Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 476-485    DOI: 10.3866/PKU.WHXB201611141
REVIEW     
New Developments in Photoelectrochemical Bioanalysis
Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO*,Jing-Juan XU*,Hong-Yuan CHEN
Download: HTML     PDF(2116KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Photoelectrochemical (PEC) bioanalysis is a newly emerged and rapidly developing analysis technique that provides an elegant route for sensitive bioanalysis. The sensing mechanism of PEC bioanalysis is based on the fact that variations in photocurrent signal can be produced by biological interactions between various recognition elements and their corresponding targets. Owing to its excellent sensitivity, selectivity, and great potential for future bioanalysis, PEC bioanalysis has drawn increasing research attention and substantial progress has been made in its analytical applications. Currently, it has become a hot research topic and its recent momentum has grown rapidly, as demonstrated by the increased number of published research articles. Given the pace of advances in this area, this review first introduces the fundamentals and general instrumentation of this methodology. Then, with recent illustrative examples, we summarize the new developments in PEC bioanalysis according to its main bioanalytical applications, i.e., direct PEC detection of biomolecules, PEC enzymatic bioanalysis, PEC DNA detection, and PEC immunoassay. The future challenges and developments in this field are also discussed.



Key wordsPhotoelectrochemistry      Bioanalysis      Enzyme      Nucleic acid      Immuno     
Received: 12 October 2016      Published: 14 November 2016
MSC2000:  O646  
  O657.1  
Fund:  the National Natural Science Foundation of China(21327902);the National Natural Science Foundation of China(21135003);the National Natural Science Foundation of China(21305063);the National Natural Science Foundation of China(21675080)
Corresponding Authors: Wei-Wei ZHAO,Jing-Juan XU   
Cite this article:

Yi-Fan RUAN,Nan ZHANG,Yuan-Cheng ZHU,Wei-Wei ZHAO,Jing-Juan XU,Hong-Yuan CHEN. New Developments in Photoelectrochemical Bioanalysis. Acta Physico-Chimica Sinca, 2017, 33(3): 476-485.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611141     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/476

Fig 1 Schematic of the general instrumentation and working principle of photoelectrochemical (PEC) bioanalysis
Fig 2 Anodic (A) and cathodic (B) photocurrent generation mechanism of inorganic semiconductor in connection with electrodes
Fig 3 Schematic illustration of PEC sensing of NADH via dopamine sensitized TiO2 on the ITO electrode
Fig 4 Schematic illustration of ZnO@ZIF-8 nanorods and PEC detection of H2O2 and ascorbic acid (AA)
Fig 5 Schematic of PEC detection based on the use of glucose oxidase enzyme
Fig 6 Schematic representation of PEC bioanalysis based on the ALP catalysis
Fig 7 Schematic diagram of the energy transfer-based PEC system for DNA detection
Fig 8 Schematics of the energy transfer-based PEC TBP (TATA binding protein) biosensing
Fig 9 Schematics of the label-free PEC immunosensor for mouse IgG detection
Fig 10 Scheme of the amplified QD-Based sandwich PEC immunoassay with HRP-catalyzed BCP
1 Peter L. M. Chem. Rev. 1990, 90 (5), 753.
2 Hagfeldt A. ; Boschloo G. ; Sun L. ; Kloo L. ; Pettersson H. Chem. Rev. 2010, 110 (11), 6595.
3 Zhao W.W. ; Xu J. J. ; Chen H. Y. Chem. Rev. 2014, 114 (15), 7421.
4 Zhao W.W. ; Xu J. J. ; Chen H. Y. Chem. Soc. Rev. 2015, 44 (3), 729.
5 Zhao W.W. ; Xiong M. ; Li X. R. ; Xu J. J. ; Chen H. Y. Electrochem. Commun. 2014, 38, 40.
6 Zhao W.W. ; Wang J. ; Zhu Y. C. ; Xu J. J. ; Chen H. Y. Anal.Chem. 2015, 87 (19), 9520.
7 Peng F. ; Zhu D. R. ; Si S. H. ; Xiao H. Prog. Chem. 2008, 20 (4), 586.
7 彭芳; 朱德荣; 司士辉; 肖辉. 化学进展., 2008, 20 (4), 586.
8 Zhao W.W. ; Ma Z. Y. ; Xu J. J. ; Chen H. Y. Chin. Sci. Bull. 2014, 59 (2), 122.
8 赵伟伟; 马征远; 徐静娟; 陈洪渊. 科学通报., 2014, 59 (2), 122.
