Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 554-562    DOI: 10.3866/PKU.WHXB201611171
ARTICLE     
Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties
Yi-Ming LI1,Xiao CHEN1,Xiao-Jun LIU1,Wen-You LI1,Yun-Qiu HE1,2,*()
1 School of Materials Science and Engineering, Tongji University, Shanghai 201804, P. R. China
2 Key Laboratory of Advanced Civil Engineering Materials, Ministry of Education, Shanghai 201804, P. R. China
Download: HTML     PDF(2328KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

In the present work, graphene oxide (GO)-ZnO bilayer composites were fabricated by depositing GO on ZnO by an anodic electrophoretic method. The composite films were then subjected to a cathodic electrochemical treatment with different GO reduction times. The as-prepared films were characterized by Xray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) spectroscopy and field emission scanning electron microscopy (FESEM) to study changes in the GO structure. The evolution of the material's energy levels over time was also determined by ultraviolet-visible (UV-Vis) spectroscopy and electrochemical measurements. A series of structural transformations of GO occurred even after it had reached the maximum degree of reduction. Prolonged treatment saw the GO flakes fracture into smaller GO particles with a sharp increase in the proportion of carboxyl groups. The energy gap of GO varied and extended into the visible range with longer reduction time. The energy levels and charge carrier type also varied. Photoelectrochemical tests on the samples revealed that the 60 to 600-s reduced GO-ZnO composite films showed photoelectric conversion behavior as photoanodes. However, the sample reduced for 1800 s was not effective at light-harvesting owing to lowering of the GO conduction band below that of ZnO. The differences in performance indicated that the transformation of the laminated GO geometry to a more disordered distribution enhanced conversion efficiency.



Key wordsGraphene oxide-ZnO composite film      Electrochemical reduction      Structural transformation      Energy level evolution      Photoelectric conversion     
Received: 29 August 2016      Published: 17 November 2016
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(51172162)
Corresponding Authors: Yun-Qiu HE     E-mail: heyunqiu@tongji.edu.cn
Cite this article:

Yi-Ming LI,Xiao CHEN,Xiao-Jun LIU,Wen-You LI,Yun-Qiu HE. Electrochemical Reduction of Graphene Oxide on ZnO Substrate and Its Photoelectric Properties. Acta Physico-Chimica Sinca, 2017, 33(3): 554-562.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611171     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/554

Fig 1 (a) The first circle of the cyclic voltammogram (CV)curve for the as-prepared GO-ZnO film with a scan rate of10 mV?s-1; (b) the current density-time curve during theelectrochemical reduction of GO at -2.1 V (vs Ag/Ag+)
Fig 2 (a) C 1s XPS spectra of the surfaces of the composite films with different reduction time (0, 60, 180, 300, 600, 1800 s); (b) C 1s XPS spectra of the 60 and 300 s composites after etching; (c) the variation curve of the molar ratio ofZnO to GO (atomic ratio of Zn to C) of the film surfaces with reduction time The fit components are C sp2, C sp3 & hydroxyl C-OH, epoxy C-O-C, carbonyl C=O, andcarboxyl COOH with increasing order of the binding energy.
0 s 60s* 180 s 300 s* 600 s 1800 s
EB/eV Percentage/% EB/eV Percentage/% EB/eV Percentage/% EB/eV Percentage/% EB/eV Percentage/% EB/eV Percentage/%
C sp2 284.4 52.00 284.4 62.20 284.4 73.13 284.4 71.41 284.4 60.37 284.4 18.04
284.4 70.28 284.4 69.50
C sp3 & C-OH 285.2 11.51 285.2 17.98 285.5 16.64 285.5 17.41 285.5 14.42 285.4 8.21
285.4 14.09 285.5 19.60
c-o-c 286.4 23.62 286.3 11.94 286.6 6.22 286.7 6.41 286.6 7.24 286.7 6.90
286.3 10.01 286.7 7.29
C=O 288.1 9.91 288.0 5.53 288.2 2.86 288.2 3.16 288.2 5.20 288.3 7.35
288.0 3.88 288.2 2.99
COOH 289.2 2.95 289.3 2.35 289.8 1.14 289.8 1.61 290.2 12.76 289.9 59.49
289.4 1.74 289.5 0.61
Table 1 Summary of the binding energies (EB) and percentages of the components fitted inthe C 1s XPS spectra of the surfaces of the GO-ZnO composite films
Fig 3 FESEM images of the GO-ZnO composite film surfaces with different reduction time
Fig 4 (a) UV-Vis transmittance spectra ofdifferent composite films; (b) Tauc plots ofdifferent composite films
Fig 5 Energy level structures of ZnO and GO withdifferent reduction time
Fig 6 Transient photocurrent density-time curves ofthe films measured in the electrolyte without (a) and with(b) redox couples; (c) comparison of the current densityvariation curves of samples measured in the electrolytewithout and with redox couples
Average photocurrent density/(μA?cm-2)
ZnO 0 s 60 s 180 s 300 s 600 s 1800 s
redox excluded -0.039 -0.067 -0.170 -0.016 -0.042 0.179 0.079
redox included 0.065 -0.151 -0.262 -0.086 -0.200 -0.243 0
Table 2 Average photocurrent density of different films measured in electrolytes without and with redox couples
