Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (2): 314-328    DOI: 10.3866/PKU.WHXB201611091
REVIEW     
Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition
Qing-Hua YI1,Jie ZHAO1,Yan-Hui LOU1,Gui-Fu ZOU1,*(),Zhong-Fan LIU2
1 College of Physics, Optoelectronicsand Energy, Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, Jiangsu Province, P. R. China
2 College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P. R. China
Download: HTML     PDF(5654KB) Export: BibTeX | EndNote (RIS)      

Abstract  

With the development of thin film technology, new methods to grow thin films is emerging. This review introduces one type of polymer-assisted deposition to grow thin films. Polymer-assisted deposition is one of the chemical solution ways to grow high-quality thin films. In this process, metal ions coordinate with a polymer by covalent bonding, hydrogen bonding, or static electricity to form a stable precursor. The controllable viscosity and homogeneous solution system ensure high-quality growth of thin films or nanoparticles. The diverse components of thin film range from a metal-oxides, metal-carbides, metal-nitrides, metal-sulfides/selenides to elementary substance (e.g. metals) even dopant composites. This method provides an alternative strategy to grow thin films. In addition, the prospects and challenges of the polymer-assisted deposition are discussed in the review as well.



Key wordsPolymer      Thin film      Semiconductor      Chemical solution method      Multifunctional material     
Received: 07 September 2016      Published: 09 November 2016
MSC2000:  O649  
Fund:  The project was supported by the National Key Basic Research Program of China (973)(2015CB358600);Excellent Young Scholar Fund fromNational Natural Science Foundation of China(21422103)
Corresponding Authors: Gui-Fu ZOU     E-mail: zouguifu@suda.edu.cn
Cite this article:

Qing-Hua YI,Jie ZHAO,Yan-Hui LOU,Gui-Fu ZOU,Zhong-Fan LIU. Design and Growth of High-Quality Multifunctional Thin Films by Polymer-Assisted Deposition. Acta Physico-Chimica Sinca, 2017, 33(2): 314-328.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611091     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/314

Fig 1 Schematic illustration of chemical coordination of (a) a metal ion and PEI; (b) metal ion and functionalized PEI; (c, d) EDTA and protonated PEI by hydrogen bonding and electrostatic binding46 M: metal ion; PEI: polyethyleneimine; EDTA: ethylene diamine tetraacetic acid
Fig 2 (a) Schematic illustration of filtration used in the PAD process; (b) photograph of an Amicon Ultrafiltration cell55
Fig 3 Elements in the blue boxes forming a stable precursor with polymer46 color online
Fig 4 (a) Cross-section high resolution transmission electron microscopy (HRTEM) image taken from the interface between the NiO thin film and the Al2O3 substrate; (b) corresponding selected area electron diffraction (SAED) patterns of NiO and Al2O3; (c) image of the thin film on a labeled paper; (d) transparency spectrum of the thin film from 300-900 nm59 Inset in (d) shows the plot of (αhv)2 versus hv.
Fig 5 (a) Atom force microscopy (AFM) surface potential image of BaTiO3-NiFeO3 (BTO-NFO) thin film on LaAlO3 (LAO) substrate (1 μm × 1μm); (b) the cross-section HRTEM image taken from the interface between the BaTiO3-NiFeO3 thin film and the LaAlO3 substrate81
Fig 6 Magnetization versus magnetic field (M-H) hysteresis loops with magnetic field parallel and perpendicular tothe substrate at room temperature for (a) pure NiFeO3 thin film and (b) BaTiO3-NiFeO3 thin film81 Insets show the enlarged M-H hysteresis loops.
Fig 7 (a) Cross-section HRTEM image taken from the interface between the NbN thin film and the SrTiO3 (STO) substrate; (b) superconducting properties of NbN grown on SrTiO3 substrate83 Insets in (a) present FFTs of NbN and STO. Inset in (b) displays an enlarged temperature dependent resistivity from 5 to 20 K.
