Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 520-529    DOI: 10.3866/PKU.WHXB201611151
ARTICLE     
First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects
Shao-Bin YANG1,*(),Si-Nan LI2,Ding SHEN1,Shu-Wei TANG3,Wen SUN1,Yue-Hui CHEN4
1 College of Materials Science and Engineering, Liaoning Technical University, Fuxin 123000, Liaoning Province, P. R. China
2 College of Mining, Liaoning Technical University, Fuxin 123000, Liaoning Province, P. R. China
3 Faculty of Chemistry, Northeast Normal University, Changchun 130024, P. R. China
4 College of Science, Liaoning Technical University, Fuxin 123000, Liaoning Province, P. R. China
Download: HTML     PDF(2704KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Based on density functional theory (DFT) with the dispersion correction method, the formation energies, charge transfer, cell potential, and migration process for Na storage in bilayer graphene (BLG) with double vacancy (DV) defects were studied. The formation energy results indicate that one Na atom adsorption or intercalation on or into the center of the vacancy is more favorable. The charge density distribution and Bader charge results indicate that the interactions between Na atoms and BLG are ionic. During Na intercalation in DV defective BLG, the transformation from AB to AA stacking may be delayed as the defect density is increased, and the stable capacity increases to 262.75 mAh·g-1 (Na:C mole ratio=2:17) for Na adsorption on the surface and intercalation into the interlayer of BLG with DV defects. With increasing Na concentration, Na atoms on the surface tend to aggregate into clusters and eventually macroscopic dendrites. The diffusion energy barrier is increased for adsorbed Na on the surface migrating toward the center of DV defects, while that for the reverse direction is decreased by the intercalated Na atoms, which enhances the storage of Na on the surface of BLG with DV defects.



Key wordsBilayer graphene      Defect      Capacity      Density function theory      Diffusion     
Received: 25 July 2016      Published: 15 November 2016
MSC2000:  O641  
Fund:  the National Natural Science Foundation of China(51274119);the National Natural Science Foundation of China(21503039)
Corresponding Authors: Shao-Bin YANG     E-mail: lgdysb@163.com
Cite this article:

Shao-Bin YANG,Si-Nan LI,Ding SHEN,Shu-Wei TANG,Wen SUN,Yue-Hui CHEN. First-Principles Study of Na Storage in Bilayer Graphene with Double Vacancy Defects. Acta Physico-Chimica Sinca, 2017, 33(3): 520-529.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611151     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/520

Fig 1 Bilayer graphenes with different percentages of DV defect
a=b=c/nm |Δ|/% Esurf/(eV?atom-1) Esurf/(eV?nm-2) |Δ|/%
GGA-PBE 0.4212 1.8 0.167 1.365 15.9
Grimme 0.3988 7.1 0.191 1.698 4.6
TS 0.4157 3.1 0.680 5.516 239.9
Exp. 0.4291a - - 1.623b -
other methods - - 0.197d 1.916c, 1.579d -
Table 1 Lattice parameters of crystal Na and experimental and theoretical surface energies (Esurf) of Na (110)
Structure Method Dg-g/nm d1/nm d2/nm Efdefect/eV
C62(4 × 4 supercell) GGA-PBE 0.4086 0.1929 0.1931 8.297
Grimme 0.3280 0.1907 0.1919 8.491
TS 0.3390 0.1923 0.1935 8.490
C34(3 × 3 supercell) GGA-PBE 0.4138 0.2240 0.2242 9.004
Grimme 0.3357 0.2225 0.2237 9.171
TS 0.3403 0.2238 0.225 9.131
others 0.3355a 0.186b 7.2-7.9c, 8.51d
Table 2 Average interlayer distances (Dg-g), distances between carbon atoms (d) and defective formation energy (Efdefect) for the BLG with DV defects
Fig 2 Schematic diagrams of adsorption and intercalation sites for one Na atom on the BLG with different percentages of DV defects
BLG Adatom Style/Site ΔEf/eV h/nm Dg-g/nm Dd-up/nm Dd-low/nm Δq/e