9 Zhang C. Y. ; Feng J. ; Ci Y. X. ; Lang A. D. ; Huang C. H. Bioelectrochem. Bioenerg. 1998, 46 (1), 145.
10 Qingwen L. ; Guoan L. ; Jun F. ; Dawen C. ; Qi O. Analyst. 2000, 125 (11), 1908.
11 Ci Y. X. ; Zhang C. Y. ; Feng J. Bioelectrochem. Bioenerg. 1998, 45 (2), 247.
12 Feng J. ; Zhang C. Y. ; Ottova A. L. ; Tien H. T. Bioelectrochemistry. 2000, 51 (2), 187.
13 Zhang X. ; Guo Y. ; Liu M. ; Zhang S. RSC Adv. 2013, 3 (9), 2846.
14 Zhou H. ; Liu J. ; Zhang S. Trends Anal. Chem. 2015, 67, 56.
15 Yue Z. ; Lisdat F. ; Parak W. J. ; Hickey S. G. ; Tu L. ; Sabir N. ; Dorfs D. ; Bigall N. C. ACS Appl. Mat. Interfaces. 2013, 5 (8), 2800.
16 Freeman R. ; Girsh J. ; Willner B. ; Willner I. Isr. J. Chem. 2012, 52 (11-12), 1125.
17 Gill R. ; Zayats M. ; Willner I. Angew. Chem. Int. Ed. 2008, 47 (40), 7602.
18 Katz E. ; Willner I. ; Wang J. Electroanalysis. 2004, 16 (1-2), 19.
19 Wang G. L. ; Xu J. J. ; Chen H. Y. ; Fu S. Z. Biosens.Bioelectron. 2009, 25 (4), 791.
20 Wang G. L. ; Xu J. J. ; Chen H. Y. Biosens. Bioelectron. 2009, 24 (8), 2494.
21 Dai H. ; Zhang S. ; Xu G. ; Peng Y. ; Gong L. ; Li X. ; Li Y. ; Lin Y. ; Chen G. RSC Adv. 2014, 4 (102), 58226.
22 Shen Q. ; Jiang J. ; Liu S. ; Han L. ; Fan X. ; Fan M. ; Fan Q. ; Wang L. ; Huang W. Nanoscale. 2014, 6 (12), 6315.
23 Tang J. ; Kong B. ; Wang Y. ; Xu M. ; Wang Y. ; Wu H. ; Zheng G. Nano Lett. 2013, 13 (11), 5350.
24 Xia L. ; Xu L. ; Song J. ; Xu R. ; Liu D. ; Dong B. ; Song H. Sci. Rep. 2015, 5, 10838.
25 Kang Z. ; Yan X. ; Wang Y. ; Bai Z. ; Liu Y. ; Zhang Z. ; Lin P. ; Zhang X. ; Yuan H. ; Zhang X. ; Zhang Y. Sci. Rep. 2015, 5, 7882.
26 Zhao K. ; Yan X. ; Gu Y. ; Kang Z. ; Bai Z. ; Cao S. ; Liu Y. ; Zhang X. ; Zhang Y. Small. 2016, 12 (2), 245.
27 Zhan W.W. ; Kuang Q. ; Zhou J. Z. ; Kong X. J. ; Xie Z. X. ; Zheng L. S. J. Am. Chem. Soc. 2013, 135 (5), 1926.
28 Pardo-Yissar V. ; Katz E. ; Wasserman J. ; Willner I. J. Am.Chem. Soc. 2003, 125 (3), 622.
29 Tanne J. ; Sch?fer D. ; Khalid W. ; Parak W. J. ; Lisdat F. Anal.Chem. 2011, 83 (20), 7778.
30 Zhao W.W. ; Ma Z. Y. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2013, 85 (18), 8503.
31 Devadoss A. ; Sudhagar P. ; Das S. ; Lee S. Y. ; Terashima C. ; Nakata K. ; Fujishima A. ; Choi W. ; Kang Y. S. ; Paik U. ACS Appl. Mat. Interfaces. 2014, 6 (7), 4864.