Fig 8 (a) TEM image of a Ti0.5Al0.5N (AlTiN) film on SrTiO3 (STO), (b) the cross-section HRTEM image from the interface of Ti0.5Al0.5N and SrTiO3, and (c) cross-section HRTEM image from the interface of AlN and SrTiO347
Fig 9 (a) Optical transmittance spectra of Ti1-xAlxN (x = 0-0.5, 1) thin film; (b) room temperature resistivity of Ti1-xAlxN (x = 0-0.5) thin film annealed at 900 and 1000 ℃; (c) temperature-dependent resistivity of a Ti1-xAlxN (x = 0, 0.1, 0.2) film on SrTiO3 substrate annealed at 1000 ℃ 47
Fig 10 (a, b) X-ray diffraction (XRD) patterns of SiC thin film on Si(111) substrate; (c) HRTEM image of the SiC thin film on Si(111) substrate46
Fig 11 (a) Cross-section TEM image and (b) cross-section HRTEM image of the interface between TiC thin film and Al2O3 substrate; (c) the hardness and Young′s modulus as a function of penetration depth;(d) the resistivity as a function of temperature91
Fig 12 (a) Surface and interface microstructures of films; (b) transport properties of epitaxial Ge films39
Fig 13 (a) XRD patterns of CZTS, CZTSSe, CZTSe thin films;(b) current density-voltage (J-V) curve for the device based on a CZTSSe active layer
Fig 14 (a) Scanning electron microscope (SEM) image of CNT, (b) TEM image of CNT; (c) SEM image of NbC/CNT composite thin film; (d) temperature vs upper critical field of NbC/CNT composite thin film; (e) temperature dependence of the resistivities of NbC/CNT composite thin film104
Fig 15 SEM iamges of uncoated (left) and ZrO2 coated (right) anodiscTM25
Fig 16 Rutherford back scattering (RBS) spectrum of a SrTiN2 film on LaAlO3 substrate46
1 Wang H. ; Xu H. Y. ; Yan H. Funct. Mater. Information 2006, 3, 1.
1 汪浩; 徐海燕; 严辉. 功能材料信息, 2006, 3, 1.
2 Janotti A. ; Walle C. Rep. Prog. Phys. 2009, 72, 126501.
3 Willander M. ; Friesel M. ; Wahab Q. ; Staumal B. J. Mater.Sci.: Mater. Electron 2006, 17, 1.
4 Pawar S. M. ; Pawar B. J. ; Kim H. ; Joo S. ; Lokhande C. Curr. Appl. Phys. 2011, 11, 117.
5 Shou C. H. ; Luo Z. Y. ; Wang T. ; Shen W. D. ; Rosengarten G. ; Wei W. ; Wang W. ; Ni M. J. ; Cen K. F. Appl. Energy 2012, 92, 298.
6 Tougas I. M. ; Gregory O. J. Sensors 2013, 13, 15324.
7 Nechache R. ; Huang W. ; Li S. ; Rosei F. Nanoscale 2016, 8, 3237.
8 Cao D. W. ; Nasori N. ; Wang Z. J. ; Mi Y. ; Wen L.Y. ; Yang Y. ; Qu S. C. ; Wang Z. G. ; Lei Y. J. Mater. Chem. A 2016, 4, 8995.
9 Park H. ; Kim H. ; Moon G. ; Choi W. Y. Energy Environ. Sci. 2016, 9, 411.
10 Scragg J. ; Watjen J. T. ; Edoff M. ; Ericson T. ; Kubart T. ; Bj?rkman C. P. J. Am. Chem. Soc. 2012, 134, 19330.
11 Attia M. S. ; Zoulghena M. ; Abdelmottaleb S. Analyst 2013, 139, 793.
12 Voorst P. D. ; Wit M. R. ; Offerhaus H. L. ; Tay S. ; Thomas J. ; Peyghambarian N. ; Boller K. J. Opt. Express 2007, 15, 17587.
13 Li X. S. ; Zhu Y. W. ; Cai W. W. ; Borysiak M. ; Han B. Y. ; Chen D. ; Piner R. D. ; Colombo L. ; Ruoff R. S. Nano Lett 2009, 9, 4359.
