Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 464-475    DOI: 10.3866/PKU.WHXB201611152
FEATURE ARTICLE     
Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials
Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU*
Download: HTML     PDF(4734KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Graphene and graphene-like two-dimensional (2D) materials exhibit broad prospects for application in emerging electronics owing to their unique structure and excellent properties. However, there are still many challenges facing the achievement of controllable growth, which is the main bottleneck that limits the practical application of these materials. Chemical vapor deposition (CVD) is the most effective method for the controllable growth of high-quality graphene, in which the design of the catalytic substrate catches the most attention because it directly determines the two most significant basal processes--catalyzation and mass transfer. Recently, compared with the selection of the chemical composition of the catalyst, the change of the physical state of the catalyst from a solid phase to liquid phase is expected to lead to a qualitative change and improvement in the CVD of graphene and graphene-like two-dimensional materials. Unlike solid substrates, liquid substrates exhibit a loose atomic arrangement and intense atom movement, which contribute to a smooth and isotropic liquid surface and a fluidic liquid phase that can embed heteroatoms. Therefore, liquid metal shows many unique behaviors during the catalyzation of the growth of graphene, graphene-like two dimensional materials, and their heterostructures, such as strict self-limitation, ultra-fast growth, and smooth stitching of grains. More importantly, the rheological properties of a liquid substrate can even facilitate the self-assembly and transfer of 2D materials grown on it, in which the liquid metal substrate can be regarded as the 'philosopher's stone'. This feature article summarizes the growth, assembly, and transfer behavior of 2D materials on liquid metal catalysts. These primary technology developments will establish a solid foundation for the practical application of 2D materials.



Key wordsLiquid metal      Two-dimensional material      Growth      Assembly      Transfer     
Received: 10 October 2016      Published: 15 November 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(51322209);the National Natural Science Foundation of China(21473124);the National Natural Science Foundation of China(21673161)
Corresponding Authors: Lei FU   
Cite this article:

Meng-Qi ZENG,Tao ZHANG,Li-Fang TAN,Lei FU. Liquid Metal Catalyst: Philosopher's Stone of Two-Dimensional Materials. Acta Physico-Chimica Sinca, 2017, 33(3): 464-475.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611152     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/464

Fig 1 Growth and transfer of graphene on liquid Ga15
Fig 2 Characterization of graphene grown on liquid metal Ga15
Fig 3 Mechanism for the growth of strictly monolayer graphene on liquid metal substrate29
Fig 4 Self-limited growth of uniform graphene on insulating substrate assisted by liquid metal31
Fig 5 Growth of graphene on liquid alloy substrate at reduced temperature34
Fig 6 Growth of MoS2/h-BN heterostructure on liquid sulfide-resistant alloy substrate and its characterizations35
Fig 7 Twinned growth of 100% overlapped ReS2/WS2 vertical heterostructures based on liquid Au strategy and their characterizations37
Fig 8 Isotropic growth of graphene and the smooth stitching of the grains on liquid Cu39
Fig 9 Super-ordered self-assembly of two-dimensional single crystals on liquid metal surface40, 41
Fig 10 Direct sliding transfer of graphene grown on liquid metal42
1 Miro P. ; Audiffred M. ; Heine T. Chem. Soc. Rev. 2014, 43, 6537.
2 Katsnelson M. I. Mater. Today 2017, 10, 20.
3 Zhang Y. ; Tang T. T. ; Girit C. ; Hao Z. ; Martin M. C. ; Zettl A. ; Crommie M. F. ; Shen Y. R. ; Wang F. Nature 2009, 459, 820.