1 Dreyer D. R. ; Park S. ; Bielawski C. W. ; Ruoff R. S. Chem.Soc. Rev. 2010, 39, 228.
2 Huang H. ; Li Z. ; She J. ; Wang W. J. Appl. Phys. 2012, 111, 054317.
3 Lahaye R. J. W. E. ; Jeong H. K. ; Park C. Y. ; Lee Y. H. Phys.Rev. B 2009, 79, 125435.
4 Bagri A. ; Mattevi C. ; Acik M. ; Chabal Y. J. ; Chhowalla M. ; Shenoy V. B. Nat. Chem. 2010, 2, 581.
5 Loh K. P. ; Bao Q. ; Eda G. ; Chhowalla M. Nat. Chem. 2010, 2, 1015.
6 Shen Y. ; Yang S. ; Zhou P. ; Sun Q. ; Wang P. ; Wan L. ; Li J. ; Chen L. ; Wang X. ; Ding S. ; Zhang D. W. Carbon 2013, 62, 157.
7 Chang H. ; Sun Z. ; Saito M. ; Yuan Q. ; Zhang H. ; Li J. ; Wang Z. ; Fujita T. ; Ding F. ; Zheng Z. ; Yan F. ; Wu H. ; Chen M. ; Ikuhara Y. ACS Nano 2013, 7 (7), 6310.
8 Yeh T. F. ; Syu J. M. ; Cheng C. ; Chang T. H. ; Teng H. Adv.Funct. Mater. 2010, 20, 2255.
9 Hsu H. C. ; Shown I. ; Wei H. Y. ; Chang Y. C. ; Du H. Y. ; Lin Y. G. ; Tseng C. A. ; Wang C. H. ; Chen L. C. ; Lin Y. C. ; Chen K. H. Nanoscale 2013, 5, 262.
10 Pei S. ; Cheng H. M. Carbon 2012, 50, 3210.
11 Dreyer D. R. ; Murali S. ; Zhu Y. ; Ruoff R. S. ; Bielawski C.W. J. Mater. Chem. 2011, 21, 3443.
12 Kauppila J. ; Kunnas P. ; Damlin P. ; Viinikanoja A. ; Kvarnstr?m C. Electrochim. Acta 2013, 89, 84.
13 Li W. Y. ; He Y. Q. ; Li Y. M. Acta Phys. -Chim. Sin. 2015, 31 (3), 457.
13 李文有; 贺蕴秋; 李一鸣. 物理化学学报, 2015, 31 (3), 457.
14 Chen C. ; Cai W. ; Long M. ; Zhou B. ; Wu Y. ; Wu D. ; Feng Y. ACS Nano 2010, 4 (11), 6425.
15 Li Y. ; Wang D. ; Li W. ; He Y. J. Alloy. Compd. 2015, 648, 942.
16 Wang X. ; Kholmanov I. ; Chou H. ; Ruoff R. S. ACS Nano 2015, 9 (9), 8737.
17 Harima Y. ; Setodoi S. ; Imae I. ; Komaguchi K. ; Ooyama Y. ; Ohshita J. ; Mizota H. ; Yano J. Electrochim. Acta 2011, 56, 5363.
18 Zhou M. ; Wang Y. ; Zhai Y. ; Zhai J. ; Ren W. ; Wang F. ; Dong S. Chem. Euro. J. 2009, 15 (25), 6116.
19 Pradhan D. ; Leung K. T. Langmuir 2008, 24, 9707.
20 Pavlishchuk V. V. ; Addison A. W. Inorg. Chim. Acta 2000, 298, 97.
21 Yu D. ; Yang Y. ; Durstock M. ; Baek J. B. ; Dai L. ACS Nano 2010, 4 (10), 5633.
22 Kumar N. A. ; Choi H. J. ; Shin Y. R. ; Chang D. W. ; Dai L. ; Baek J. B. ACS Nano 2012, 6 (2), 1715.
23 Hayashi H. ; Lightcap I. V. ; Tsujimoto M. ; Takano M. ; Umeyama T. ; Kamat P. V. ; Imahori H. J. Am. Chem. Soc. 2011, 133, 7684.