14 Meenakshi P. ; Karthick R. ; Selvaraj M. ; Ramu S. Sol.Energy Mater. Sol. Cells 2014, 128, 264.
15 Loh K. P. ; Bao Q. ; Eda G. ; Chhowalla M. Nat. Chem 2010, 2, 1015.
16 Jin S. ; Tiefel T. H. ; McCormack M. ; Fastnachtm R. A. ; Ramesh R. ; Chen L. H. Science 1994, 264, 413.
17 Yourdkhani A. ; Caruntu G. J. Phys. Chem. C 2011, 115, 14797.
18 Xie W. W. ; Luo H. X. ; Baroudi K. ; Krizan J. W. ; Phelan B.F. ; Cava R. J. Chem. Mater 2015, 27, 1149.
19 Lin S. Y. ; Chen Y. C. ; Wang C. M. ; Hsieh P. T. ; Shih S. C. Appl. Surf. Sci. 2009, 255, 3868.
20 Pires A. L. ; Belo I. T. ; Gomes L. ; Fernandes P. B. ; Tavares A. M. L. ; Lopes A. M. ; Pereira J. P. Mater. Today: Proc. 2015, 2, 26.
21 Hu M. ; Zeng Q. ; Zhu M. Electrochim. Acta 2009, 54, 2843.
22 Elangovan E. ; Martins R. ; Fortunato E. Phys. Status Solidi A 2009, 206, 2123.
23 Bhosle V. ; Tiwari A. ; Narayan J. J. Appl. Phys. 2005, 97, 083539.
24 Hass D. ; Marciano Y. ; Wadley H. Surf. Coat. Technol 2004, 185, 283.
25 Burrell A., McCleskey T., Jia Q. X..Chem. Commun, 2008, 1271. doi: 10.1039/B712910F
26 Barber Z. H. J. Mater. Chem. 2006, 16, 334.
27 Hench L. L. ; West J. K. Chem. Rev. 1990, 90, 33.
28 Bradley D. C. Chem. Rev. 1989, 89, 1317.
29 Brinker C. J., Scherer G. W..Sol-Gel Science: the Physics andChemistry of Sol-Gel Processing; Academic Press, Inc.: SanDiego, CA, 1990.
30 Ho Y. D. ; Chandra M. B. ; Lee S. M. ; Soo C. Y. Sci. Rep. 2015, 5, 14353.
31 Hernandez-Borja J. ; Vorobiev Y. V. ; Ramirez-Bon R. Sol.Energy Mater. Sol. Cells 2011, 95, 1882.
32 Obaid A. S. ; Hassan Z. ; Mahdi M. A. ; Bououdina M. Sol.Energy 2013, 89, 143.
33 Nicolau Y. F. Appl. Surf. Sci. 1985, 22, 1061.
34 Ristov M. ; Sinadinovski G. J% Grozdanov I. Thin Solid Films 1985, 123, 63.
35 Pathan H. M. ; Lokhande C. D. Bull. Mater. Sci. 2004, 27, 85.
36 Gao Y. ; Masuda Y. ; Yonezawa A. T. ; Koumoto K. Chem.Mater 2002, 14, 5006.
37 Feng L. ; Liu Y. ; Hu J. Langmuir 2004, 20, 1786.
38 Jia Q. X. ; Mccleskey T. M. ; Burrell A. K. ; Lin Y. ; Collis G.E. ; Wang H. ; Li A. D. Q. ; Foltyn S. R. Nat. Mater 2004, 3, 329.
39 Zou G. F. ; Luo H. M. ; Ronning F. ; Sun B. Q. ; McCleskey T.M. ; Burrell A. K. ; Bauer E. ; Jia Q. X. Angew. Chem. Int. Ed 2010, 49, 1782.
40 Lin Y. ; Wang H. ; Hawley M. E. ; Foltyn S. R. ; Jia Q. X. Appl. Phys. Lett 2004, 85, 3426.
41 Jain M. ; Lin Y. ; Shukla P. ; Li Y. ; Wang H. ; Hundley M. F. ; Burrell A. K. ; McCleskey T. M. ; Foltyn S. R. ; Jia Q. X. ThinSolid Films 2007, 515, 6411.