4 Ohta T. ; Bostwick A. ; Seyller T. ; Horn K. ; Rotenberg E. Science 2006, 313, 951.
5 Geim A. K. ; Novoselov K. S. Nat. Mater. 2007, 6, 183.
6 Craciun M. ; Russo S. ; Yamamoto M. ; Oostinga J. B. ; Morpurgo A. ; Tarucha S. Nat. Nanotechnol. 2009, 4, 383.
7 Yu Q. K. ; Jauregui L. A. ; Wu W. ; Colby R. ; Tian J. F. ; Su Z.H. ; Cao H. L. ; Liu Z. H. ; Pandey D. ; Wei D. G. ; Chung T. F. ; Peng P. ; Guisinger N. P. ; Stach E. A. ; Bao J. M. ; Pei S. S. ; Chen Y. P. Nat. Mater. 2011, 10, 443.
8 Ferrari A. C. ; Bonaccorso F. ; Fal'ko V. ; et al Nanoscale 2015, 7, 4598.
9 Reina A. ; Jia X. ; Ho J. ; Nezich D. ; Son H. ; Bulovic V. ; Dresselhaus M. S. ; Kong J. Nano Lett. 2009, 9, 30.
10 Liu N. ; Fu L. ; Dai B. Y. ; Yan K. ; Liu X. ; Zhao R. Q. ; Zhang Y. F. ; Liu Z. F. Nano Lett. 2011, 11, 297.
11 Xue Y. Z. ; Wu B. ; Guo Y. L. ; Huang L. P. ; Jiang L. ; Chen J.Y. ; Geng D. C. ; Liu Y. Q. ; Hu W. P. ; Yu G. Nano Res. 2011, 4, 1208.
12 Gall N. R. ; Rut'kov E. V. ; Tontegode A. Y. Phys. Solid State 2004, 46, 371.
13 Li X. S. ; Cai W.W. ; An J. H. ; Kim S. ; Nah J. ; Yang D. X. ; Piner R. ; Velamakanni A. ; Jung I. ; Tutuc E. ; Banerjee S. K. ; Colombo L. ; Ruoff R. S. Science 2009, 324, 1312.
14 Li X. S. ; Cai W.W. ; Colombo L. ; Ruoff R. S. Nano Lett. 2009, 9, 4268.
15 Wang J. ; Zeng M. ; Tan L. ; Dai B. ; Deng Y. ; Rümmeli M. ; Xu H. ; Li Z. ; Wang S. ; Peng L. ; Eckert J. ; Fu L. Sci. Rep. 2013, 3, 2670.
16 Liu X. ; Fu L. ; Liu N. ; Gao T. ; Zhang Y. ; Liao L. ; Liu Z. J. Phys. Chem. C 2011, 115, 11976.
17 Wu Y. ; Chou H. ; Ji H. ; Wu Q. ; Chen S. ; Jiang W. ; Hao Y. ; Kang J. ; Ren Y. ; Piner R. D. ; Ruoff R. S. ACS Nano 2012, 6, 7731.
18 Weatherup R. S. ; Bayer B. C. ; Blume R. ; Ducati C. ; Baehtz C. ; Schl?gl R. ; Hofmann S. Nano Lett. 2011, 11, 4154.
19 Dai B. ; Fu L. ; Zou Z. ; Wang M. ; Xu H. ; Wang S. ; Liu Z. Nat. Commun. 2011, 2, 522.
20 Zou Z. Y. ; Fu L. ; Song X. J. ; Zhang Y. F. ; Liu Z. F. Nano Lett. 2014, 14, 3832.
21 Geng D. C. ; Wu B. ; Guo Y. L. ; Huang L. P. ; Xue Y. Z. ; Chen J. Y. ; Yu G. ; Jiang L. ; Hu W. P. ; Liu Y. Q. Proc. Natl. Acad.Sci. U. S. A. 2012, 109, 7992.
22 Geng D. C. ; Wang H. P. ; Yu G. Adv. Mater. 2015, 27, 2821.
23 Luo Z. T. ; Lu Y. ; Singer D.W. ; Berck M. E. ; Somers L. A. ; Goldsmith B. R. ; Johnson A. T. C. Chem. Mater. 2011, 23, 1441.
