Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (2): 399-406    DOI: 10.3866/PKU.WHXB201611092
ARTICLE     
Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4
Ming XIAO1,Zai-Yin HUANG1,2,3,*(),Huan-Feng TANG1,Sang-Ting LU1,Chao LIU1
1 College of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530006, P. R. China
2 Key Laboratory of Forest Chemistry and Engineering, Guangxi University for Nationalities, Nanning 530006, P. R. China
3 Guangxi Colleges and Universities Key Laboratory of Food Safety and Pharmaceutical Analytical Chemistry, Nanning 530006, P. R. China
Download: HTML     PDF(1550KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Cubic{100}, tetrahedral{111}, and rhombic dodecahedral{110} Ag3PO4 microcrystals were synthesized via a facile wet chemical method. Their components, structure, morphology, and photoelectrical properties were characterized by field emission scanning electron microscopy (FE-SEM), X-ray powder diffraction (XRD), ultraviolet-visible diffuse reflectance spectroscopy (UV-Vis DRS), photocurrent and photoluminescence (PL) analyses. The photocatalytic activity of the Ag3PO4 crystallites with different morphologies were investigated under visible illumination using rhodamine B (RhB) as a target contaminant. Meanwhile, the surface molar Gibbs free energy of the Ag3PO4 crystallites was determined by microcalorimetry via transition state theory and the thermochemical cycle principle. The corresponding values for cubic, tetrahedral, and rhombic dodecahedral microcrystals were 1.2972, 0.9621, and 0.5414 kJ·mol-1, respectively. The heat effect of the in-situ photocatalytic degradation of RhB and heat flow of the stable exothermic stage over the Ag3PO4 crystallites was detected by a LED-photocalorimeter. The results showed that the catalytic activity of Ag3PO4 crystallites and the heat effect and heat flow of the stable exothermic stage were positively correlated with their molar Gibbs free energy.Additionally, the main active species for the photocatalytic degradation of RhB over Ag3PO4 crystallites were determined by trapping experiments and electron paramagnetic resonance (ESR) spectroscopy.



Key wordsAg3PO4      Surface thermodynamics      In-situ photocalorimeter      Photocatalysis      Facet effect     
Received: 08 September 2016      Published: 09 November 2016
MSC2000:  O642  
  O643  
Fund:  the National Natural Science Foundation of China(21273050,21573048)
Corresponding Authors: Zai-Yin HUANG     E-mail: huangzaiyin@163.com
Cite this article:

Ming XIAO,Zai-Yin HUANG,Huan-Feng TANG,Sang-Ting LU,Chao LIU. Facet Effect on Surface Thermodynamic Properties and In-situ Photocatalytic Thermokinetics of Ag3PO4. Acta Phys. -Chim. Sin., 2017, 33(2): 399-406.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611092     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I2/399

Fig 1  Schematic illustration of light-photocalorimeter
Fig 2  FE-SEM images of (a) cube,(b) tetrahedron,(c) rhomb dodecahedron,and (d) bulk Ag3PO4 crystals Insets are the illustrations of the corresponding particle size distributions.
Fig 3  (A) Powder XRD patterns,(b) UV-Vis DRS spectra,(c) photocurrent density curves,and (d) PL spectra of various shapes Ag3PO4 microcrystals Inset in (b) shows the plots of αE1/2 photon versus energy (Ephoton).