42 Liang W. Z. ; Ji Y. D. ; Nan T. ; Huang J. ; Bi Z. X. ; Zeng H.Z. ; Du H. ; Chen C. L. ; Jia Q. X. ; Lin Y. ACS Appl. Mater.Interfaces 2012, 4, 2199.
43 Wimbush S. C. ; Li M. C. ; Vickers M. E. ; Maiorov B. ; Feldmann D. M. ; Jia Q. X. ; MacManus-Driscoll J. L. Adv.Funct. Mater 2009, 19, 835.
44 Jain M. ; Bauer E. ; Ronning F. ; Hundley M. F. ; Civale L. ; Wang H. Y. ; Maiorov B. ; Burrell A. K. ; McClesky T. M. ; Foltyn S. R. ; DePaula R. F. ; Jia Q. X. J. Am. Ceram. Soc. 2008, 91, 1858.
45 Zou G. F. ; Luo H. M. ; Zhang Y. Y. ; Xiong J. ; Wei Q. M. ; Zhuo M. J. ; Zhai J. Y. ; Wang H. Y. ; Williams D. ; Li N. ; Bauer E. ; Zhang X. H. ; McCleskey T. M. ; Li Y. R. ; Burrell A. K% Jia Q. X. Chem. Commun. 2010, 46, 7837.
46 Zou G. F. ; Zhao J. ; Luo H. M. ; McCleskey T. M. ; Burrelld A. K. ; Jia Q. X. Chem. Soc. Rev. 2014, 43, 2141.
47 Luo H. M. ; Lin Y. ; Wang H. Y. ; Lee J. H. ; Suvorova N. A. ; Mueller A. H. ; Burrell A. K. ; McCleskey T. M. ; Bauer E. ; Usov I. O. ; Hawley M. E. ; Holesinger T. G. ; Jia Q. X. Adv.Mater 2009, 21, 193.
48 Luo H. M. ; Wang H. Y. ; Zou G. F. ; Bauer E. ; McCleskey T.M. ; Burrell A. K. ; Jia Q. X. Trans. Electr. Electron. Mater 2010, 2, 54.
49 Luo H. M. ; Zou G. F. ; Wang H. Y. ; Lee J. H. ; Lin Y. ; Peng H. S. ; Lin Q. L. ; Deng S. G. ; Bauer E. ; McCleskey T. M. ; Burrell A. K. ; Jia Q. X. J. Phys. Chem. C 2011, 115, 17880.
50 Li X. L. ; Thompson J. D. ; Zhang Y. Y. ; Brady C. I. ; Zou G.F. ; Mack N. H. ; Williams D. ; Duque J. G. ; Jia Q. X. ; Doorn S. K. Nanoscale 2011, 3, 668.
51 Zhang Y. Y. ; Sheehan C. J. ; Zhai J. Y. ; Zou G. F. ; Luo H.M. ; Xiong J. ; Zhu Y. T. ; Jia Q. X. Adv. Mater 2010, 22, 3027.
52 Zou G. F. ; Jain M. ; Yang H. ; Zhang Y. Y. ; Williams D. ; Jia Q. X. Nanoscale 2010, 2, 418.
53 Zou G. F. ; Yang H. ; Jain M. ; Zhou H. H. ; Williams D. ; Zhou M. ; McCleskey T. ; Burrell A. ; Jia Q. X. Carbon 2009, 47, 933.
54 Ali M. N. ; Garcia1 M. A. ; Parsons-Moss T. ; Nitsche H. Nat.Protoc 2010, 5, 1440.
55 McCleskey T. M. ; Shi P. ; Bauer E. ; Highland M. J. ; Eastman J. A. ; Bi Z. X. ; Fuoss P. H. ; Baldo P. M. ; Ren W. ; Scott B. L. ; Burrell A. K. ; Jia Q. X. Chem. Soc. Rev. 2014, 43, 2141.
56 Luo H. M. ; Jain M. ; McCleskey T. M. ; Bauer E. ; Burrell A.K. ; Jia Q. X. Adv. Mater 2007, 19, 3604.
57 Lin Y. ; Xie J. ; Wang H. ; Li Y. ; Chavez C. ; Lee S. Y. ; Foltyn S. R. ; Crooker S. A. ; Burrell A. K. ; McCleskey T. M. ; Jia Q. X. Thin Solid Films 2005, 492, 101.