vs metal vs surface vs vacuum
pristine17 adsorption hollow 0.536 0.345 -0.832 0.2289 0.3220 0.0007 0.0002 0.7131
intercalation hollow 0.042 -0.149 -1.326 - 0.4386 0.0120 0.0225 0.7118
BLG with adsorption A1 -0.700 -0.891 -2.071 0.1878 0.3268 0.0011 0.0007 0.8952
DV defect on upper layer A2 -0.265 -0.456 -1.636 0.2245 0.3262 0.0046 0.0013 0.8953
(C62) A3 -0.244 -0.435 -1.615 0.2173 0.3267 0.0044 0.0007 0.8953
A4 -0.219 -0.411 -1.591 0.2161 0.3260 0.0041 0.0008 0.8954
A5 -0.145 -0.336 -1.517 0.2183 0.3259 0.0072 0.0009 0.8952
A6 -0.141 -0.333 -1.513 0.2179 0.3259 0.0052 0.0008 0.8953
intercalation 11 -0.682 -0.874 -2.054 - 0.3812 0.0139 0.0215 0.8951
I2 -0.078 -0.270 -1.450 - 0.4188 0.0219 0.0269 0.8950
I3 0.010 -0.182 -1.362 - 0.4311 0.0139 0.0199 0.8951
14 -0.018 -0.209 -1.389 - 0.4338 0.0153 0.0214 0.8952
I5 -0.010 -0.201 -1.382 - 0.4274 0.0166 0.0241 0.8951
adsorption L1 0.203 0.012 -1.168 0.2187 0.3242 0.0006 0.0069 0.8952
on lower layer L2 0.208 0.016 -1.164 0.2183 0.3243 0.0005 0.0069 0.8953
L3 0.208 0.016 -1.164 0.2196 0.3238 0.0013 0.0052 0.8952
L4 0.211 0.019 -1.161 0.2199 0.3242 0.0014 0.0044 0.8952
BLG with adsorption A1 -0.712 -0.903 -2.132 0.1643 0.3251 0.0024 0.0006 0.8951
DV defect on upper layer A2 -0.009 -0.200 -1.428 0.2145 0.3243 0.0059 0.0012 0.8953
(C34) A3 0.075 -0.116 -1.345 0.2154 0.3267 0.0054 0.0010 0.8954
A4 0.093 -0.098 -1.326 0.2132 0.3275 0.0040 0.0007 0.8948
intercalation I1 -0.922 -1.113 -2.342 - 0.4071 0.0039 0.0070 0.8951
I2 -0.265 -0.456 -1.685 - 0.4634 0.0041 0.0079 0.8951
I3 -0.239 -0.430 -1.658 - 0.4613 0.0041 0.0081 0.8945
adsorption L1 0.505 0.314 -0.866 0.2270 0.3221 0.0012 0.0023 0.8951
on lower layer L2 0.507 0.316 -0.865 0.2255 0.3204 0.0011 0.0035 0.8951
L3 0.508 0.316 -0.864 0.2259 0.3206 0.0014 0.0028 0.8952
L4 0.508 0.316 -0.864 0.2263 0.3205 0.0011 0.0024 0.8952
Table 3 Formation energies and structural properties for Na atoms storage in different sites of defective BLG
Fig 3 Electron density differences of Na atom adsorption and intercalation at the most stable sites of DV defective BLG with 3 × 3 super cell
Fig 4 Electron density differences of Na atom adsorption and intercalation at the most stable sites of DV defective BLG with 4 × 4 super cell
Fig 5 (a) Formation energies and (b) interlayer distances as a function of Na inserted concentration in AB and AA-stacking BLG with DV defects
Fig 6 Formation energies of Na storage in BLG with DV defects as a function of Na concentration (a) C62; (b) C34
Fig 7 Potential of Na storage in BLG with DV defects
Fig 8 Migration pathways and energy barriers (Eb) of Na atoms diffusion in the defective BLG (a) on the surface of AB100 and (b) AB110;(c) in the interlayer of AB010; (d) through the DV defects
Site EadA1/eV h/nm Dg-g/nm
C62 A1 0.860 0.1946 0.3808
C34 1.192 0.1611 0.3947
Table 4 Adsorption energies (EadA1), adsorption heights (h) and average interlayer distances (Dg-g) for Na adsorption on the surface of AB110 structures
1 He H. N. ; Wang H. Y. ; Tang Y. G. ; Li Y. N. Prog. Chem. 2014, 26, 572.
1 何菡娜; 王海燕; 唐有根李又年. 化学进展, 2014, 26, 572.
2 Nobuhara K. ; Nakayama H. ; Nose M. ; Nakanishi S. ; Iba H. J. Power Sources 2013, 243, 585.
3 Legrain F. ; Malyi O. I. ; Manzhos S. Comput. Mater. Sci. 2014, 94, 214.
4 Mortazavi M. ; Deng J. ; Shenoy V. B. ; Medhekar N. V. J. Power Sources 2013, 225, 207.
5 Mortazavi M. ; Ye Q. J. ; Birbilis N. ; Medhekar N. V. J.Power Sources 2015, 285, 29.
6 Stevens D. A. ; Dahn J. R. J.Electrochem. Soc. 2000, 147, 1271.
7 Tsai P. ; Chung S. C. ; Lin S. ; Yamada A. J.Mater. Chem. A 2015, 3, 9763.
8 Komaba S. ; Murata W. ; Ishikawa T. ; Yabuuchi N. ; Ozeki T. ; Nakayama T. ; Ogata A. ; Gotoh K. ; Fujiwara K. Adv. Funct.Mater. 2011, 21, 3859.
