Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 611-619    DOI: 10.3866/PKU.WHXB201611102
ARTICLE     
Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst
Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU*()
Download: HTML     PDF(1851KB) Export: BibTeX | EndNote (RIS)      

Abstract  

In this work, graphitic carbon nitride (g-C3N4) with large surface area and many nitrogen vacancies was synthesized by introducing ionic liquid[Bmim]Br as a solvent into the solvothermal post-treatment. X-ray diffraction (XRD), N2 adsorption, scanning electron microscopy (SEM), UV-Vis spectroscopy, X-ray photoelectron spectroscopy (XPS), electron paramagnetic resonance (EPR), temperature-programmed desorption of N2 (N2-TPD), and photoluminescence (PL) spectroscopy were used to characterize the prepared catalysts. The morphology of the as-prepared g-C3N4 was markedly changed from an orderless layered structure to nanoparticles with a uniform size distribution of around 30-40 nm after the introduction of[Bmim]Br, leading an increase in surface area from 8.6 to 37.9 m2·g-1. N2-TPD, photoluminescence spectra, and density functional theory (DFT) simulations indicated that the nitrogen vacancies not only trapped the photogenerated electrons to enhance their separation rate, but also served as active sites for the adsorption and activation of N2 molecules. The increased surface area of the as-prepared g-C3N4 meant that more nitrogen vacancies were exposed on the surface, leading to a markedly promoted nitrogen photofixation ability. The possible reaction mechanism is proposed.



Key wordsGraphitic carbon nitride      Ionic liquid      [Bmim]Br      Nitrogen photofixation     
Received: 23 September 2016      Published: 10 November 2016
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(41571464);Education Department of Liaoning Province, China(L2014145);Natural Science Foundation of Liaoning Province, China(201602467)
Corresponding Authors: Shao-Zheng HU     E-mail: hushaozhenglnpu@163.com
Cite this article:

Jin BAI,Xin CHEN,Zhao-Yi XI,Xiang WANG,Qiang LI,Shao-Zheng HU. Influence of Solvothermal Post-Treatment on Photochemical Nitrogen Conversion to Ammonia with g-C3N4 Catalyst. Acta Physico-Chimica Sinca, 2017, 33(3): 611-619.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611102     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/611

 
 
 
 
 
 
 
 
 
 
 
 