58 Yi Q. H. ; Zhai P. F. ; Sun Y. H. ; Lou Y. H. ; Zhao J. ; Sun B.Q. ; Patterson B. ; Luo H. M. ; Zhang W. R. ; Jiao L. ; Wang H. Y. ; Zou G. F. ACS Appl. Mater. Interfaces 2015, 7, 18218.
59 Zhai P. F. ; Yi Q. H. ; Jian J. ; Wang H. Y. ; Song P. Y. ; Dong C. ; Lu X. ; Sun Y. H. ; Zhao J. ; Dai X. ; Lou Y. H. ; Yang H. ; Zou G. F. Chem. Commun 2014, 50, 1854.
60 Baber S. M. ; Lin Q. L. ; Zou G. F. ; Haberkorn N. ; Baily S.A. ; Wang H. Y. ; Bi Z. X. ; Yang H. ; Deng S. G. ; Hawley M.E. ; Civale L. ; Bauer E. ; McCleskey T. M. ; Burrell A. K. ; Jia Q. X. ; Luo H. M. J. Phys. Chem. C 2011, 115, 25338.
61 Luo H. M. ; Jain M. ; Baily S. A. ; McCleskey T. M. ; Burrell A. K. ; Bauer E. ; DePaula R. F. ; Dowden P. C. ; Civale L. ; Jia Q. X. J. Phys. Chem. B 2007, 111, 7497.
62 Du J. ; Gao Y. F. ; Luo H. J. ; ; Kang ; L. T. ; Zhang Z. T. ; Chen Z. ; Cao C. X. Sol. Energy Mater. Sol. Cells 2011, 95, 469.
63 Rivadulla F. ; Bi Z. X. ; Bauer E. ; Rivas-Murias B. ; VilaFungueiri?o J. M. ; Jia Q. X. Chem. Mater. 2013, 25, 55.
64 Patta Y. R. ; Wesolowski D. E. ; Cima M. J. Phys. C 2009, 469, 129.
65 Lin Y. ; Lee J. S. ; Wang H. ; Li Y. ; Foltyn S. R. Appl. Phys.Lett 2004, 85, 5007.
66 Cobas R. ; Mu?oz-Perez S. ; Cadogan J. M. ; Puig T. ; Obradors X. Appl. Phys. Lett. 2011, 99, 083113.
67 Jain M. ; Shukla P. ; ; Li ; Y ; ; Hundley ; M. F. ; Wang H. Y. ; Foltyn S. R. ; Burrell A. K. ; McCleskey T. M. ; Jia Q. X. Adv.Mater 2006, 18, 2695.
68 Alam M. J. ; Cameron D. C. Thin Solid Films 2000, 377, 455.
69 Guillén C. ; Herrero J. Thin Solid Films 2005, 480, 129.
70 Chen Z. X. ; Li W. C. ; Li R. ; Zhang Y. F. ; Xua G. Q. ; Cheng H. S. Langmuir 2013, 29, 45.
71 Liu Y. ; Lian J. Appl. Surf. Sci. 2007, 253, 3727.
72 Lee H.W. ; Lau S. P. ; Wang Y. G. ; Tse K. Y. ; Hng H. H. ; Tay B. K. J. Crystal Growth 2004, 268, 596.
73 Luo L. ; Bozyigit D. ; Wood V. ; Niederberger M. Chem.Mater 2013, 25, 4901.
74 Peng Q. ; Kalanyan B% Hoertz P. G. ; Miller A. ; Kim D. H. ; Hanson K. ; Leila A. ; Liu J. ; Meyer T. J. ; Parsons G. N. ; Glass J. T. Nano Lett 2013, 13, 1481.