9 Mi C. T. ; Liu G. P. ; Wang J. J. ; Guo X. L. ; Wu S. X. ; Yu J. Acta Phys.-Chim. Sin. 2014, 30, 1230.
9 米传同; 刘国平; 王家佳; 郭新立; 吴三械于金. 物理化学学报, 2014, 30, 1230.
10 Li Y. Y. ; Zhao X. X. ; Mi Y. M. ; Sun G. L. ; Wu J. B. ; Wang L. L. Acta Phys.-Chim. Sin. 2016, 32, 1658.
10 李媛媛; 赵新新; 宓一鸣; 孙改丽; 吴建宝汪丽莉. 物理化学学报, 2016, 32, 1658.
11 Lv W. ; Li Z. ; Deng Y. ; Yang Q. H. ; Kang F. Energy Storage Mater. 2016, 2, 107.
12 Malyi O. I. ; Sopiha K. ; Kulish V. V. ; Tan T. L. ; Manzhos S. ; Persson C. Appl. Surf. Sci. 2015, 333, 235.
13 Su D. ; Ahn H. J. ; Wang G. Chem. Commun. 2013, 49, 3131.
14 McCann E. ; Koshino M. Rep. Prog. Phys. 2013, 76, 056503.
15 Sugawara K. ; Kanetani K. ; Sato T. ; Takahashi T. AIP Adv. 2011, 1, 022103.
16 Zhou J. J. ; Zhou W.W. ; Guan C. M. ; Shen J. Q. ; Ouyang C.Y. ; Lei M. S. ; Shi S. Q. ; Tang W. H. Sci. China-Phys. Mech.Astron. 2012, 55, 1376.
17 Yang S. B. ; Li S. N. ; Tang S.W. ; Dong W. ; Sun W. ; Shen D. ; Wang M. Theor. Chem. Acc. 2016, 135, 164.
18 Clark S. J. ; Segall M. D. ; Pickard C. J. ; Hasnip P. J. ; Probert M. I. J. ; Refson K. ; Payne M. C. Z. Kristallogr. 2005, 220, 567.
19 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
20 Grimme S. J.Comput. Chem. 2006, 27, 1787.
21 Tkatchenko A. ; Scheffler M. Phys. Rev. Lett. 2009, 102, 073005.
22 Vanderbilt D. Phys. Rev. B 1990, 41, 7892.
23 Fu B. ; Liu W. ; Li Z. Mater. Chem. Phys. 2010, 123, 658.
24 De Boer F. R. ; Mattens W. C. M. ; Boom R. ; Miedema A. R. ; Niessen A. K. Cohesion in Metals Amsterdam: North-Holland, 1988.
25 Skriver H. L. ; Rosengaard N. M. Phys. Rev. B 1992, 46, 7157.
26 Vitos L. ; Ruban A. V. ; Skriver H. L. ; Kollár J. Surf. Sci. 1998, 411, 186.
27 Govind N. ; Petersen M. ; Fitzgerald G. ; King-Smith D. ; Andzelm J. Comput. Mater. Sci. 2003, 28, 250.
28 Zhou L. J. ; Hou Z. F. ; Wu L. M. J.Phys. Chem. C 2012, 116, 21780.
29 Trucano P. ; Chen R. Nature 1975, 258, 136.
30 Kim D. H. ; Kim M. S. ; Kim H. D. Appl. Surf. Sci. 2015, 359, 55.
31 Banhart F. ; Kotakoski J. ; Krasheninnikov A. V. ACS Nano 2010, 5, 26.
32 Kattel S. ; Atanassov P. ; Kiefer B. J.Phys. Chem. C 2012, 116, 8161.
33 Datta D. ; Li J. ; Shenoy V. B. ACS Appl. Mater. Inter. 2014, 6, 1788.
34 Ling C. ; Mizuno F. Phys. Chem. Chem. Phys. 2014, 16, 10419.
35 Liu Y. ; Artyukhov V. I. ; Liu M. ; Harutyunyan A. R. ; Yakobson B. I. J.Phys. Chem. Lett. 2013, 4, 1737.
36 Yildirim H. ; Kinaci A. ; Zhao Z. J. ; Chan M. K. Y. ; Greeley J.P. ACS Appl. Mater. Inter. 2014, 6, 21141.
37 Nakada K. ; Ishii A. Solid State Commun. 2011, 151, 13.
[1] Mengxiong CAO,Xingyu WANG,Yaru MA,Chunlin MA,Weiping ZHOU,Xiaoxiong WANG,Haiou WANG,Weishi TAN. Point Defects Induced Ferromagnetism in Neutron Irradiated MgO(110) Single Crystals[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 437-444.