32 Zhu J. ; Huo X. ; Liu X. ; Ju H. ACS Appl. Mat. Interfaces. 2016, 8 (1), 341.
33 Wang Y. ; Tang J. ; Zhou T. ; Da P. ; Li J. ; Kong B. ; Yang Z. ; Zheng G. Small. 2014, 10 (23), 4967.
34 Tel-Vered R. ; Yildiz H. B. ; Yan Y. M. ; Willner I. Small. 2010, 6 (15), 1593.
35 Zheng M. ; Cui Y. ; Li X. ; Liu S. ; Tang Z. J. Electroanal.Chem. 2011, 656 (1-2), 167.
36 Tel-Vered R. ; Kahn J. S. ; Willner I. Small. 2016, 12 (1), 51.
37 Chao J. ; Zhu D. ; Zhang Y. ; Wang L. ; Fan C. Biosens.Bioelectron. 2016, 76, 68.
38 Freeman R. ; Girsh J. ; Willner I. ACS Appl. Mat. Interfaces. 2013, 5 (8), 2815.
39 Willner I. ; Patolsky F. ; Wasserman J. Angew. Chem. Int. Ed. 2001, 40 (10), 1861.
40 Xu J. P. ; Weizmann Y. ; Krikhely N. ; Baron R. ; Willner I. Small. 2006, 2 (10), 1178.
41 Chen Q. L., Zhou J. Z., Liang J. L., Lin L. L. Acta Phys. -Chim. Sin, 2008, 24(5):749
41 陈巧琳,周剑章,梁金玲,林玲玲,林仲华.物理化学学报, 2008, 24(5):749 doi: 10.3866/PKU.WHXB20080503
42 Liu S. ; Li C. ; Cheng J. ; Zhou Y. Anal. Chem. 2006, 78 (13), 4722.
43 Li C. ; Wang H. ; Shen J. ; Tang B. Anal. Chem. 2015, 87 (8), 4283.
44 Zhang X. ; Zhao Y. ; Li S. ; Zhang S. Chem. Commun. 2010, 46 (48), 9173.
45 Wu Y. ; Zhang B. ; Guo L. H. Anal. Chem. 2013, 85 (14), 6908.
46 Zang Y. ; Lei J. ; Ling P. ; Ju H. Anal. Chem. 2015, 87 (10), 5430.
47 Golub E. ; Pelossof G. ; Freeman R. ; Zhang H. ; Willner I. Anal. Chem. 2009, 81 (22), 9291.
48 Wang J. ; Liu Z. ; Hu C. ; Hu S. Anal. Chem. 2015, 87 (18), 9368.
49 Zhang B. ; Guo L. H. ; Greenberg M. M. Anal. Chem. 2012, 84 (14), 6048.
50 Fan G. C. ; Han L. ; Zhang J. R. ; Zhu J. J. Anal. Chem. 2014, 86 (21), 10877.
51 Zhao W.W. ; Wang J. ; Xu J. J. ; Chen H. Y. Chem. Commun. 2011, 47 (39), 10990.
52 Ma Z. Y. ; Ruan Y. F. ; Xu F. ; Zhao W.W. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2016, 88 (7), 3864.
53 Zhao W.W. ; Yu P. P. ; Shan Y. ; Wang J. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2012, 84 (14), 5892.
54 Xu F. ; Zhu Y. C. ; Ma Z. Y. ; Zhao W.W. ; Xu J. J. ; Chen H. Y. Chem. Commun. 2016, 52 (14), 3034.
55 Zeng X. ; Ma S. ; Bao J. ; Tu W. ; Dai Z. Anal. Chem. 2013, 85 (24), 11720.
56 Zang Y. ; Lei J. ; Hao Q. ; Ju H. ACS Appl. Mat. Interfaces. 2014, 6 (18), 15991.
57 Zhao M. ; Fan G. C. ; Chen J. J. ; Shi J. J. ; Zhu J. J. Anal.Chem. 2015, 87 (24), 12340.
58 Wang W. ; Hao Q. ; Wang W. ; Bao L. ; Lei J. ; Wang Q. ; Ju H. Nanoscale. 2014, 6 (5), 2710.
59 Shen Q. ; Han L. ; Fan G. ; Zhang J. R. ; Jiang L. ; Zhu J. J. Anal. Chem. 2015, 87 (9), 4949.
60 Wang G. L. ; Shu J. X. ; Dong Y. M. ; Wu X. M. ; Zhao W.W. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2015, 87 (5), 2892.