75 Ellmer K. Nat. Photonics 2012, 6, 809.
76 Granqvist C. G. Sol. Energy Mater. Sol. Cells 2007, 91, 1529.
77 Spaldin N. A. ; Fiebig M. Science 2005, 309, 391.
78 Eerenstein W. ; Mathur N. D. ; Scott J. F. Nature 2006, 442, 759.
79 Cheong S. W. ; Mostovoy M. Nat. Mater 2007, 6, 13.
80 Ramesh R. ; Spaldin N. A. Nat. Mater 2007, 6, 21.
81 Luo H. M. ; Yang H. ; Baily S. A. ; Ugurlu O. ; Jain M. ; Hawley M. E. ; McCleskey T. M. ; Burrell A. K. ; Bauer E. ; Civale L. ; Holesinger T. G. ; Jia Q. X. J. Am. Chem. Soc. 2007, 129, 14132.
82 Luo H. M. ; Lin Y. ; Wang H. ; Chou C. Y. ; Suvorova N. A. ; Hawley M. E. ; Mueller A. H. ; Ronning F. ; Bauer E. ; Burrell A. K. ; McCleskey T. M. ; Jia Q. X. J. Phys. Chem. C 2008, 112, 20535.
83 Zou G. F. ; Jain M. ; Zhou H. H. ; Luo H. M. ; Baily S. A. ; Civale L. ; Bauer E. ; McCleskey T. M. ; Burrell A. K. ; Jia Q. X.Chem. Commun 2008, 45, 6022.
84 Luo H. M. ; Wang H. Y. ; Bi Z. X. ; Feldmann D. M. ; Wang Y. Q. ; Burrell A. K. T. ; McCleskey M. ; Bauer E. ; Hawley M.E. ; Jia Q. X. J. Am. Chem 2008, 130, 15224.
85 Luo H. M. ; Wang H. Y. ; Bi Z. X. ; Zou G. F. ; McCleskey T.M. ; Burrell A. K. ; Bauer E. ; Hawley M. E. ; Wang Y. Q. ; Jia Q. X. Angew. Chem, 2009, 121, 1518.
86 Halim J. ; Lukatskaya M. R. ; Cook K. M. ; Lu J. ; Smith C.R. ; N?slund L. A. ; May S. ; J . ; Hultman L. ; Gogotsi Y. ; Eklund P. ; Barsoum M. W. Chem. Mater 2014, 26, 2374.
87 Xu C. ; Wang L. B. ; Liu Z. B. ; Chen L. ; Guo J. K. ; Kang N. ; Ma X. L. ; Cheng H. M. ; Ren W. C. Nat. Mater 2015, 14, 1135.
88 Reyes R. ; Ni C. ; Bui H. P. ; Beebe T. P. ; Teplyakov A. V. Chem. Mater 2009, 21, 5163.
89 Tanaka S. ; Kern R. S. ; Davis R. F. Appl. Phys. Lett. 1994, 65, 2851.
90 Phan H. P. ; Dao D. V. ; Wang L. ; Dinh T. ; Nguyen N. T. ; Qamar A. ; Tanner P. ; Dimitrijev S. ; Zhu Y. J. Mater. Chem.C 2015, 3, 1172.
91 Zou G. F. ; Wang H. Y. ; Mara N. ; Luo H. M. ; Li N. ; Di Z.F. ; Bauer E. ; Wang Y. Q. ; McCleskey T. ; Burrell A. ; Zhang X. H. ; Nastasi M. ; Jia Q. X. J. Am. Chem. Soc 2010, 132, 2516.
92 Wang Y. J. ; Wilkinson D. P. ; Zhang J. J. Chem. Rev 2011, 111, 7625.
93 Sahoo N. G. ; Pan Y. Z. ; Li L. ; Chan S. H. Adv. Mater 2012, 24, 4203.
94 Koenigsmann C. ; Wong S. S. Energy Environ. Sci. 2011, 4, 1161.
95 Robert C. L. ; Vallé K. ; Pereira F. ; Sanchen C. Chem. Soc.Rev 2011, 40, 961.
96 Kamat P. V. ; Tvrdy K. ; Baker D. R. ; Radich J. G. Chem. Soc.Rev 2010, 110, 6664.
97 Gewirth A. A. ; Thorum M. S. Inorg. Chem. 2010, 49, 3557.
98 Yang W. B. ; Duan H. S. ; Cha K. C. ; Hsu C. J. ; Hsu W. C. ; Zhou H. P. ; Bob B. ; Yang Y. J. Am. Chem. Soc 2013, 135, 6915.