24 Gan L. ; Luo Z. T. ACS Nano 2013, 7, 9480.
25 Jung D. H. ; Kang C. ; Kim M. ; Cheong H. ; Lee H. ; Lee J. S. J. Phys. Chem. C 2014, 118, 3574.
26 Wang H. ; Xu X. ; Li J. ; Lin L. ; Sun L. ; Sun X. ; Zhao S. ; Tan C. ; Chen C. ; Dang W. ; Ren H. ; Zhang J. ; Deng B. ; Koh A. L. ; Liao L. ; Kang N. ; Chen Y. ; Xu H. ; Ding F. ; Liu K. ; Peng H. ; Liu Z. Adv. Mater. 2016, 28, 8968.
27 Zhang Y. ; Gomez L. ; Ishikawa F. N. ; Madaria A. ; Ryu K. ; Wang C. ; Badmaev A. ; Zhou C. J. Phys. Chem. Lett. 2010, 1, 3101.
28 Ogawa Y. ; Hu B. S. ; Orofeo C. M. ; Tsuji M. ; Ikeda K. ; Mizuno S. ; Hibino H. ; Ago H. J. Phys. Chem. Lett. 2012, 3, 219.
29 Zeng M. ; Tan L. ; Wang J. ; Chen L. ; Rümmeli M. H. ; Fu L. Chem. Mater. 2014, 26, 3637.
30 Tan L. ; Zeng M. ; Zhang T. ; Fu L. Nanoscale 2015, 7, 9105.
31 Tan L. ; Zeng M. ; Wu Q. ; Chen L. ; Wang J. ; Zhang T. ; Eckert J. ; Rümmeli M. H. ; Fu L. Small 2015, 11, 1840.
32 Liu J. ; Zeng M. ; Wang L. ; Chen Y. ; Xing Z. ; Zhang T. ; Liu Z. ; Zuo J. ; Nan F. ; Mendes R. G. ; Chen S. ; Ren F. ; Wang Q. ; Rümmeli M. H. ; Fu L. Small 2016, 12, 5741.
33 Wang J. ; Chen L. ; Wu N. ; Kong Z. ; Zeng M. ; Zhang T. ; Zhuang L. ; Fu L. Carbon 2016, 96, 799.
34 Chen L. ; Kong Z. ; Yue S. ; Liu J. ; Deng J. ; Xiao Y. ; Mendes R. G. ; Rümmeli M. H. ; Peng L. ; Fu L. Chem. Mater. 2015, 27, 8230.
35 Fu L. ; Sun Y. ; Wu N. ; Mendes R. G. ; Chen L. ; Xu Z. ; Zhang T. ; Rümmeli M. H. ; Rellinghaus B. ; Pohl D. ; Zhuang L. ; Fu L. ACS Nano 2016, 10, 2063.
36 Wang S. S. ; Wang X. C. ; Warner J. H. ACS Nano 2015, 9, 5246.
37 Zhang T. ; Jiang B. ; Xu Z. ; Mendes R. G. ; Xiao Y. ; Chen L.F. ; Fang L.W. ; Gemming T. ; Chen S. H. ; Rümmeli M. H. ; Fu L. Nat. Commun. 2016, 7, 13911.
38 Parviz B. A. ; Ryan D. ; Whitesides G. M. IEEE T. Adv.Packaging 2003, 26, 233.
39 Zeng M. ; Tan L. ; Wang L. ; Mendes R. G. ; Qin Z. ; Huang Y. ; Zhang T. ; Fang L. ; Zhang Y. ; Yue S. ; Rümmeli M. H. ; Peng L. ; Liu Z. ; Chen S. ; Fu L. ACS Nano 2016, 10, 7189.
40 Zeng M. ; Wang L. ; Liu J. ; Zhang T. ; Xue H. ; Xiao Y. ; Qin Z. ; Fu L. J. Am. Chem. Soc. 2016, 138, 7812.
41 Tan L. ; Han J. ; Mendes R. G. ; Rümmeli M. H. ; Liu J. ; Wu Q. ; Leng X. ; Zhang T. ; Zeng M. ; Fu L. Adv. Electron. Mater. 2015, 1, 1500223.
