Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (3): 486-499    DOI: 10.3866/PKU.WHXB201611181
REVIEW     
Recent Advances in Li Anode for Aprotic Li-O2 Batteries
Yan-Tao ZHANG1,2,Zhen-Jie LIU1,2,Jia-Wei WANG1,Liang WANG1,2,Zhang-Quan PENG1,*
1 State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, P. R. China
2 University of Chinese Academy of Sciences, Beijing 100049, P. R. China
Download: HTML     PDF(6235KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The aprotic Li-O2 battery has attracted considerable interest in recent years because of its high theoretical specific energy that is far greater than that achievable with state-of-the-art Li-ion technologies. To date, most Li-O2 studies, based on a cell configuration with a Li metal anode, aprotic Li+ electrolyte and porous O2 cathode, have focused on O2 reactions at the cathode. However, these reactions might be complicated by the use of Li metal anode. This is because both the electrolyte and O2 (from cathode) can react with the Li metal and some parasitic products could cross over to the cathode and interfere with the O2 reactions occurring therein. In addition, the possibility of dendrite formation on the Li anode, during its multiple plating/stripping cycles, raises serious safety concerns that impede the realization of practical Li-O2 cells. Therefore, solutions to these issues are urgently needed to achieve a reversible and safety Li anode. This review summarizes recent advances in this field and strategies for achieving high performance Li anode for use in aprotic Li-O2 batteries. Topics include alternative counter/reference electrodes, electrolytes and additives, composite protection layers and separators, and advanced experimental techniques for studying the Li anode|electrolyte interface. Future developments in relation to Li anode for aprotic Li-O2 batteries are also discussed.



Key wordsLithium-oxygen battery      Lithium metal anode      Li anode stability      Solid electrolyte interphase layer     
Received: 29 September 2016      Published: 18 November 2016
MSC2000:  O646  
  TM911.41  
Fund:  the National Natural Science Foundation of China(21605136);the National Natural Science Foundation of China(91545129);the National Natural Science Foundation of China(21575135);"Strategic Priority Research Program"of the CAS(XDA09010401);"Recruitment Program of Global Youth Experts"of China, National Key Research and Development Program of China(2016YFB0100100);Science and Technology Development Program of Jilin Province, China(20150623002TC);Science and Technology Development Program of Jilin Province, China(20160414034GH)
Corresponding Authors: Zhang-Quan PENG   
Cite this article:

Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611181     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/486

 
 
 
 
 
 
 
 
 
 
 
1 Armand M. ; Tarascon J. M. Nature 2008, 451, 652.
2 Girishkumar G. ; McCloskey B. ; Luntz A. C. ; Swanson S. ; Wilcke W. J. Phys. Chem. Lett. 2010, 1 (14), 2193.
3 Lu J. ; Li L. ; Park J. B. ; Sun Y. K. ; Wu F. ; Amine K. Chem.Rev. 2014, 114 (11), 5611.
4 Luntz A. C. ; McCloskey B. D. Chem. Rev. 2014, 114 (23), 11721.
5 Balaish M. ; Kraytsberg A. ; Ein-Eli Y. Phys. Chem. Chem.Phys. 2014, 16, 2801.
6 Chang Z.W. ; Xu J. J. ; Liu Q. C. ; Li L. ; Zhang X. B. Adv.Energy Mater. 2015, 5 (21), 1500633.
7 Feng N. N. ; He P. ; Zhou H. S. Adv. Energy Mater. 2016, 6 (9), 1502303.
8 Geng D. S. ; Ding N. ; Andy Hor T. S. ; Chien S.W. ; Liu Z. L. ; Wuu D. ; Sun X. L. ; Zong Y. Adv. Energy Mater. 2016, 6 (9), 1502164.
9 Abraham K. M. ; Jiang Z. J. Electrochem. Soc. 1996, 143 (1), 1.
10 Oh S. H. ; Black R. ; Pomerantseva E. ; Lee J. H. ; Nazar L. F. Nat. Chem. 2012, 4, 1004.
11 Thapa A. K. ; Hidaka Y. ; Hagiwara H. ; Ida S. ; Ishihara T. J. Electrochem. Soc. 2011, 158 (12), A1483.
12 McCloskey B. D. ; Scheffler R. ; Speidel A. ; Bethune D. S. ; Shelby R. M. ; Luntz A. C. J. Am. Chem. Soc. 2011, 133 (45), 18038.