SampleEg/eVEVB/eVECB/eV
cubic2.422.670.25
tetrahedron2.372.6450.275
dodecahedron2.402.660.26
Table 1  Band gap distributions of various shapes Ag3PO4 microcrystals
Ag3PO4 shapeNo.m/mg103k/s-1R―SrGm/(kJ?mol-1)Average value
bulk14.9964.05260.9995-13.6543-13.6424 ± 0.0246
25.0004.04530.9997-13.6588
34.9974.11880.9996-13.6142
cubic15.0022.40530.9998-14.9475-14.9396 ± 0.0091
24.9902.42260.9998-14.9297
34.9892.41100.9997-14.9416
tetrahedron15.0042.73040.9995-14.6332-14.6045 ± 0.0261
24.9982.78700.9998-14.5823
35.0022.76970.9994-14.5978
dodecahedron14.9993.26560.9992-14.1895-14.1838 ± 0.0064
24.9833.27120.9999-14.1853
35.0063.28230.9999-14.1769
Table 2  Gms of various shapes Ag3PO4 microcrystals
Fig 4  (a) Photocatalytic degradation of RhB (Ct/C0) with time (t) and (b) fitting plot of RhB (ln(Ct/C0) ) with time for various shapes Ag3PO4 microcrystals
Fig 5  (a) Analysis heat flow curves of photocalorimeter;(b) E-t curves of photocatalytic degradation of RhB in-situ process over Ag3PO4 Inset is the in-situ process dHt/dt-t curves of stable heat release stage.
Fig 6  (a) Trapping active free radical experiments for Ag3PO4 photocatalysis; (b) ESR spectra of radical adducts trapped by DMPO in Ag3PO4 methanol dispersions IPA: isopropyl alcohol; BQ: 4-benzoquinone; TEOA: triethanolamine
1 Jiang Z. Y. ; Kuang Q. ; Xie Z. X. ; Zheng L. S. Adv. Funct. Mater 2010, 20 (21), 3634.
2 Somorjai G. A. Chem. Rev 1996, 96 (4), 1223.
3 Sun Y. ; Lei F. ; Gao S. ; Pan B. ; Zhou J. ; Xie Y. Angew. Chem. Int. Ed. 2013, 52 (40), 10569.
4 Sun Y. ; Liu Q. ; Gao S. ; Cheng H. ; Lei F. ; Sun Z. ; Jiang Y. ; Su H. ; Wei S. ; Xie Y. Nat. Commun. 2013, 4, 2899.
5 Martin D. J. ; Liu G. ; Moniz S. J. ; Bi Y. ; Beale A. M. ; Ye J. ; Tang J. Chem. Soc. Rev 2015, 44 (21), 7808.
6 Martin D. J. ; Umezawa N. ; Chen X. ; Ye J. ; Tang J. Energy Environ. Sci. 2013, 6 (11), 3380.
7 Bi Y. ; Ouyang S. ; Umezawa N. ; Cao J. ; Ye J. J. Am. Chem. Soc. 2011, 133 (17), 6490.
8 Jiao Z. ; Zhang Y. ; Yu H. ; Lu G. ; Ye J. ; Bi Y. Chem. Commun. 2013, 49 (6), 636.
9 Yi Z. ; Ye J. ; Naoki K. ; Kako T. ; Ouyang S. X. ; StuartWilliams H. ; Yang H. ; Cao J. Y. ; Luo W. J. ; Li Z. S. ; Liu Y. ; Withers R. L. Nat. Mater 2010, 9 (7), 559.
10 Yang X. ; Tang H. ; Xu J. ; Antonietti M. ; Shalom M. ChemSusChem 2015, 8 (8), 1350.
11 Yang, X.; Qin, J.; Jiang, Y.; Chen, K.; Yan, X.; Zhang, D.; Li, R.; Tang, H. Appl. Catal. B 2015, 166167, 231. doi:10.1016/j.apcatb.2014.11.028