42 Lu W. ; Zeng M. ; Li X. ; Wang J. ; Tan L. ; Shao M. ; Han J. ; Wang S. ; Yue S. ; Zhang T. ; Hu X. ; Mendes R. G. ; Rümmeli M. H. ; Peng L. ; Liu Z. ; Fu L. Adv. Sci. 2016, 3, 1600006.
43 Xu X. ; Zhang Z. ; Qiu L. ; Zhuang J. ; Zhang L. ; Wang H. ; Liao C. ; Song H. ; Qiao R. ; Gao P. ; Hu Z. ; Liao L. ; Liao Z. ; Yu D. ; Wang E. ; Ding F. ; Peng H. ; Liu K. Nat. Nanotechnol. 2016, 11, 930.
[1] Helena W. QI,Maria KARELINA,Heather J KULIK. Quantifying Electronic Effects in QM and QM/MM Biomolecular Modeling with the Fukui Function[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 81-91.
[2] Yun-Peng GUO,Jie FENG,Wen-Ying LI. Effect of Ni Doping on Electron Transfer in Ni/MgO Catalysts[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1796-1802.
[3] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1520-1532.
[4] Jin LIU,Jiang-Quan MAI,Shi LI,Zhao-Hui REN,Ming LI,Meng-Jiao WU,Yong-Jun WU,Xin-Hui LU,Xiang LI,He TIAN,Zong-Rong WANG,Gao-Rong HAN. Perovskite Ferroelectric Nanoplates Induced a Highly Oriented Growth of P (VDF-TrFE) Films[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1261-1266.
[5] Chong-Yi LING,Jin-Lan WANG. Recent Advances in Electrocatalysts for the Hydrogen Evolution Reaction Based on Graphene-Like Two-Dimensional Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 869-885.
[6] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[7] Lei HE,Xiang-Qian ZHANG,An-Hui LU. Two-Dimensional Carbon-Based Porous Materials: Synthesis and Applications[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 709-728.
[8] Kang YUAN,Xue ZHOU,Jian-Zhong DU. Synthesis and Characterization of Thermo-Responsive Polypeptide-Based Vesicles with Photo-Cross-Linked Membranes[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 656-660.
[9] GUO Rui, ZHANG Jialin, ZHAO Songtao, YU Xiaojiang, ZHONG Shu, SUN Shuo, LI Zhenyu, CHEN Wei. LT-STM Investigation of the Self-Assembled F16CuPc-Corannulene Binary System on Ag(111) and Graphite Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 627-632.
[10] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 582-589.
[11] ZHANG Zhen, XIE Wen-Jun, YANG Yi Isaac, SUN Geng, GAO Yi-Qin. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 539-547.
[12] WU Yuan-Fei, LI Ming-Xue, ZHOU Jian-Zhang, WU De-Yin, TIAN Zhong-Qun. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.
[13] WANG Li, SHI He-Xia, WANG Wen-Yuan, SHI Hong, SHAO Xiang. Identifying the Hydrogen Bonding Patterns of Melamine and Melem Self-Assemblies on Au(111) Surface[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 393-398.
[14] YUAN Hong, ZHANG Jing, WEI Xue-Hong, FANG Hui-Min, YUAN Shi-Fang, WU Li-Xin. Chiral Luminescent Liquid Crystal Material Based on Europium-Substituted Polyoxometalate[J]. Acta Physico-Chimica Sinca, 2017, 33(2): 407-412.
[15] Shi CAO,Li-Li ZENG,Jing XIE,Shi-Gang WAN,Dan Li,Hui ZHANG. Supramolecular Helical Chirality of Schiff Base Copper(Ⅱ) Complexes and Their Chiroptical Spectroscopy[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2480-2490.