13 Lu J. ; Lei Y. K. ; Lau C. ; Luo X. ; Du P. ; Wen J. ; Assary R.S. ; Das U. ; Miller D. J. ; Elam J.W. ; Albishri H. M. ; El-Hady D. A. ; Sun Y. K. ; Curtiss L. A. ; Amine K. Nat. Commun. 2013, 4, 2383.
14 Liu B. ; Yan P. ; Xu W. ; Zheng J. ; He Y. ; Luo L. Bowden ; M. E. ; Wang C. M. ; Zhang J. G. Nano. Lett. 2016, 16 (8), 4932.
15 Wang Z. D. ; You Y. ; Yuan J. ; Yin Y. X. ; Li Y. T. ; Xin S. ; Zhang D..W. ACS Appl. Mater. Interfaces 2016, 8 (10), 6520.
16 Zhang T. ; Liao K. ; He P. ; Zhou H. S. Energy Environ. Sci. 2016, 9, 1024.
17 Elia G. A. ; Hassoun J. ; Kwak W. J. ; Sun Y. K. ; Scrosati B. ; Mueller F. ; Bresser D. ; Passerini S. ; Oberhumer P. ; Tsiouvaras N. ; Reiter J. Nano Lett. 2014, 14 (11), 6572.
18 Liu B. ; Xu W. ; Yan P. F. ; Sun X. L. ; Bowden M. E. ; Read J. ; Qian J. F. ; Mei D. H. ; Wang C. M. ; Zhang J. G. Adv. Funct.Mater. 2016, 26 (4), 605.
19 Le H. T. T. ; Kalubarme R. S. ; Ngo. D. T Jadhav H. S. ; Jadhav H. S. ; Park C. J. J. Mater. Chem. A. 2015, 3, 22421.
20 Marchini F. ; Herrera. S. Torres W. ; Torres W. ; Tesio A. Y. ; Williams F.J. ; Calvo E. J. Langmuir 2015, 319 (33), 9236.
21 Giordani V. ; Tozier D. ; Tan H. J. ; Burke C. M. ; Gallant B.M. ; Uddin J. ; Greer J. R. ; McCloskey B. D. ; Chase G. V. ; Addison D. J. Am. Chem. Soc. 2016, 138 (8), 2656.
22 Kim D.W. ; Ahn S. M. ; Kang J.W. ; Suk J. D. ; Kim H. K. ; Kang Y. K. J. Mater. Chem. A. 2016, 4, 6332.
23 Black R. ; Oh S. H. ; Lee J. H. ; Yim T. ; Adams B. ; Nazar L. F. J. Am. Chem. Soc. 2012, 134 (6), 2902.
24 Nasybulin E. ; Xu W. ; Engelhard M. H. ; Nie Z. ; Li X. S. ; Zhang J. G. J. Power Sources 2013, 243, 899.
25 Scheers J. ; Lidberg D. ; Sodeyama K. ; Futera Z. ; Tateyama Y. Phys. Chem. Chem. Phys. 2016, 18, 9961.
26 Qiao Y. ; Ye S. J. Phys. Chem. C 120, 15, 8033.
27 Wang J.W. ; Zhang Y. L. ; Guo L. M. ; Wang E. K. ; Peng Z. Q. Angew. Chem. Int. Ed. 2016, 55, 1.
28 David G. K. ; Micha? T. ; Nir P. ; Daniil M. I. ; Carl V. T. ; Yang S. H. J. Phys. Chem. Lett. 2016, 7 (7), 1204.
29 Giordani V. ; Walker W. ; Bryantsev V. S. ; Uddin J. ; Chase G.V. ; Addison D. J. Electrochem. Soc. 2013, 160 (9), A1544.
30 Roberts M. ; Younesi R. ; Richardson W. ; Liu J. ; Gustafsson T. ; Zhu J. F. ; Edstr?m K. ECS Electrochem. Lett. 2014, 3 (6), A62.
31 Zhang Y. T. ; Ma L. P. ; Zhang L. Q. ; Peng Z. Q. J. Electrochem. Soc. 2016, 163 (7), A1270.
32 Bruce P. G. ; Freunberger S. A. ; Hardwick L. J. Tarascon J. M. ; Tarascon J. M. Nat. Mater. 2012, 11, 19.
33 Kim H. ; Jeong G. ; Kim Y. U. ; Kim J. H. ; Park C. M. ; Sohn H. J. Chem. Soc. Rev. 2013, 42, 9011.
34 Cheng X. B. ; Zhang R. ; Zhao C. Z. ; Wei F. ; Zhang J. G. ; Zhang Q. Adv. Sci. 2015, 3 (3), 1500213.
35 Choi N. S. ; Chen Z. ; Freunberger S. A. ; Ji X. ; Sun Y. K. ; Amine K. ; Yushin G. ; Nazar L. F. ; Cho J. ; Bruce P. G. Angew.Chem. Int. Ed. 2012, 51 (40), 9994.