61 Zang Y. ; Lei J. ; Zhang L. ; Ju H. Anal. Chem. 2014, 86 (24), 12362.
62 Yan Z. ; Wang Z. ; Miao Z. ; Liu Y. Anal. Chem. 2016, 88 (1), 922.
63 Yan K. ; Liu Y. ; Yang Y. ; Zhang J. Anal. Chem. 2015, 87 (24), 12215.
64 Zhuang J. ; Lai W. ; Xu M. ; Zhou Q. ; Tang D. ACS Appl. Mat.Interfaces. 2015, 7 (15), 8330.
65 Li J. ; Tu W. ; Li H. ; Han M. ; Lan Y. ; Dai Z. ; Bao J. Anal.Chem. 2014, 86 (2), 1306.
66 Ge L. ; Wang P. ; Ge S. ; Li N. ; Yu J. ; Yan M. ; Huang J. Anal.Chem. 2013, 85 (8), 3961.
67 Wang G. L. ; Yu P. P. ; Xu J. J. ; Chen H. Y. J. Phys. Chem. C. 2009, 113 (25), 11142.
68 Zhao W.W. ; Ma Z. Y. ; Yu P. P. ; Dong X. Y. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2012, 84 (2), 917.
69 Zhao W.W. ; Ma Z. Y. ; Yan D. Y. ; Xu J. J. ; Chen H. Y. Anal.Chem. 2012, 84 (24), 10518.
70 Zhao W.W. ; Liu Z. ; Shan S. ; Zhang W.W. ; Wang J. ; Ma Z.Y. ; Xu J. J. ; Chen H. Y. Sci. Rep. 2014, 4, 4426.
71 Zhao W.W. ; Shan S. ; Ma Z. Y. ; Wan L. N. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2013, 85 (24), 11686.
72 Zhao W.W. ; Chen R. ; Dai P. P. ; Li X. L. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2014, 86 (23), 11513.
73 Zhang N. ; Ma Z. Y. ; Ruan Y. F. ; Zhao W.W. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2016, 88 (4), 1990- 1994.
