Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 530-538    DOI: 10.3866/PKU.WHXB201611211
ARTICLE     
Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver
Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU*(),Zhong-Qun TIAN*()
Download: HTML     PDF(1329KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Surface-enhanced Raman spectroscopy (SERS) is one of the most powerful techniques for obtaining fingerprint information on molecules adsorbed on coinage metal surfaces. Its detection sensitivity has reached the single-molecule level. On the basis of density functional theoretical (DFT) calculations and Raman scattering theory, we investigated the normal Raman spectra of two isomers and surface-enhanced Raman scattering (SERS) spectra of 4-mercaptopyridine (4MPY) adsorbed on silver. The results aided us in uncovering the relationships between normal Raman spectra and SERS spectra and adsorption configuration, tautomerization, protonation, and hydrogen bonding interactions as well as low-lying excited states. First, we compared the relative stability and normal Raman spectra of two isomers of 4MPY in the gas phase and aqueous solution with a solvent model similar to the solvation model of density (SMD). We then studied the Raman spectra of 4MPY interacting with silver clusters. Our results indicate that the Raman spectra were not dependent on the size of the silver clusters, owing to the formation of strong Ag-S bonds. We also considered two cases of Nend interaction in the 4MPY-Ag5 complex. (1) For the hydrogen bond interaction between the nitrogen in 4MPY and water clusters or hydrated proton clusters, the theoretical results indicated that the vibrational frequencies of the pyridine ring increase. (2) For the interaction of the 4MPY-Ag5 complex with a silver cluster Ag4 through the lone-paired orbital in nitrogen of the pyridine ring, the theoretical results further revealed that the vibrational frequency shift is in good agreement with SERS peaks reported in the literature. Finally, our calculated results focused on the relationship between the Raman spectra and the charge transfer mechanism when the excitation photonic energy matches the transition energy of low-lying excited states in single-end and double-end adsorption configuration. Particularly for the case of the double-end adsorption configuration, the charge transfer states from the excitation from the silver cluster binding to the pyridine ring not only enhance the Raman signals of v12, v1, and v8a modes, but also selectively enhance the Raman signal of the v9a mode associated with the symmetric C-H in-plane bending vibration.



Key wordsSurface-enhanced Raman spectroscopy      Density functional theory      Charge transfer mechanism      4-Mercaptopyridine      Silver     
Received: 02 August 2016      Published: 21 November 2016
MSC2000:  O646  
Fund:  the National Natural Science Foundation of China(21273182);the National Natural Science Foundation of China(21533006);the National Natural Science Foundation of China(21373172)
Corresponding Authors: De-Yin WU,Zhong-Qun TIAN     E-mail: dywu@xmu.edu.cn;zqtian@xmu.edu.cn
Cite this article:

Yuan-Fei WU,Ming-Xue LI,Jian-Zhang ZHOU,De-Yin WU,Zhong-Qun TIAN. Density Functional Theoretical Study on SERS Chemical Enhancement Mechanism of 4-Mercaptopyridine Adsorbed on Silver. Acta Physico-Chimica Sinca, 2017, 33(3): 530-538.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611211     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/530

Fig 1 (A) Equilibrium of protonation, deprotonation, isomerization of 4MPY as well as (B) structure modelings of 4MPY-silver clusters of 4MPY adsorbed on silver nanostructures
Isomer Gas SMD
E/(kJ?mol-1) G/(kJ?mol-1) E/(kJ?mol-1) G/(kJ?mol-1)
PYSH 0.00 0.00 0.00 0.00
PYSNH 6.20 19.01 -31.19 -16.87
Table 1 Relative energies and relative Gibbs free energies calculated at the UB3LYP/6-311+G** level
Fig 2 Simulated Raman spectra in gas phase (weak curve) and the solvation model (strong curve) calculated at the B3LYP/6-311+G** level (A) PYSH, (B) PYSNH. The Raman bands are expanded by using the Lorentzian line shape with a line width of 10 cm-1 at the excitation wavelength 632.8 nm. color online
Fig 3 Optimized structures (A) and simulated Raman spectra (B) of dimer, tetramer, pentamer, and hexamer of PYSNH calculated at the B3LYP/6-311+G** level The Raman bands are expanded by using the Lorentzian line shape with a line width of 10 cm-1. color online
Fig 4 Simulated Raman spectra of PyS-Agn complexes calculated at the B3LYP/6-311+G**/LANL2DZ level (A) Ag3-S-PyN; (B) Ag5-S-PyN; (C) Ag7-S-PyN; (D) Ag9-S-PyN. The Raman intensity is estimated by differential Raman scattering cross section. It is expanded according to the Lorentzian line shape with the line width about 10 cm-1.