12 Bayón B. ; Bucalá V. ; Castro G. R. Microporous Mesoporous Mat 2016, 226, 71.
13 Yang X. ; Qin J. ; Jiang Y. ; Li R. ; Li Y. ; Tang H. RSC Adv. 2014, 4 (36), 18627.
14 Sun Y. ; Gao S. ; Lei F. ; Xie Y. Chem. Soc. Rev 2015, 44 (3), 623.
15 Chen C. ; Ma W. ; Zhao J. Chem. Soc. Rev 2010, 39 (11), 4206.
16 Bai S. ; Jiang J. ; Zhang Q. ; Xiong Y. Chem. Soc. Rev 2015, 44 (10), 2893.
17 Fan F. ; Feng Z. ; Li C. Chem. Soc. Rev 2010, 39 (12), 4794.
18 Gong D. ; Subramaniam V. P. ; Highfield J. G. ; Tang Y. ; Lai Y. ; Chen Z. ACS Catal 2011, 1 (8), 864.
19 Bordiga S. ; Groppo E. ; Agostini G. ; van Bokhoven J. A. ; Lamberti C. Chem. Rev. 2013, 113 (3), 1736.
20 Li X. X. ; Huang Z. Y. ; Zhong L. Y. ; Wang T. H. ; Tan X. C. Chin. Sci. Bull. 2014, 59 (25), 2490.
20 李星星; 黄在银; 钟莲云; 王腾辉; 谭学才. 科学通报, 2014, 59 (25), 2490.
21 Li X. ; Tang H. ; Lu X. ; Lin S. ; Shi L. ; Huang Z. Entropy 2015, 17 (8), 5437.
22 Dhuna M. ; Beezer A. E. ; Morris A. C. ; Gaisford S. ; O'Neill M. A. A. ; Hadgraft J. Connor J. A., Clapham D., Frost, J. Rev. Sci. Instrum 2007, 78 (2), 025105.
23 Sousa L. A. E. ; Beezer A. E. ; Hansen L. D. ; Clapham D. ; Connor J. A. ; Gaisford S. J. Phys. Chem. B 2012, 116 (22), 6356.
24 Gubarev Y. A. ; Lebedeva N. S. ; V'yugin ; A. I.Golubev S. N. Russ. J. Phys. Chem. A 2015, 89 (4), 724.
25 Li X. ; Huang Z. ; Liu Z. ; Diao K. ; Fan G. ; Huang ; Z.Tan X. Appl. Catal. B 2016, 181, 79.
26 Di J. ; Xia J. ; Ji M. ; Wang B. ; Yin S. ; Xu H. ; Chen Z. ; Li H. Langmuir 2016, 32 (8), 2075.
27 Bi Y. ; Hu H. ; Ouyang S. ; Lu G. ; Cao J. ; Ye J. Chem. Commun. 2012, 48 (31), 3748.
28 He Y. ; Zhang L. ; Teng B. ; Fan M. Environ. Sci. Technol. 2015, 49 (1), 649.
29 Long R. ; Rao Z. ; Mao K. ; Li Y. ; Zhang C. ; Liu Q. ; Wang C. ; Li Z. Y. ; Wu X. ; Xiong Y. Angew. Chem. Int. Ed. 2015, 54 (8), 2425.
30 Kuang Q. ; Wang X. ; Jiang Z. ; Xie Z. ; Zheng L. Acc. Chem. Res. 2013, 47 (2), 308.
31 Liu M. ; Piao L. ; Zhao L. ; Ju S. ; Yan Z. ; He T. ; Zhou C. ; Wang W. Chem. Commun. 2010, 46 (10), 1664.
32 Zheng B. ; Wang X. ; Liu C. ; Tan K. ; Xie Z. ; Zheng L. J. Mater. Chem. A 2013, 1 (40), 12635.
33 Dhuna M. ; Beezer A. E. ; Connor J. A. ; Clapham D. ; Courtice C. ; Frost J. ; Gaisford S. J. Pharm. Biomed. Anal. 2008, 48 (5), 1316.
34 Shi J. ; Chen J. ; Feng Z. ; Chen T. ; Lian Y. ; Wang X. ; Li C. J. Phys. Chem. C 2007, 111 (2), 693.
35 Fan W. ; Li M. ; Bai H. ; Xu D. ; Chen C. ; Li C. ; Ge Y. ; Shi W. Langmuir 2016, 32 (6), 1629.
36 Yang X. ; Chen Z. ; Xu J. ; Tang H. ; Chen K. ; Jiang Y. ACS Appl. Mater. Inter. 2015, 7 (28), 15285.
37 Yang X. ; Cui H. ; Li Y. ; Qin J. ; Zhang R. ; Tang H. ACS Catal. 2013, 3 (3), 363.
[1] Shaohai LI,Bo WENG,Kangqiang LU,Yijun XU. Improving the Efficiency of Carbon Quantum Dots as a Visible Light Photosensitizer by Polyamine Interfacial Modification[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 708-718.