1 Vol'pin M. E. ; Shur V. B. ; Berkovich E. G. Inorg. Chim. Acta 1998, 280, 264.
2 Leigh G. J. Science 1998, 279, 506.
3 Tamelen E. E. ; Akermark B. J. Am. Chem. Soc. 1968, 90, 4492.
4 Dickson C. R. ; Nozik A. J. J. Am. Chem. Soc. 1978, 100, 8007.
5 Hu S. Z. ; Li Y. M. ; Li F. Y. ; Fan Z. P. ; Ma H. F. ; Li W. ; Kang X. X. ACS. Sus. Chem. Eng 2016, 4, 2269.
6 Ranjit K. T. ; Viswanathan B. Indian J. Chem. Sect. A 1996, 35, 443.
7 Schrauzer G. N. ; Guth T. D. J. Am. Chem. Soc. 1977, 99, 7189.
8 Ranjit K. T. ; Varadarajan T. K. ; Viswanathan B. J. Photochem.Photobiol. A:Chem. 1996, 96, 181.
9 Rusina O. ; Linnik O. ; Eremenko A. ; Kisch H. Chem. Eur. J. 2003, 9, 561.
10 Hoshino K. Chem. Eur. J. 2001, 7, 2727.
11 Hoshino K. ; Inui M. ; Kitamura T. ; Kokado H. Angew. Chem.Int. Ed. 2000, 39, 2509.
12 Zhao W. R. ; Zhang J. ; Zhu X. ; Zhang M. ; Tang J. ; Tan M. ; Wang Y. Appl. Catal. B:Environ. 2014, 144, 468.
13 Liang Y. T. ; Vijayan B. K. ; Gray K. A. ; Hersam M. C. Nano Lett. 2011, 11, 2865.
14 Walter M. G. ; Warren E. L. ; McKone J. R. ; Boettcher S.W. ; Mi Q. ; Santori E. A. ; Lewis N. S. Chem. Rev. 2010, 110, 6446.
15 Britto P. J. ; Santhanam K. S. V. ; Rubio A. ; Alonso J. A. ; Ajayan P. M. Adv. Mater. 1999, 11, 154.
16 Zhu D. ; Zhang L. ; Ruther R. E. ; Ruther R. J. Nat. Mater. 2013, 12, 836.
17 Wang X. C. ; Maeda K. ; Thomas A. ; Takanabe K. ; Xin G. ; Carlsson J. M. ; Domen K. ; Antonietti M. Nat. Mater. 2009, 8, 76.
18 Zhao Z.W. ; Sun Y. J. ; Dong F. Nanoscale 2015, 7, 15.
19 Zheng Y. ; Liu J. ; Liang J. ; Jaroniec M. ; Qiao S. Energy Environ. Sci 2012, 5, 6717.
20 Zheng Y. ; Jiao Y. ; Chen J. ; Liu J. ; Liang J. ; Du A. ; Zhang W. ; Zhu Z. ; Jaroniec M. ; Smith S. C. ; Lu G. ; Qiao S. J. Am.Chem. Soc. 2011, 133, 20116.
21 Xu J. ; Wu H. T. ; Wang X. ; Xue B. ; Li Y. X. ; Cao Y. Phys. Chem. Chem. Phys. 2013, 15, 4510.
22 Li Q. ; Yang J. ; Feng D. ; Wu Z. ; Wu Q. ; Park S. S. ; Ha C. S. ; Zhao D. Nano Res. 2010, 3, 632.
23 Park S. S. ; Chu S.W. ; Xue C. ; Zhao D. ; Ha C. S. Mater. J.Chem. 2011, 21, 10801.
24 Welton T. Chem. Rev 1999, 99, 2071.
25 Keim W. Angew. Chem. Int. Ed. 2000, 39, 3772.
26 Kubisa P. Prog. Polym. Sci 2004, 29, 3.
27 Paramasivam I. ; Macak J. M. ; Selvam T. ; Schmuki P. Electrochim. Acta 2008, 54, 643.
28 Yoo K. S. ; Lee T. G. ; Kim J. Microporous Mesoporous Mat 2005, 84, 211.
29 Ding K. L. ; Miao Z. J. ; Liu Z. M. ; Zhang Z. F. ; Han B. X. ; An G. M. ; Miao S. D. ; Xie Y. J. Am. Chem. Soc. 2007, 129, 6362.
30 Liu Y. ; Li J. ; Wang M. J. ; Li Z. Y. ; Liu H. T. ; He P. ; Yang X.R. ; Li J. H. Cryst. Growth Des. 2005, 5, 1643.
31 Xu L. ; Xia J. X. ; Xu H. ; Yin S. ; Wang K. ; Huang L. Y. ; Wang L. G. ; Li H. M. J. Power Sources 2014, 245, 866.
32 Di J. ; Xia J. X. ; Yin S. ; Xu H. ; Xu L. ; He M. Q. ; Li H. M. ; Xu L. ; Jiang Y. P. RSC Adv 2013, 3, 19624.
33 Xiao D. L. ; Li S. Q. ; Liu S. B. ; He H. ; Lu J. R. New J. Chem 2016, 40, 320.
34 Di J. ; Xia J. X. ; Yin S. ; Xu H. ; Xu L. ; Xu Y. G. ; He M. Q. ; Li H. M. J. Mater. Chem. A 2014, 2, 5340.
35 Dong G. H. ; Ho W. K. ; Wang C. Y. J. Mater. Chem. A 2015, 3, 23435.
36 Li H. ; Shang J. ; Ai Z. H. ; Zhang L. Z. J. Am. Chem. Soc. 2015, 137, 6393.
37 Hong Z. H. ; Shen B. ; Chen Y. L. ; Lin B. Z. ; Gao B. F. J. Mater. Chem. A 2013, 1, 11754.
38 Hu S. Z. ; Li F. Y. ; Fan Z. P. ; Gui J. Z. J. Power Sources 2014, 250, 30.
39 Yang R. C. ; Lu X. J. ; Huang X. ; Chen Z. M. ; Zhang X. ; Xu M. D. ; Song Q.W. ; Zhu L. T. Appl. Catal. B:Environ. 2015, 170-171, 225.