Fig 5 Simulated Raman spectra of complexes calculated at the B3LYP/6-311+G**/Lanl2DZ level (A) Ag5-SPYN-(H2O)8; (B) Ag5-SPYNH-(H2O)4. The excitation wavelength is 632.8 nm. The Raman intensity is estimated according to differential Raman scattering cross sections expanded in the Lorentzian line shape with the line width about 10 cm-1.
Fig 6 Simulated Raman spectra of Ag4-N-PyS-Ag5 calculated at the B3LYP/6-311+G**/Lanl2DZ level (A) gas phase; (B) SMD model. The excitation wavelength is 632.8 nm.
Fig 7 Frequency-dependent Raman spectra of 4MPY with a silver cluster in (A) a single-end configuration Py-S-Ag5 at 488.5 nm and (B) a two-end configuration Ag5-S-PYSN-N-Ag4 at 550.0 nm calculated by combining the B3LYP/6-311+G**/LANL2DZ method and Raman intensity theory The Raman spectra are drawn by using differential Raman scattering cross section according to the Lorentzian line shape with the line width about 10 cm-1.
1 Wilson E. B. ; Decius J. C. ; Cross P. C. Molecular Vibrations: The Theory of Infrared and Raman Vibrational Spectra New York: Dover, 1955.
2 Wang Z. J. ; Rothberg L. J. J.Phys. Chem. B 2005, 109, 3387.
3 Wu D. Y. ; Li J. F. ; Ren B. ; Tian Z. Q. Chem. Soc. Rev. 2008, 37, 1025.
4 Wu D. Y. ; Zhang M. ; Zhao L. B. ; Huang Y. F. ; Ren B. ; Tian Z. Q. Sci. China-Chem. 2015, 58, 574.
5 Wu D. Y. ; Liu X. M. ; Duan S. ; Xu X. ; Ren B. ; Lin S. H. ; Tian Z. Q. J.Phys. Chem. C 2008, 112, 4195.
6 Su S. ; Huang R. ; Zhao L. B. ; Wu D. Y. ; Tian Z. Q. Acta Phys.-Chim. Sin. 2011, 27, 781.
6 苏抒; 黄荣; 赵刘斌; 吴德印田中群. 物理化学学报, 2011, 27, 781.