36 Scrosati B. ; Garche J. J. Power Sources 2010, 195 (9), 2419.
37 Zhang R. ; Cheng X. B. ; Zhao C. Z. ; Peng H. J. ; Shi J. L. ; Huang J. Q. ; Wang J. ; Wei F. ; Zhang Q. Adv. Mater. 2016, 28 (11), 2155.
38 Elia G. A. ; Bresser D. ; Reiter J. ; Oberhumer P. ; Sun Y. K. ; Scrosati B. ; Passerini S. ; Hassoun J. ACS Appl. Mater.Interfaces 2015, 7 (10), 22638.
39 Assary R. S. ; Lu J. ; Du P. ; Luo X. ; Zhang X. ; Ren Y. ; Curtiss L. A. ; Amine K. ChemSusChem 2013, 6 (1), 51.
40 Chen Y. H. ; Freunberger S. A. ; Peng Z. Q. ; Bardé F. ; Bruce P.G. J. Am. Chem. Soc. 2012, 134 (18), 7952.
41 McCloskey B. D. ; Bethune D. S. ; Shelby R. M. ; Mori T. ; Scheffler R. ; Speidel A. ; Sherwood M. ; Luntz A. C. J. Phys.Chem. Lett. 2012, 3 (20), 3043.
42 Chen Y. H. ; Freunberger S. A. ; Peng Z. Q. ; Fontaine O. ; Bruce P. G. Nat. Chem. 2013, 5, 489.
43 Peng Z. Q. ; Freunberger S. A. ; Chen Y. H. ; Bruce P. G. Science 2012, 337 (6094), 563.
44 Ma S. C. ; Wu Y. ; Wang J.W. ; Zhang Y. L. ; Zhang Y. T. ; Yan X. X. ; Wei Y. ; Liu P. ; Wang J. P. ; Jiang K. L. ; Fan S. S. ; Xu Y. ; Peng Z. Q. Nano Lett. 2015, 15 (12), 8084.
45 Chun J. Y. ; Kim H. ; Jo C. ; Lim E. ; Lee J. ; Kim Y. ChemPlusChem 2015, 80 (2), 349.
46 Hassoun J. ; Jung H. G. ; Lee D. J. ; Park J. B. ; Amine K. ; Sun Y. K. ; Scrosati B. Nano Lett. 2012, 12 (11), 5775.
47 Guo Z. Y. ; Dong X. L. ; Wang Y. G. ; Xia Y. Y. Chem.Commun. 2015, 51, 676.
48 Aurbach D. ; Zinigrad E. ; Cohen Y. ; Teller H. Solid State Ionics 2002, 148 (3), 405.
49 Peled E. J. Electrochem. Soc. 1979, 126 (12), 2047.
50 Aurbach D. ; Pollak E. ; Elazari R. ; Salitra G. ; Kelley C. ; Affintio J. J. Electrochem. Soc. 2009, 156 (8), A694.
51 Liang X. ; Wen Z. ; Liu Y. ; Wu M. ; Jin J. ; Zhang H. ; Wu X. J. Power Sources 2011, 196 (22), 9839.
52 Zhang S. S. J. Power Source. 2016, 322, 99.
53 Walker W. ; Giordani V. ; Uddin J. ; Bryantsev V. S. ; Chase G.V. ; Addison D. J. Am. Chem. Soc. 2013, 135 (6), 2076.
54 Aurbach D. ; Daroux M. ; Faguy P. ; Yeager E. J. Electroanal.Chem. 1991, 297 (12), 225.
55 Younesi R. ; Hahlin M. ; Roberts M. ; Edstrom K. J. Power Sources 2013, 225 (2), 40.
56 Bryantsev V. S. ; Giordani V. ; Walker W. ; Uddin J. ; Lee I. ; Duin A. C. T. ; Chase G. V. ; Addison D. J. Phys. Chem. C 2013, 117 (23), 11977.
57 Liu Q. C. ; Xu J. J. ; Yuan S. ; Chang Z.W. ; Xu D. ; Yin Y. B. ; Li L. ; Zhong H. X. ; Jiang Y. S. ; Yan J. M. ; Zhang X. B. Adv.Mater. 2015, 27 (35), 5241.