99 Scragg J. J. ; Kubart T. ; Watjen J. T. ; Ericson T. ; Linnarsson M. K. ; Bj?rkman C. P. Chem. Mater 2013, 25, 3162.
100 Yang W. B. ; Duan H. S. ; Bob B. ; Zhou H. P. ; Lei B. ; Chung C. H. ; Li S. H. ; Hou W. W. ; Yang Y. Adv. Mater 2012, 24, 6323.
101 Zhang Y. Y. ; Zou G. F. ; Doorn S. K. ; Htoon H. ; Stan L. ; Hawley M. E. ; Sheehan C. J. ; Zhu Y. T. ; Jia Q. X. ACS Nano 2009, 3, 2157.
102 Yi Q. H. ; Dai X. ; Zhao J. ; Sun Y. H. ; Lou Y. H. ; Su X. D. ; Li Q. W. ; Sun B. Q. ; Zheng H. H. ; Shen M. R. ; Wang Q. H. ; Zou G. F. Nanoscale 2013, 5, 6923.
103 Eda G. ; Chhowalla M. Nano Lett. 2009, 9, 814.
104 Zhang Y. Y. ; Ronning F. ; Gofryk K. ; Mara N. A. ; Haberkorn N. ; Zou G. F. ; Wang H. Y. ; Lee J. H. ; Bauer E. ; McCleskey T. M. ; Burell A. K. ; Civale L. ; Zhu Y. T. ; Jia Q. X. Nanoscale 2012, 4, 2268.
105 Wilke R. ; Bud'ko S. ; Canfield P. ; Finnemore D. ; Suplinskas R. ; Hannahs S. Phys. Rev. Lett. 2004, 92, 217003.
[1] Xue HAN,Jin YANG,Yingying LIU,Jianfang MA. Syntheses and Luminescent Properties of Coordination Polymers Based on 1, 2, 4-Triazole-Substituted Resorcin[4]arene[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 476-482.
[2] Lei FANG,Mingjun SUN,Xinrui CAO,Zexing CAO. Mechanical and Optical Properties of a Novel Diamond-Like Si(C≡C-C6H4-C≡C)4 Single-Crystalline Semiconductor: a First-Principles Study[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 296-302.
[3] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 213-218.
[4] Wei-Shi DU,Yao-Kang LÜ,Zhi-Wei CAI,Cheng ZHANG. Flexible All-Solid-State Supercapacitor Based on Three-Dimensional Porous Graphene/Titanium-Containing Copolymer Composite Film[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1828-1837.
[5] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[6] Chan YAO,Guo-Yan LI,Yan-Hong XU. Carboxyl-Enriched Conjugated Microporous Polymers: Impact of Building Blocks on Porosity and Gas Adsorption[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1898-1904.
[7] Jiang-Bo ZHENG,Zhi-Ming CHEN,Zhi-Cheng HU,Jie ZHANG,Fei HUANG. Design, Synthesis and Photovoltaic Performance of Novel Conjugated Polymers Based on Difluorobenzothiadiazole and 2, 3-Bis[thiophen-2-yl]acrylonitrile[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1635-1643.
[8] You-Hao LIAO,Wei-Shan LI. Research Progresses on Gel Polymer Separators for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1533-1547.
[9] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[10] Qi-Tang FAN,Jun-Fa ZHU. Controlling the Topology of Low-Dimensional Organic Nanostructures with Surface Templates[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1288-1296.
[11] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[12] Rui XIA,Shi-Mao WANG,Wei-Wei DONG,Xiao-Dong FANG. Research Progress of Counter Electrodes for Quantum Dot-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 670-690.
[13] Kang YUAN,Xue ZHOU,Jian-Zhong DU. Synthesis and Characterization of Thermo-Responsive Polypeptide-Based Vesicles with Photo-Cross-Linked Membranes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 656-660.
[14] . Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[15] Hai-Fei WU,Yao CHEN,Shan-Hu XU,Yong-Hong YAN,Jian-Xiao SI,Yong-Sheng TAN. Molecular Beam Epitaxy Growth and Surface Structural Characteristics of PbTe(111) Thin Film[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 419-425.