; Higuchi T. ; Hotta Y. ; Lee J.H. ; Hikita Y. ; Schlom D. G. ; Hwang H. Y. ; Muller D. A. Philos. Mag. A 2010, 90 (35-36), 4731.
8 Krivanek O. L. ; Chisholm M. F. ; Nicolosi V. ; Pennycook T.J. ; Corbin G. J. ; Dellby N. ; Murfitt M. F. ; Own C. S. ; Szilagyi Z. S. ; Oxley M. P. ; Pantelides S. T. ; Pennycook S. J. Nature 2010, 464 (7288), 571.
9 Kirkland, E. J. Advanced Computing in Electron Microscopy, 2nd ed.; Springer: New York, 2010; pp 106-108. doi:10.1007/978-1-4419-6533-2
10 Egerton, R. F. Electron Energy-Loss Spectroscopy in the Electron Microscope, 3rd ed.; Springer: New York, 2011; pp216-286. doi:10.1007/978-1-4419-9583-4
11 Williams, D. B.; Carter, C. B. Transmission Electron Microscopy: A Textbook for Materials Science, 2nd ed.; Springer: New York, 2009; pp 741-754. doi:10.1007/978-0-387-76501-3
12 Teo, B. K.; Joy, D. C.; Society, M. EXAFS Spectroscopy, Techniques and Applications; Springer: New York, 1981; pp 5-17. doi:10.1007/978-1-4757-1238-4
13 Teo, B. K. Extended X-Ray Absorption Fine Structure (EXAFS) Spectroscopy; Springer: Berlin Heidelberg, 1986; pp 114-133. doi:10.1007/978-3-642-50031-2
14 Cai X. H. ; Liu Y. J. ; Liu Z. W. ; Xie Y. C. Acta Phys. -Chim. Sin. 1994, 10 (1), 15.
14 蔡小海; 刘英骏; 刘智巍; 谢有畅. 物理化学学报, 1994, 10 (1), 15.
15 Liu H. Y. ; Fang C. H. ; Fang Y. ; Zhou Y. Q. ; Zhu F. Y. ; Ge H.W. ; Yang Z. X. ; Tang Y. L. Acta Phys. -Chim. Sin. 2014, 30 (11), 1979.
15 刘红艳; 房春辉; 房艳; 周永全; 朱发岩; 戈海文; 杨子祥; 唐玉玲. 物理化学学报, 2014, 30 (11), 1979d.
16 Zhu M. G. ; Pan G. ; Li X. L. ; Liu T. ; Yang Y. H. Acta Phys. -Chim. Sin. 2005, 21 (10), 1169.
16 朱孟强; 潘纲; 李贤良; 刘涛; 杨玉环. 物理化学学报, 2005, 21 (10), 1169d.
17 Serin V. ; Zanchi G. ; Sévely J. Microsc. Microanal. Microstruct 1992, 3 (2-3), 201.
18 Bourdillon A. J. ; Elmashri S. M. ; Forty A. J. Philos. Mag. A 1984, 49 (49), 341.
19 Haskel D. ; Sarikaya M. ; Qian M. ; Stern E. A. Ultramicroscopy 1995, 58 (3-4), 353.
20 Stern, E. A.; Qian, M.; Sarikaya, M. Spatially Resolved Local Atomic Structure from Exelfs. In Determining Nanoscale Physical Properties of Materials By Microscopy and Spectroscopy, Symposium on Determining Nanoscale Physical Properties of Materials by Microscopy and Spectroscopy, Boston, MA, Nov 29-Dec 03, 1993; Sarikaya, M., Wickramasinghe, H. K., Isaacson, M. Eds.; Materials Research Soc, Pittsburgh, 1994; pp 3-14. doi:10.1557/PROC-332-3
21 Sikora T. ; Hug G. ; Jaouen M. ; Rehr J. J. Phys. Rev. B 2000, 62 (3), 1723.
22 Allen G. C. ; Wild R. K. J. Chem. Soc. Dalton Trans 1974, 5 (5), 493.
23 Ellis W. P. ; Campbell B. D. J. Appl. Phys 1970, 41 (4), 1858.
24 Ravel, B.; Newville, M. J. Synchrotron Rad. 2005, 12 (Pt 4), 537. doi:10.1107/S0909049505012719
25 Ravel B. ; Newville M. Phys. Scr 2005, 2005 (T115), 1007.
26 Ma, L. D.; Yang, J. F. Introduction to Synchrotron Radiation Applications; Fudan Press: Shanghai, 2001; pp 149-173.
26 马礼敦,杨福家.同步辐射应用概论.上海:复旦大学出版社, 2001: 149-173.