58 Ding F. ; Xu W. ; Graff G. L. ; Zhang J. ; Sushko M. L. ; Chen X. L. ; Shao Y. Y. ; Engelhard M. H. ; Nie Z. M. ; Xiao J. ; Liu X. J. ; Sushko P. V. ; Liu J. ; Zhang J. G. J. Am. Chem. Soc. 2013, 135 (11), 4450.
59 Lee C. K. ; Park Y. J. ACS Appl. Mater. Interfaces 2016, 8 (13), 8561.
60 Ishikawa M. ; Kawasaki H. ; Yoshimoto N. ; Morita M. J. Power Sources 2005, 146 (1), 199.
61 Kumar J. ; Kumar B. J. Power Sources 2009, 194 (2), 1113.
62 Jadhav H. S. ; Kalubarme R. S. ; Jadhav A. H. ; Seo J. G. Electrochim. Acta. 2016, 199, 126.
63 Hasegawa S. ; Imanishi N. ; Zhang T. ; Xie J. ; Hirano A. ; Takeda Y. ; Yamamoto O. J. Power Sources 2009, 189 (1), 371.
64 Imanishi N. ; Hasegawa S. ; Zhang T. ; Hirano A. ; Takeda Y. ; Yamamoto O. J. Power Sources 2008, 185 (185), 1392.
65 Kumar B. ; Kumar J. ; Leese R. ; Fellner J. P. ; Rodrigues S. J. ; Abraham K. M. J. Electrochem. Soc. 2010, c157 (1), A50.
66 Wu S. ; Yi J. ; Zhu K. ; Bai S. ; Liu Y. ; Qiao Y. ; Ishida M. ; Zhou H. Adv. Energy Mater. 2016, 1601759.
67 Hassoun J. ; Croce F. ; Armand M. ; Scrosati B. Angew. Chem.Int. Ed. 2011, 50 (13), 2999.
68 Tokur M. ; Algul H. ; Ozcan S. ; Cetinkaya T. ; Uysal M. ; Guler M. O. ; Akbulut H. Solid State Ionics 2016, 286, 51.
69 Tokur M. ; Algul H. ; Cetinkaya T. ; Uysal M. ; Akbulut H. J. Electrochem. Soc. 2016, 163 (7), A1326.
70 Rahman M. A. ; Wang X. ; Wen C. A. J. Appl. Electrochem. 2014, 44 (1), 5.
71 Croce F. ; Sacchetti S. ; Scrosati B. J. Power Sources 2006, 161 (1), 560.
72 Sarnowska A. ; Polska I. ; Niedzicki L. ; Marcinek M. ; Zalewska A. Electrochim. Acta. 2011, 57, 180.
73 Mazor H. ; Golodnitsky D. ; Peled E. ; Wieczorek W. ; Scrosati B. A. J. Power Sources 2008, 178 (2), 736.
74 Panero S. ; Scrosati B. ; Sumathipala H. H. ; Wieczorek W. J. Power Sources 2007, 167 (2), 510.
75 Zhang Y. ; Wang L. ; Guo Z. Y. ; Xu Y. F. ; Wang Y. G. ; Peng H. S. Angew. Chem. Int. Ed. 2016, 55, 4487.
76 Yi J. ; Liu X. ; Guo S. ; Zhu K. ; Xue H. ; Zhou H. ACS Appl.Mater. Interfaces 2015, 7 (42), 23798.
77 Yi J. ; Zhou H. ChemSusChem 2016, 9 (17), 2391.
78 Elia G. A. ; Hassoun J. Solid State Ionics 2016, 287, 22.
79 Lee D. J. ; Lee H. ; Song J. ; Ryou M. H. ; Lee Y. M. ; Kim H.T. ; Park J. K. Electrochem. Commun. 2014, 40, 45.
80 Lee D. J. ; Lee H. ; Kim Y. J. ; Park J. K. ; Kim H. T. Adv.Mater. 2016, 28, 857.
81 Wang Y. ; Xia Y. Nat. Chem. 2013, 5, 445.
82 Kim B. G. ; Kim J. S. ; Min J. ; Lee Y. H. ; Choi J. H. ; Jang M.C. ; Freunberger S. A. ; Choi J. W. Adv. Funct. Mater. 2016, 26 (11), 1747.