[2] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1436-1445.
[3] Hai-Long HU,Sheng WANG,Mei-Shun HOU,Fu-Sheng LIU,Tian-Zhen WANG,Tian-Long LI,Qian-Qian DONG,Xin ZHANG. Preparation of p-CoFe2O4/n-CdS by Hydrothermal Method and Its Photocatalytic Hydrogen Production Activity[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 590-601.
[4] ZHANG Hao, LI Xin-Gang, CAI Jin-Meng, WANG Ya-Ting, WU Mo-Qing, DING Tong, MENG Ming, TIAN Ye. Effect of the Amount of Hydrofluoric Acid on the Structural Evolution and Photocatalytic Performance of Titanium Based Semiconductors[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2072-2081.
[5] Yang CHEN,Xiao-Yan YANG,Peng ZHANG,Dao-Sheng LIU,Jian-Zhou GUI,Hai-Long PENG,Dan LIU. Noble Metal-Supported on Rod-Like ZnO Photocatalysts with Enhanced Photocatalytic Performance[J]. Acta Phys. -Chim. Sin., 2017, 33(10): 2082-2091.
[6] Wei-Tao QIU,Yong-Chao HUANG,Zi-Long WANG,Shuang XIAO,Hong-Bing JI,Ye-Xiang TONG. Effective Strategies towards High-Performance Photoanodes for Photoelectrochemical Water Splitting[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 80-102.
[7] Yang LU. Recent Progress in Crystal Facet Effect of TiO2 Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2185-2196.
[8] Fei ZHAO,Lin-Qi SHI,Jia-Bao CUI,Yan-Hong LIN. Photogenerated Charge-Transfer Properties of Au-Loaded ZnO Hollow Sphere Composite Materials with Enhanced Photocatalytic Activity[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2069-2076.
[9] Ying-Shuang MENG,Yi AN,Qian GUO,Ming GE. Synthesis and Photocatalytic Performance of a Magnetic AgBr/Ag3PO4/ZnFe2O4 Composite Catalyst[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2077-2083.
[10] Bang-De LUO,Xian-Qiang XIONG,Yi-Ming XU. Improved Photocatalytic Activity for Phenol Degradation of Rutile TiO2 on the Addition of CuWO4 and Possible Mechanism[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1758-1764.
[11] Kai-Jian ZHU,Wen-Qing YAO,Yong-Fa ZHU. Preparation of Bismuth Phosphate Photocatalyst with High Dispersion by Refluxing Method[J]. Acta Phys. -Chim. Sin., 2016, 32(6): 1519-1526.
[12] Yan-Juan WANG,Jia-Yao SUN,Rui-Jiang FENG,Jian ZHANG. Preparation of Ternary Metal Sulfide/g-C3N4 Heterojunction Catalysts and Their Photocatalytic Activity under Visible Light[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 728-736.
[13] Li-Fang HU,Jie HE,Yuan LIU,Yun-Lei ZHAO,Kai CHEN. Structural Features and Photocatalytic Performance of TiO2-HNbMoO6 Composite[J]. Acta Phys. -Chim. Sin., 2016, 32(3): 737-744.
[14] Jian-Dong ZHUANG,Qin-Fen TIAN,Ping LIU. Bi2Sn2o7 Visible-Light Photocatalysts: Different Hydrothermal Preparation Methods and Their Photocatalytic Performance for As(Ⅲ) Removal[J]. Acta Phys. -Chim. Sin., 2016, 32(2): 551-557.
[15] Rong-An HE,Shao-Wen CAO,Jia-Guo YU. Recent Advances in Morphology Control and Surface Modification of Bi-Based Photocatalysts[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2841-2870.