[2] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1773-1780.
[3] WANG Quan-Jun, SUN Hong-Juan, PENG Tong-Jiang, FENG Ming-Zhu. Structure Development during the Cation Exchange Processes of Graphite Oxide[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 413-418.
[4] Tao-Na ZHANG,Xue-Wen XU,Liang DONG,Zhao-Yi TAN,Chun-Li LIU. Molecular Dynamics Simulations of Uranyl Species Adsorption and Diffusion Behavior on Pyrophyllite at Different Temperatures[J]. Acta Physico-Chimica Sinca, 2017, 33(10): 2013-2021.
[5] JIN Cheng-Wei, WANG Ye, XU Su-Ling, ZHANG Jian-Jun. Synthesis, Crystal Structures and Thermochemical Properties of Ternary Rare Earth Complexes Based on 3,4-Diethoxybenzoic Acid and 2,2'-Bipyridine[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2232-2240.
[6] LI Yue, ZHANG Ting-Ting, WANG Juan, ZHU Zhen, JIA Bing, YU Jiang. Catalytic Combustion of n-Hexanal Using Cu-Mn Composite Oxide Supported on TiO2[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 2084-2092.
[7] DAWUT Gulbahar, LU Yong, ZHAO Qing, LIANG Jing, TAO Zhan-Liang, CHEN Jun. Quinones as Electrode Materials for Rechargeable Lithium Batteries[J]. Acta Physico-Chimica Sinca, 2016, 32(7): 1593-1603.
[8] JIANG Tao, WANG Ning, CHENG Chang-Ming, PENG Shu-Ming, YAN Liu-Ming. Molecular Dynamics Simulation on the Structure and Thermodynamics of Molten LiCl-KCl-CeCl3[J]. Acta Physico-Chimica Sinca, 2016, 32(3): 647-655.
[9] WANG Yun-Jing, LIU Ying-Qiu, GAO Xiu-Xiu, ZHAN Yan-Shan, PAN Li-Yang, ZHANG Wen-Kai, FANG Xiao-Min. Surface Defect Passivation of Graphene Quantum Dots by Amino Functionalization and Photoluminescence Emission Enhancement[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2636-2644.
[10] LU Xiang, CHEN Xun, WANG Ya-Shun, TAN Yuan-Yuan, GAOMU Zi-Yuan. Molecular Dynamics Simulation of Gas Transport in Amorphous Polyisoprene[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2523-2530.
[11] QI Qiang, HUANG Mengbing, ZHANG Hai-Bin, SHI Li-Qun. Investigation of Helium Diffusion Behavior in Ti3SiC2 by 3He (d, p) 4He Nuclear Reaction[J]. Acta Physico-Chimica Sinca, 2015, 31(Suppl): 54-58.
[12] XIA Xiang-Lai, LI Lin-Yan, GUO Fang, SU Wei, LIU Yan, CHEN Xiao-Mou, PAN She-Qi. Simulation of the Immobilization of Pu in the Gd2Zr2O7 Matrix by Investigating the Thermophysical Properties of (Gd1-xCex)2Zr2O7+x[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1810-1814.
[13] Lü Ye-Qing, ZHENG Shi-Li, WANG Shao-Na, DU Hao, ZHANG Yi. Structure and Diffusivity of Oxygen in Concentrated Alkali-Metal Hydroxide Solutions: A Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2015, 31(6): 1045-1053.
[14] ZHANG Ji-Bin, HUAWei-Bo, ZHENG Zhuo, LIU Wen-Yuan, GUO Xiao-Dong, ZHONG Ben-He. Preparation and Electrochemical Performance of Li[Ni1/3Co1/3Mn1/3]O2 Cathode Material for High-Rate Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 905-912.
[15] OUYANG Mi, HUANG Sen-Biao, HAN Yan-Gang, Lü Xiao-Jing, YANG Yuan, DAI Yu-Yu, Lü Yao-Kang, ZHANG Cheng. Enhanced Electrochromic Performance of Ordered Porous Monolayer PBTB Film Using Amine-Modified Polystyrene Spheres as a Template[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 476-482.