ISSN 1000-6818CN 11-1892/O6CODEN WHXUEU
Acta Phys Chim Sin >> 2017,Vol.33>> Issue(3)>> 554-562     doi: 10.3866/PKU.WHXB201611171         中文摘要
Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties
LI Yi-Ming1, CHEN Xiao1, LIU Xiao-Jun1, LI Wen-You1, HE Yun-Qiu1,2
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China;
2 Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai 201804, P. R. China
Full text: PDF (2328KB) HTML Export: BibTeX | EndNote (RIS) Supporting Info

In the present work, graphene oxide (GO)-ZnO bilayer composites were fabricated by depositing GO on ZnO by an anodic electrophoretic method. The composite films were then subjected to a cathodic electrochemical treatment with different GO reduction times. The as-prepared films were characterized by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM) to study changes in the GO structure. The evolution of the material's energy levels over time was also determined by ultraviolet-visible (UV-Vis) spectroscopy and electrochemical measurements. A series of structural transformations of GO occurred even after it had reached the maximum degree of reduction. Prolonged treatment saw the GO flakes fracture into smaller GO particles with a sharp increase in the proportion of carboxyl groups. The energy gap of GO varied and extended into the visible range with longer reduction time. The energy levels and charge carrier type also varied. Photoelectrochemical tests on the samples revealed that the 60 to 600-s reduced GO-ZnO composite films showed photoelectric conversion behavior as photoanodes. However, the sample reduced for 1800 s was not effective at light-harvesting owing to lowering of the GO conduction band below that of ZnO. The differences in performance indicated that the transformation of the laminated GO geometry to a more disordered distribution enhanced conversion efficiency.

Keywords: Graphene oxide-ZnO composite film   Electrochemical reduction   Structural transformation   Energy level evolution   Photoelectric conversion  
Received: 2016-08-29 Accepted: 2016-11-16 Publication Date (Web): 2016-11-17
Corresponding Authors: HE Yun-Qiu Email:

Fund: The project was supported by the National Natural Science Foundation of China (51172162)

Cite this article: LI Yi-Ming, CHEN Xiao, LIU Xiao-Jun, LI Wen-You, HE Yun-Qiu. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties[J]. Acta Phys. -Chim. Sin., 2017,33 (3): 554-562.    doi: 10.3866/PKU.WHXB201611171