27 Lee P. A. ; Citrin P. H. ; Eisenberger P. ; Kincaid B. M. Rev. Mod. Phys 1981, 53 (4), 769.
28 Walter M. ; Somers J. ; Fernández-Carretero A. ; Rothe J. J. Nucl. Mater 2008, 373 (1-3), 90.
29 Moll H. ; Denecke M. A. ; Jalilehvand F. ; Sandstroem M. ; Grenthe I. Inorg. Chem 1999, 30 (25), 1795.
30 Allen G. C. ; Tempest P. A. ; Garner C. D. ; Ross I. ; Jones D. J. J. Phys. Chem 1985, 89 (8), 1334.
31 Sarikaya M. ; Qian M. ; Stern E. A. Micron 1996, 27 (6), 449.
32 http://bruceravel.github.io/demeter/aug/index.html (accessed Nov 4 2016)(33) Qian ; M . ; Sarikaya M. ; Stern E. A. Ultramicroscopy 1995, 59 (1-4), 137.
33 Garg R. K. ; Claverie A. ; Balossier G. Microsc. Microanal. Microstruct 1990, 1 (1), 55.
[1] PENG Jiawei, XIE Yu, HU Deping, DU Likai, LAN Zhenggang. Treatment of Nonadiabatic Dynamics by On-The-Fly Trajectory Surface Hopping Dynamics[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[2] CHEN Wenqiong, GUAN Yongji, ZHANG Xiaoping, DENG Youquan. Influence of External Electric Field on Vibrational Spectrum of Imidazolium-Based Ionic Liquids Probed by Molecular Dynamics Simulation[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[3] GUO Xiaohong, ZHOU Ying, SHI Lihong, ZHANG Yan, ZHANG Caihong, DONG Chuan, ZHANG Guomei, SHUANG Shaomin. Luminescence Emission of Copper Nanoclusters by Ethanol-induced Aggregation and Aluminum Ion-induced Aggregation[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[4] OUYANG Yongzhong, HUA Shugui, DENG Jinlian. Rapid Assessment of Atoms-in-Molecules Charges for Polypeptides by the Electronegativity Equalization Method[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[5] SHEN Yanfang, CHENG Longjiu. Electronic Stability of Eight-electron Tetrahedral Pd4 Clusters[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[6] ZHOU Jingyuan, ZHANG Jin, LIU Zhongfan. Advanced Progress in the Synthesis of Graphdiyne[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[7] XI Jinyang, NAKAMURA Yuma, ZHAO Tianqi, WANG Dong, SHUAI Zhigang. Theoretical Studies on the Deformation Potential, Electron-Phonon Coupling, and Carrier Transports of Layered Systems[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[8] ZHAO Yasong, ZHANG Lijuan, QI Jian, JIN Quan, LIN Kaifeng, WANG Dan. Graphdiyne with Enhanced Ability for Electron Transfer[J]. Acta Physico-Chimica Sinca, 0, (): 0-0.
[9] Zunwei ZHU,Qiaofeng YANG,Zhenzhen XU,Dongxia ZHAO,Hongjun FAN,Zhongzhi YANG. Fukui Function and Local Softness Related to the Regioselectivity of Electrophilic Addition Reactions[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 519-527.
[10] Kang YU,Cuicui TIAN,Xia LI,Xuepin LIAO,Bi SHI. Synthesis, Characterization, and Antibacterial Activity of Rare Earth-Catechin Complexes[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 543-550.
[11] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[12] Chaoxian YAN,Fan YANG,Ruizhi WU,Dagang ZHOU,Xing YANG,Panpan ZHOU. Application of Natural Orbital Fukui Functions and Bonding Reactivity Descriptor in Understanding Bond Formation Mechanisms Underlying [2+4] and [4+2] Cycloadditions of o-Thioquinones with 1, 3-Dienes[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 497-502.
[13] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.
[14] Yongquan ZHOU,Yoshie SOGA,Toshio YAMAGUCHI,Yan FANG,Chunhui FANG. Structure of Aqueous RbCl and CsCl Solutions Using X-Ray Scattering and Empirical Potential Structure Refinement Modelling[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 483-491.
[15] Jiale XU,Lei HU,Lu WANG,Jinxia DENG,Jun CHEN,Xianran XING. Controllable Thermal Expansion and Crystal Structure of (Fe1-xNix)ZrF6 Solid Solutions[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 339-343.