24 Yeh T. F. ; Chan F. F. ; Hsieh C. T. ; Teng H. J. Phys. Chem. C 2011, 115, 22587.
25 Neto A. H. C. ; Guinea F. ; Peres N. M. R. ; Novoselov K. S. ; Geim A. K. Rev. Mod. Phys. 2009, 81, 109.
26 Tu N. D. K. ; Choi J. ; Park C. R. ; Kim H. Chem. Mater. 2015, 27, 7362.
27 Liu H. ; Sun Q. ; Xing J. ; Zheng Z. ; Zhang Z. ; Lü Z. ; Zhao Z. ACS Appl. Mater. Interfaces 2015, 7, 6645.
28 Yan X. ; Cui X. ; Li B. ; Li L. Nano Lett. 2010, 10, 1869.
[1] Li-Gang XU,Wei QIU,Run-Feng CHEN,Hong-Mei ZHANG,Wei HUANG. Application of ZnO Electrode Buffer Layer in Perovskite Solar Cells[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 36-48.
[2] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[3] Xiao-Fang BAI,Wei CHEN,Bai-Yin WANG,Guang-Hui FENG,Wei WEI,Zheng JIAO,Yu-Han SUN. Recent Progress on Electrochemical Reduction of Carbon Dioxide[J]. Acta Physico-Chimica Sinca, 2017, 33(12): 2388-2403.
[4] ZHANG Jing-Bo, LI Pan, YANG Hui, ZHAO Fei-Yan, TANG Guang-Shi, SUN Li-Na, LIN Yuan. Preparation of a Highly Efficient PbS Electrode and Its Application in Quantum Dots-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1495-1500.
[5] LUO Qian-Qian, ZHOU Shi-Dong, REN Yuan, Li Niu, HUANG Zhi-Peng, GUAN Nai-Jia, XIANG Shou-He. Phenomenon of Structural Transformation of Ethylenediamine- Oriented Synthesis of Microporous Cobalt Phosphate[J]. Acta Physico-Chimica Sinca, 2013, 29(05): 911-919.
[6] GUO Wei, WANG Kai, SHEN Yi-Hua, ZHANG He, WENG Tao, MA Ting-Li. A Simple Template Synthesis of Hierarchically Mesoporous TiO2 Microsphere for Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2013, 29(01): 82-88.
[7] CHENG Hui, YAO Jiang-Hong, CAO Ya-An. Photoelectric Conversion Efficiency of N719/TiO2-Inx%/FTO Film Electrodes Incorporating In Doped at the TiO2 Surface[J]. Acta Physico-Chimica Sinca, 2012, 28(11): 2632-2640.
[8] CHANG Meng-Lei, LI Xin-Jun. Fabrication of Nanosheet/Nestlike Nanoarray Hierarchical TiO2 Film for Dye-Sensitized Solar Cell[J]. Acta Physico-Chimica Sinca, 2012, 28(06): 1368-1372.
[9] LIU Run-Hua, ZHANG Sen, XIA Xin-Yuan, YUN Da-Qin, BIAN Zu-Qiang, ZHAO Yong-Liang. DSSCs Using a Nanoparticle/Nanorod Composite TiO2 Film as a Photoanode[J]. Acta Physico-Chimica Sinca, 2011, 27(07): 1701-1706.
[10] MA Chun-An, ZHOU Ya-Ming, XU Ying-Hua, JIANG Huan-Huan, LI Shan-Shan. Indirect Electrochemical Reduction of Indigo Using Fe-Triethonolamine[J]. Acta Physico-Chimica Sinca, 2010, 26(03): 589-594.
[11] CHEN Song, MA Chun-An, CHU You-Qun, MAO Xin-Biao, BAI Yun-Shan, CHEN Liang. Effect of the Interaction between Nitrobenzene and Ionic Liquids on the Transfer Coefficient of the Nitrobenzene Electrochemical Reduction[J]. Acta Physico-Chimica Sinca, 2009, 25(10): 2005-2010.
[12] PEI Juan, LIANG Mao, CHEN Jun, TAO Zhan-Liang, XU Wei. Application of Triphenylamine-Based Sensitizers with Two Carboxylic Acid Groups to Dye-Sensitized Solar Cells[J]. Acta Physico-Chimica Sinca, 2008, 24(11): 1950-1956.
[13] YANG Zhao-Hui;ZHANG Mao-Feng;CAO Wei-Xiao. Self-assembly Films of Poly(4-diazosulfonate Styrene-co-4-vinylpyridine) with Polyaniline and Their Photoelectric Conversion Properties[J]. Acta Physico-Chimica Sinca, 2007, 23(01): 1-5.
[14] Mau-Scheng Zei. UHV Techniques in the Studies of Single-crystal Electrode Surfaces[J]. Acta Physico-Chimica Sinca, 2004, 20(08S): 953-965.
[15] Yao Qiao-Hong;Shan Lu;Li Fu-You;Yin Dong-Dong;Huang Chun-Hui. The Photoelectrochemical Properties of Four Hemicyanine Derivatives on Nanocrystalline TiO2 Electrode[J]. Acta Physico-Chimica Sinca, 2003, 19(07): 635-640.