74 Zhao W.W. ; Han Y. M. ; Zhu Y. C. ; Zhang N. ; Xu J. J. ; Chen H. Y. Anal. Chem. 2015, 87 (11), 5496.
75 Li Y. J. ; Ma M. J. ; Zhu J. J. Anal. Chem. 2012, 84 (23), 10492.
76 Fan G. C. ; Zhao M. ; Zhu H. ; Shi J. J. ; Zhang J. R. ; Zhu J. J. J. Phys. Chem. C. 2016, 120 (29), 15657.
77 Zeng X. ; Tu W. ; Li J. ; Bao J. ; Dai Z. ACS Appl. Mat.Interfaces. 2014, 6 (18), 16197.
78 Wang X. ; Yan T. ; Li Y. ; Liu Y. ; Du B. ; Ma H. ; Wei Q. Sci.Rep. 2015, 5, 17945.
79 Jin L. Y. ; Dong Y. M. ; Wu X. M. ; Cao G. X. ; Wang G. L. Anal. Chem. 2015, 87 (20), 10429.
80 Shu J. ; Qiu Z. ; Zhuang J. ; Xu M. ; Tang D. ACS Appl. Mat.Interfaces. 2015, 7 (42), 23812.
81 Zhuang J. ; Tang D. ; Lai W. ; Xu M. ; Tang D. Anal. Chem. 2015, 87 (18), 9473.
82 Da P. ; Li W. ; Lin X. ; Wang Y. ; Tang J. ; Zheng G. Anal.Chem. 2014, 86 (13), 6633.
83 Hu C. ; Zheng J. ; Su X. ; Wang J. ; Wu W. ; Hu S. Anal. Chem. 2013, 85 (21), 10612.
84 Zhao W.W. ; Zhang L. ; Xu J. J. ; Chen H. Y. Chem. Commun. 2012, 48 (76), 9456.
85 Wang P. ; Ge L. ; Ge S. ; Yu J. ; Yan M. ; Huang J. Chem.Commun. 2013, 49 (32), 3294.
86 Sun G. ; Zhang Y. ; Kong Q. ; Ma C. ; Yu J. ; Ge S. ; Yan M. ; Song X. J. Mater. Chem. B. 2014, 2 (44), 7679.
87 Wang Y. ; Ge L. ; Wang P. ; Yan M. ; Ge S. ; Li N. ; Yu J. ; Huang J. Lab on a Chip. 2013, 13 (19), 3945.
88 Sun G. ; Zhang Y. ; Kong Q. ; Zheng X. ; Yu J. ; Song X. Biosens. Bioelectron. 2015, 66, 565.
89 Jiang Y. ; Qin D. D. ; Fan Y. R. ; Guo H. X. ; Wang S. X. ; Ning X. M. ; Lu X. Q. RSC Adv. 2015, 5 (70), 56697.
90 Aaronson B. D. B. ; Byers J. C. ; Colburn A.W. ; McKelvey K. ; Unwin P. R. Anal. Chem. 2015, 87 (8), 4129.
[1] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[2] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[3] . Recent Developments in Using Molecular Dynamics Simulation Techniques to Study Biomolecules[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1354-1365.
[4] Shu-Zhen LIU,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Gou-Dong ZHANG,Ting-Ting LIU,Hong-Zhi ZHANG. Study on the Synthesis of DNA via Rolling Circle Amplification[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2052-2057.
[5] LI Wen-Zhang, LIU Yang, LI Jie, YANG Ya-Hui, CHEN Qi-Yuan. Synthesis and Interfacial Electron Transfer of a Composite Film of Graphene and Tungsten Oxide[J]. Acta Physico-Chimica Sinca, 2014, 30(10): 1957-1962.
[6] SHANGGUAN Peng-Peng, TONG Shao-Ping, LI Hai-Li, LENG Wen-Hua. Influence of the Potential on the Charge-Transfer Rate Constant of Photooxidation of Water over α-Fe2O3 and Ti-Doped α-Fe2O3[J]. Acta Physico-Chimica Sinca, 2013, 29(09): 1954-1960.
[7] BAI Shu, ZHOU Rong, LIU Fu-Feng. Rational Design of Affinity Ligand for the Oriented Immobilization of Trypsin[J]. Acta Physico-Chimica Sinca, 2013, 29(02): 439-448.
[8] YUE Zhao, ZHANG Wei, WANG Cheng, LIU Guo-Hua, NIU Wen-Cheng. Photoinduced Electron Transfer between CdS Quantum Dots and Gold Electrodes[J]. Acta Physico-Chimica Sinca, 2011, 27(12): 2814-2820.
[9] LEI Qing-Juan, GAO Bao-Jiao, ZHANG Zheng-Guo. Action Mechanism of Secondary Bond Forces on Chemical Immobilization of Horseradish Peroxidase[J]. Acta Physico-Chimica Sinca, 2011, 27(11): 2697-2704.
[10] BU Yu-Yu, LI Wei-Bing, YU Jian-Qiang, WANG Xiu-Tong, QI Mei-Ling, NIE Meng-Yan, HOU Bao-Rong. Fabrication of SrTiO3 Nanocrystalline Film Photoelectrode and Its Photoelectrochemical Anticorrosion Properties for Stainless Steel[J]. Acta Physico-Chimica Sinca, 2011, 27(10): 2393-2399.
[11] KANG Xue-Li, CHEN Qi-Bin, SHANG Ya-Zhuo, LIU Hong-Lai. Interaction between Gemini and DNA at the Air/Water Interface[J]. Acta Physico-Chimica Sinca, 2011, 27(06): 1467-1473.
[12] FAN Di, LIU Zhen-Ming, JIN Hong-Wei, ZHANG Liang-Ren. Classification of Coenzyme-A Binding Proteins Based on Co-Factor Binding Modes[J]. Acta Physico-Chimica Sinca, 2011, 27(05): 1223-1231.
[13] WANG Dan, ZHANG Yan-Ling, QIAO Yan-Jiang. Support Vector Machine and KStar Models Predict the o-Dealkylation Reaction Mediated by Cytochrome P450[J]. Acta Physico-Chimica Sinca, 2011, 27(02): 343-351.
[14] HAO Ping, GAO Yun-Yan, OU Zhi-Ze, LI Yi, WANG Zhong-Li, WANG Xue-Song. Preparation of Aminopyridine Grafted Carbon Nanotube and Its Interaction with Horseradish Peroxidase[J]. Acta Physico-Chimica Sinca, 2011, 27(01): 233-240.
[15] ZHOU Wen-Wen, LIAN Jie, HU Ke-Jia, GAO Yun-Hua, XU Bai. Effect of Surface Chemical Properties of a Silicon Chip on Antibody Immobilization[J]. Acta Physico-Chimica Sinca, 2010, 26(10): 2821-2827.