(1) Dreyer, D. R.; Park, S.; Bielawski, C.W.; Ruoff, R. S. Chem.Soc. Rev.2010, 39, 228. doi: 10.1039/b917103g
(2) Huang, H.; Li, Z.; She, J.; Wang, W. J. Appl. Phys.2012, 111, 054317. doi: 10.1063/1.3694665
(3) Lahaye, R. J.W. E.; Jeong, H. K.; Park, C. Y.; Lee, Y. H. Phys.Rev. B 2009, 79, 125435 doi: 10.1103/PhysRevB.79.125435
(4) Bagri, A.; Mattevi, C.; Acik, M.; Chabal, Y. J.; Chhowalla, M.; Shenoy, V. B. Nat. Chem.2010, 2, 581. doi: 10.1038/NCHEM.686
(5) Loh, K. P.; Bao, Q.; Eda, G.; Chhowalla, M. Nat. Chem.2010, 2, 1015. doi: 10.1038/nchem.907
(6) Shen, Y.; Yang, S.; Zhou, P.; Sun, Q.; Wang, P.; Wan, L.; Li, J.; Chen, L.; Wang, X.; Ding, S.; Zhang, D.W. Carbon 2013, 62, 157. doi: 10.1016/j.carbon.2013.06.007
(7) Chang, H.; Sun, Z.; Saito, M.; Yuan, Q.; Zhang, H.; Li, J.; Wang, Z.; Fujita, T.; Ding, F.; Zheng, Z.; Yan, F.; Wu, H.; Chen, M.; Ikuhara, Y. ACS Nano 2013, 7 (7), 6310. doi: 10.1021/nn4023679
(8) Yeh, T. F.; Syu, J. M.; Cheng, C.; Chang, T. H.; Teng, H. Adv.Funct. Mater.2010, 20, 2255. doi: 10.1002/adfm.201000274
(9) Hsu, H. C.; Shown, I.; Wei, H. Y.; Chang, Y. C.; Du, H. Y.; Lin, Y. G.; Tseng, C. A.; Wang, C. H.; Chen, L. C.; Lin, Y. C.; Chen, K. H. Nanoscale 2013, 5, 262. doi: 10.1039/c2nr31718d
(10) Pei, S.; Cheng, H. M. Carbon 2012, 50, 3210. doi: 10.1016/j.carbon.2011.11.010
(11) Dreyer, D. R.; Murali, S.; Zhu, Y.; Ruoff, R. S.; Bielawski, C.W. J. Mater. Chem.2011, 21, 3443. doi: 10.1039/c0jm02704a
(12) Kauppila, J.; Kunnas, P.; Damlin, P.; Viinikanoja, A.; Kvarnström, C. Electrochim. Acta 2013, 89, 84. doi: 10.1016/j.electacta.2012.10.153
(13) Li, W. Y.; He, Y. Q.; Li, Y. M. Acta Phys.-Chim. Sin.2015, 31 (3), 457.[李文有, 贺蕴秋, 李一鸣. 物理化学学报, 2015, 31 (3), 457.] doi: 10.3866/PKU.WHXB201501093
(14) Chen, C.; Cai, W.; Long, M.; Zhou, B.; Wu, Y.; Wu, D.; Feng, Y.ACS Nano 2010, 4 (11), 6425. doi: 10.1021/nn102130m
(15) Li, Y.; Wang, D.; Li, W.; He, Y. J. Alloy. Compd.2015, 648, 942. doi: 10.1016/j.jallcom.2015.07.037
(16) Wang, X.; Kholmanov, I.; Chou, H.; Ruoff, R. S. ACS Nano 2015, 9 (9), 8737. doi: 10.1021/acsnano.5b03814
(17) Harima, Y.; Setodoi, S.; Imae, I.; Komaguchi, K.; Ooyama, Y.; Ohshita, J.; Mizota, H.; Yano, J. Electrochim. Acta 2011, 56, 5363. doi: j.electacta.2011.03.117
(18) Zhou, M.; Wang, Y.; Zhai, Y.; Zhai, J.; Ren, W.; Wang, F.; Dong, S. Chem. Euro. J.2009, 15 (25), 6116. doi: 10.1002/chem.200900596
(19) Pradhan, D.; Leung, K. T. Langmuir 2008, 24, 9707. doi: 10.1021/la8008943
(20) Pavlishchuk, V. V.; Addison, A.W. Inorg. Chim. Acta 2000, 298, 97. doi: 10.1016/S0020-1693(99)00407-7
(21) Yu, D.; Yang, Y.; Durstock, M.; Baek, J. B.; Dai, L. ACS Nano 2010, 4 (10), 5633. doi: 10.1021/nn101671t
(22) Kumar, N. A.; Choi, H. J.; Shin, Y. R.; Chang, D.W.; Dai, L.; Baek, J. B. ACS Nano 2012, 6 (2), 1715. doi: 10.1021/nn204688c
(23) Hayashi, H.; Lightcap, I. V.; Tsujimoto, M.; Takano, M.; Umeyama, T.; Kamat, P. V.; Imahori, H. J. Am. Chem. Soc.2011, 133, 7684. doi: 10.1021/ja201813n
(24) Yeh, T. F.; Chan, F. F.; Hsieh, C. T.; Teng, H. J. Phys. Chem. C 2011, 115, 22587. doi: 10.1021/jp204856c
(25) Neto, A. H. C.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K. Rev. Mod. Phys.2009, 81, 109. doi: 10.1103/RevModPhys.81.109
(26) Tu, N. D. K.; Choi, J.; Park, C. R.; Kim, H. Chem. Mater.2015, 27, 7362. doi: 10.1021/acs.chemmater.5b02999
(27) Liu, H.; Sun, Q.; Xing, J.; Zheng, Z.; Zhang, Z.; Lü, Z.; Zhao, Z. ACS Appl. Mater. Interfaces 2015, 7, 6645. doi: 10.1021/am509084r
(28) Yan, X.; Cui, X.; Li, B.; Li, L. Nano Lett.2010, 10, 1869. doi: 10.1021/nl101060h

1. ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan.Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2014,30(8): 1495-1500
2. GUO Wei, WANG Kai, SHEN Yi-Hua, ZHANG He, WENG Tao, MA Ting-Li.A Simple Template Synthesis of Hierarchically Mesoporous TiO2 Microsphere for Dye-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2013,29(01): 82-88
3. CHENG Hui, YAO Jiang-Hong, CAO Ya-An.Photoelectric Conversion Efficiency of N719/TiO2-Inx%/FTO Film Electrodes Incorporating In Doped at the TiO2 Surface[J]. Acta Phys. -Chim. Sin., 2012,28(11): 2632-2640
4. CHANG Meng-Lei, LI Xin-Jun.Fabrication of Nanosheet/Nestlike Nanoarray Hierarchical TiO2 Film for Dye-Sensitized Solar Cell[J]. Acta Phys. -Chim. Sin., 2012,28(06): 1368-1372
5. HUANG Ye, LIU Yu-Yang, LI Wen-Zhang, CHEN Qi-Yuan.Effects of Calcination Temperature on Morphologies and Photoelectrochemical Properties of Anodized WO3 Nanoporous Films[J]. Acta Phys. -Chim. Sin., 2012,28(04): 865-870
6. ZHUO Zu-Liang, ZHANG Fu-Jun, XU Xiao-Wei, WANG Jian, LU Li-Fang, XU Zheng.Photovoltaic Performance Improvement of P3HT:PCBM Polymer Solar Cells by Annealing Treatment[J]. Acta Phys. -Chim. Sin., 2011,27(04): 875-880
7. MA Chun-An, ZHOU Ya-Ming, XU Ying-Hua, JIANG Huan-Huan, LI Shan-Shan.Indirect Electrochemical Reduction of Indigo Using Fe-Triethonolamine[J]. Acta Phys. -Chim. Sin., 2010,26(03): 589-594
8. GAO Yin-Yi, CAO Dian-Xue, WANG Gui-Ling, YIN Cui-Lei.Catalytic Behavior of NiCo2O4 for H2O2 Electroreduction in Alkaline Medium[J]. Acta Phys. -Chim. Sin., 2010,26(01): 29-33
9. ZHANG Lei, ZHENG Ling-Min, GUO Jia-Xiu, WU Dong-Dong, GONG Mao-Chu, WANG Jian-Li, CHEN Yao-Qiang.Structure Evolution Process of Ce0.65Zr0.25Y0.1O1.95 Prepared by Oxidation-Coprecipitation Method[J]. Acta Phys. -Chim. Sin., 2008,24(08): 1342-1346
10. YANG Zhao-Hui;ZHANG Mao-Feng;CAO Wei-Xiao.Self-assembly Films of Poly(4-diazosulfonate Styrene-co-4-vinylpyridine) with Polyaniline and Their Photoelectric Conversion Properties[J]. Acta Phys. -Chim. Sin., 2007,23(01): 1-5
11. MA Chun-an; HUANG Ye; TONG Shao-ping; ZHANG Wei-min.The Catalytic Behavior of Tungsten Carbide for the Electroreduction of p-nitrophenol[J]. Acta Phys. -Chim. Sin., 2005,21(07): 721-724
12. Yao Su-Wei;Liu Heng-Quan;Zhang Wei-Guo;Wang Hong-Zhi;Zheng Chang-Feng.In-Situ Preparation of Silver Nanoparticles and Single Crystal in Linear Chitosan Films[J]. Acta Phys. -Chim. Sin., 2003,19(05): 464-468
13. Mi Chang-Huan;Xia Xi;Zhang Xiao-Gang.Redox Behaviours of Mn(Ⅱ)/Mn(Ⅲ) in Sulphuric Acid[J]. Acta Phys. -Chim. Sin., 2002,18(11): 1038-1042
14. Xu Bin, Cheng Hu-Min, Wang Yan-Qin, Ma Ji-Ming.Preparation and Properties of Nanosized Composite Particle SnO2/CdS[J]. Acta Phys. -Chim. Sin., 1999,15(10): 925-929
15. Jiang Jun-Hua, Chen Lan, Wu Bing-Liang, Zhai Run-Sheng.Electrochemical Reduction of Nitrobenzene on the Cu/C-Nafion Composite Electrode[J]. Acta Phys. -Chim. Sin., 1998,14(08): 704-708
16. Wang Shi-Zhong,Jiang Yi,Li Wen-Zhao,Yan Jing-Wang.Kinetics of Electrochemical Reduction of Oxygen on the La0.8Sr0.2MnO3/YSZ Electrode[J]. Acta Phys. -Chim. Sin., 1997,13(08): 717-724
17. Liu Rang-Su,Zhou Qun-Yi,Li Ji-Yong.A Molecular Dynamics Simulartion Study on the Structural Transitions in Liquid Metals[J]. Acta Phys. -Chim. Sin., 1995,11(08): 755-757
Copyright © 2006-2016 Editorial office of Acta Physico-Chimica Sinica
Address: College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, P.R.China
Service Tel: +8610-62751724 Fax: +8610-62756388
^ Top