83 Kang S. J. ; Mori T. ; Suk J. ; Kim D.W. ; Kang Y. ; Wilcke W. ; Kim H. C. J. Mater. Chem. A 2014, 2, 9970.
84 Wu C. H. ; Weatherup R. S. ; Salmeron M. B. Phys. Chem.Chem. Phys. 2015, 17, 30229.
85 Balbuena, P. B.; Wang, Y. X. Lithium-Ion Batteries:Solid Electrolyte Interphase; Imperial College Press:London, 2004;pp 140-189. doi: 10.1142/p291
86 Shui J. L. ; Okasinaki J. S. ; Kenesei P. ; Dobbs H. A. ; Zhao D. ; Almer J. D. ; Liu D. J. Nat. Commun. 2013, 4, 2255.
87 Shen C. ; Wang S.W. ; Jin Y. ; Han W. Q. ACS Appl. Mater.Interfaces 2015, 7, 25441.
88 Koltypin M. ; Cohen Y. S. ; Markovsky B. ; Cohen Y. ; Aurbach D. Electrochem. Commun. 2002, 4, 17.
89 Mogi R. ; Inaba M. ; Jeong S. K. ; Iriyama Y. ; Abe T. ; Ogumi Z. J. Electrochem. Soc. 2002, 149, A1578.
90 Cohen Y. S. ; Cohen Y. ; Aurbach D. J. Phys. Chem. B 2000, 104, 12282.
[1] HOU Quan, GUAN Chengzhi, XIAO Guoping, WANG Jian-Qiang, ZHU Zhiyuan. Effect of Oxygen Partial Pressure on Solid Oxide Electrolysis Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[2] ZHANG Zhongqiang, ZHANG Shuhua, LIU Zhixi, ZHANG Zhiguo, LI Yongfang, LI Chang-Zhi, CHEN Hongzheng. A Simple Electron Acceptor with Unfused Backbone for Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[3] HU Jiangtao, ZHENG Jiaxin, PAN Feng. Research Progress into the Structure and Performance of LiFePO4 Cathode Materials[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[4] ZHANG Meiqi, MA Yunlong, ZHENG Qingdong. Bandgap Modulation of Dithienonaphthalene-Based Small-Molecule Acceptors for Nonfullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[5] FENG Shiyu, LU Hao, LIU Zekun, LIU Yahui, LI Cuihong, BO Zhishan. Designing a High-performance A-D-A Fused-ring Electron Acceptor via Noncovalently Conformational Locking and Tailoring Its End Groups[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[6] GUPTA Monika, YAN Dong, SHEN Fugang, XU Jianzhong, ZHAN Chuanlang. Perylenediimide:Phosphonium-Based Binary Blended Small-Molecule Cathode Interlayer for Efficient Fullerene-Free Polymer Solar Cells with Open Circuit Voltage to 1.0 V[J]. Acta Phys. -Chim. Sin., 0, (): 0-0.
[7] Xia GUO,Qunping FAN,Chaohua CUI,Zhiguo ZHANG,Maojie ZHANG. Wide Bandgap Random Terpolymers for High Efficiency Halogen-Free Solvent Processed Polymer Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1279-1285.
[8] Chang HE,Jianhui HOU. Advances in Solution-Processed All-Small-Molecule Organic Solar Cells with Non-Fullerene Electron Acceptors[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1202-1210.
[9] Dan DENG,Erjun ZHOU,Zhixiang WEI. Fluorination: An Effective Molecular Design Strategy for Efficient Photovoltaic Materials[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1239-1249.
[10] Chunhe YANG,Aiwei TANG,Feng TENG,Kejian JIANG. Electrochemistry of Perovskite CH3NH3PbI3 Crystals[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1197-1201.
[11] Jianyong OUYANG. Recent Advances of Intrinsically Conductive Polymers[J]. Acta Phys. -Chim. Sin., 2018, 34(11): 1211-1220.
[12] Shichao ZHOU,Guitao FENG,Dongdong XIA,Cheng LI,Yonggang WU,Weiwei LI. Star-Shaped Electron Acceptor based on Naphthalenediimide-Porphyrin for Non-Fullerene Organic Solar Cells[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 344-347.
[13] Ke CHEN,Zhenhua SUN,Ruopian FANG,Feng LI,Huiming CHENG. Development of Graphene-based Materials for Lithium-Sulfur Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 377-390.
[14] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 361-376.
[15] Yanhuan CHEN,Jiaofu LI,Huibiao LIU. Preparation of Graphdiyne-Organic Conjugated Molecular Composite Materials for Lithium Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1074-1079.