7 Gui J. Y. ; Lu F. ; Stern D. A. ; Hubbard A. T. J.Electroanal.Chem. 1990, 292, 245.
8 Hu J.W. ; Zhao B. ; Xu W. Q. ; Li B. F. ; Fan Y. G. Spectrochimica Acta A 2002, 58, 2827.
9 Singh P. ; Deckert V. Chem. Commun. 2014, 50, 11204.
10 Latorre F. ; Kupfer S. ; Bocklitz T. ; Kinzel D. ; Trautmann S. ; Graefe S. ; Deckert V. Nanoscale 2016, 8, 10229.
11 Carron K. T. ; Hurley L. G. J.Phys. Chem. 1991, 95, 9979.
12 Bron M. ; Holze R. J.Solid State Electrochem. 2015, 19, 2673.
13 Shegai T. ; Vaskevich A. ; Rubinstein I. ; Haran G. J.Am.Chem. Soc. 2009, 131, 14390.
14 Chao Y.W. ; Zhou Q. ; Li Y. ; Yan Y. R. ; Wu Y. ; Zheng J.W. J. Phys. Chem. C 2007, 111, 16990.
15 Zheng X. S. ; Hu P. ; Zhong J. H. ; Zong C. ; Wang X. ; Liu B.J. ; Ren B. J.Phys. Chem. C 2014, 118, 3750.
16 Yu H. Z. ; Xia N. ; Liu Z. F. Anal. Chem. 1999, 71, 1354.
17 Wang Y. ; Yu Z. ; Ji W. ; Tanaka Y. ; Sui H. ; Zhao B. ; Ozaki Y. Angew. Chem.-Int. Edit. 2014, 53, 13866.
18 Respondek I. ; Benoit D. M. J.Chem. Phys. 2009, 131, 054109.
19 Sun L. ; Bai F. Q. ; Zhang H. X. Acta Phys.-Chim. Sin. 2011, 27, 1335.
19 孙磊; 白福全张红星. 物理化学学报, 2011, 27, 1335.
20 Birke R. L. ; Lombardi J. R. J.Optics 2015, 17, 114004.
21 Liu L. ; Chen D. ; Ma H. ; Liang W. J.Phys. Chem. C 2015, 119, 27609.
22 Iida K. ; Noda M. ; Nobusada K. J.Chem. Phys. 2014, 141, 124124.
23 Wu D. Y. ; Liu X. M. ; Huang Y. F. ; Ren B. ; Xu X. ; Tian Z. Q. J. Phys. Chem. C 2009, 113, 18212.
24 Jung H. S. ; Kim K. ; Kim M. S. J.Mol. Struct. 1997, 407, 139.
25 Guo H. ; Ding L. ; Mo Y. J. J.Mol. Struct. 2011, 991, 103.
26 Zhang L. ; Bai Y. ; Shang Z. G. ; Zhang Y. K. ; Mo Y. J. J. Raman Spectrosc. 2007, 38, 1106.
27 Etter M. C. ; Macdonald J. C. ; Wanke R. A. J.Phys. Org.Chem. 1992, 5, 191.
28 Flakus H. T. ; Tyl A. ; Jones P. G. Spectroc. Acta Pt. A-Molec.Biomolec. Spectr. 2002, 58, 299.
29 Muthu S. ; Vittal J. J. Cryst. Growth Des. 2004, 4, 1181.
30 Baldwin J. ; Schuhler N. ; Butler I. S. ; Andrews M. P. Langmuir 1996, 12, 6389.
31 Baldwin J. A. ; Vlckova B. ; Andrews M. P. ; Butler I. S. Langmuir 1997, 13, 3744.
32 Schlucker S. ; Singh R. K. ; Asthana B. P. ; Popp J. ; Kiefer W. J. Phys. Chem. A 2001, 105, 9983.
33 Wu D. Y. ; Ren B. ; Jiang Y. X. ; Xu X. ; Tian Z. Q. J.Phys.Chem. A 2002, 106, 9042.
34 Wu D. Y. ; Hayashi M. ; Shiu Y. J. ; Liang K. K. ; Chang C. H. ; Yeh Y. L. ; Lin S. H. J.Phys. Chem. A 2003, 107, 9658.
[1] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[2] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[4] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[5] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[6] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[7] Xiu-Xiu WANG,Jian-Wei ZHAO,Gang YU. Combined Effects of the Hole and Twin Boundary on the Deformation of Ag Nanowires: a Molecular Dynamics Simulation Study[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1773-1780.
[8] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[9] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[10] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[11] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[12] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.
[13] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[14] Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst[J]. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.
[15] WANG Wei, TAN Kai. Structure and Electronic Properties of Single Walled Nanotubes from AlAs(111) Sheets: A DFT Study[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 548-553.