40 Wang Z. H. ; Ma W. H. ; Chen C. C. ; Ji H.W. ; Zhao J. C. Chem. Eng. J. 2011, 170, 353.
41 Wang X. C. ; Chen X. F. ; Thomas A. ; Fu X. Z. ; Antonietti M. Adv. Mater. 2009, 21, 1609.
42 Oregan B. ; Gr?tzel M. Nature 1991, 353, 737.
43 Yan S. C. ; Li Z. S. ; Zou Z. G. Langmuir 2009, 25, 10397.
44 Hu S. Z. ; Ma L. ; Xie Y. ; Li F. Y. ; Fan Z. P. ; Wang F. ; Wang Q. ; Wang Y. J. ; Kang X. X. ; Wu G. Dalton Trans 2015, 44, 20889.
45 Lei W. ; Portehault D. ; Dimova R. ; Antoniettit M. J. Am.Chem. Soc 2011, 133, 7121.
46 Zhang Y.W. ; Liu J. H. ; Wu G. ; Chen W. Nanoscale 2012, 4, 5300.
47 Hu S. Z. ; Ma L. ; Li F. Y. ; Fan Z. P. ; Wang Q. ; Bai J. ; Kang X. X. ; Wu G. RSC Adv 2015, 5, 90750.
[1] Changjiang LIU,Hongwen MA,Pan ZHANG. Thermodynamics of the Hydrothermal Decomposition Reaction of Potassic Syenite with Zeolite Formation[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 168-176.
[2] Jing TONG,Ye QU,Liqiang JING,Lu LIU,Chunhui LIU. Measurement of Vapor Pressure and Vaporization Enthalpy for Ionic Liquids 1-Hexyl-3-methylimidazolium Threonine Salt[C6mim][Thr]by Isothermogravimetric Analysis[J]. Acta Physico-Chimica Sinca, 2018, 34(2): 194-200.
[3] Peng CUI,Hai LIU,Xue-Min YU,Qing XIA,Qing-Song LI. Measurement and Correlation of Liquid-Liquid Equilibrium Data for the Water+Cyclohexanone+Methyl Isobutyl Ketone Ternary System[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 65-72.
[4] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[5] Yan-Shuang MENG,Chen WANG,Lei WANG,Gong-Rui WANG,Jun XIA,Fu-Liang ZHU,Yue ZHANG. Efficient Synthesis of Sulfur and Nitrogen Co-Doped Porous Carbon by Microwave-Assisted Pyrolysis of Ionic Liquid[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1915-1922.
[6] Ruo-Lin CHENG,Xi-Xiong JIN,Xiang-Qian FAN,Min WANG,Jian-Jian TIAN,Ling-Xia ZHANG,Jian-Lin SHI. Incorporation of N-Doped Reduced Graphene Oxide into Pyridine-Copolymerized g-C3N4 for Greatly Enhanced H2 Photocatalytic Evolution[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1436-1445.
[7] Jing-Si CAO,Fei-Wu CHEN. Fitting and Extrapolation of Configuration Interaction Energies in Complete Active Space[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1130-1139.
[8] Qi-Ge ZHENG,Hui LIU,Quan XIA,Qing-Shan LIU,Lin MOU. Density, Dynamic Viscosity and Electrical Conductivity of Two Hydrophobic Phosphonium Ionic Liquids[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 736-744.
[9] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 582-589.
[10] Jing TONG,Lu LIU,Duo ZHANG,Xu ZHENG,Xia CHEN,Jia-Zhen YANG. Parameters of the Activation of Viscous Flow of Aqueous[C2mim] [Ala][J]. Acta Physico-Chimica Sinca, 2017, 33(3): 513-519.
[11] LIAO Chun-Rong, XIONG Feng, LI Xian-Jun, WU Yi-Qiang, LUO Yong-Feng. Progress in Conductive Polymers in Fibrous Energy Devices[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 329-343.
[12] Lü Yang, SONG Yu-Jiang, LIU Hui-Yuan, LI Huan-Qiao. Pd-Containing Core/Pt-Based Shell Structured Electrocatalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 283-294.
[13] YU Hai-Yang, WANG Fang, LIU Qi-Chun, MA Qing-Yu, GU Zheng-Gui. Structure and Kinetics of Thermal Decomposition Mechanism of Novel Silk Fibroin Films[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 344-355.
[14] Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2480-2490.
[15] Roman F NALEWAJSKI. Chemical Reactivity Description in Density-Functional and Information Theories[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2491-2509.