Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (3): 602-610    DOI: 10.3866/PKU.WHXB201611251
ARTICLE     
Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene
Xiao-Ping GAO1,2,Zhang-Long GUO1,2,Ya-Nan ZHOU1,2,Fang-Li JING1,Wei CHU1,2,*()
1 School of Chemical Engineering, Sichuan University, Chengdu 610065, P. R. China
2 Institute of New Energy and Low-Carbon Technology, Sichuan University, Chengdu 610207, P. R. China
Download: HTML     PDF(2238KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

Anatase TiO2 nanospindles containing 89% exposed {101} facets (TiO2-101) and nanosheets with 77% exposed {001} facets (TiO2-001) were hydrothermally synthesized and used as supports for Pd catalysts. The effects of the TiO2 materials on the catalytic performance of Pd/TiO2-101 and Pd/TiO2-001 catalysts were investigated in the selective hydrogenation of acetylene to polymer-grade ethylene. The Pd/TiO2-101 catalyst exhibited enhanced performance in terms of acetylene conversion and ethylene yield. To understand these effects, the catalysts were characterized by H2 temperature-programmed desorption (H2-TPD), H2 temperatureprogrammed reduction (H2-TPR), transmission electron microscopy (TEM), pulse CO chemisorption, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The TEM and CO chemisorption results confirmed that Pd nanoparticles (NPs) on the TiO2-101 support had a smaller average particle size (1.53 nm) and a higher dispersion (15.95%) than those on the TiO2-001 support (average particle size of 4.36 nm and dispersion of 9.06%). The smaller particle size and higher dispersion of Pd on the Pd/TiO2-101 catalyst provided more reaction active sites, which contributed to the improved catalytic activity of this supported catalyst.



Key wordsPd/TiO2 catalyst      Acetylene selective hydrogenation      Anatase TiO2      {101}plane      Structure characterization     
Received: 26 August 2016      Published: 25 November 2016
MSC2000:  O643  
Fund:  the National Natural Science Foundation of China(21476145)
Corresponding Authors: Wei CHU     E-mail: chuwei1965@scu.edu.cn
Cite this article:

Xiao-Ping GAO,Zhang-Long GUO,Ya-Nan ZHOU,Fang-Li JING,Wei CHU. Catalytic Performance and Characterization of Anatase TiO2 Supported Pd Catalysts for the Selective Hydrogenation of Acetylene. Acta Phys. -Chim. Sin., 2017, 33(3): 602-610.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611251     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/602

 
 
 
 
Sample Pd loadinga/% Surface areab/(m2?g-1) Particle sizec/nm Pd dispersiond/% Surface atomic compositione/%
Pd Ti Pd/Ti
Pd/TiO2-001 0.56 51 4.36 9.06 0.72 28.64 0.025
Pd/TiO2-101 0.57 89 1.53 15.95 0.48 26.91 0.018
 
 
 
 
 
 
1 Kuhn M. ; Lucas M. ; Claus P. Ind. Eng. Chem. Res. 2015, 54, 6683.
2 Studt F. ; Abild-Pedersen F. ; Bligaard T. ; S?rensen R. Z. ; Christensen C. H. ; N?rskov J. K. Science 2008, 320, 1320.
3 Kim S. K. ; Kim C. ; Lee J. H. ; Kim J. ; Lee H. ; Moon S. H. J. Catal. 2013, 306, 146.
4 Crespo-Quesada M. ; Yarulin A. ; Jin M. ; Xia Y. ; Kiwi-Minsker L. J. Am. Chem. Soc. 2011, 133, 12787.
5 Hong J. ; Chu W. ; Chen M. ; Wang X. ; Zhang T. Catal.Commun. 2007, 8, 593.
6 Kim W. J. ; Moon S. H. Catal. Today 2012, 185, 2.
7 Pei G. X. ; L iu ; X. Y. ; Wang A. ; Lee A. F. ; Isaacs M. A. ; Li L. ; Pan X. ; Yang X. ; Wang X. ; Tai Z. ; Wilson K. ; Zhang T. ACS Catal. 2015, 5, 3717.
8 Lee J. H. ; Kim S. K. ; Ahn I. Y. ; Kim W. J. ; Moon S. H. Catal. Commun. 2011, 12, 1251.
9 Wang Z. Q. ; Zhou Z. M. ; Zhang R. ; Li L. ; Cheng Z. M. Acta Phys.-Chim. Sin. 2014, 30, 2315.
9 王沾祺; 周志明; 张锐; 李莉; 程振民. 物理化学学报, 2014, 30, 2315.
10 Gu H. ; Xu B. L. ; Zhou J. ; Li Y. Z. ; Fan Y. N. Acta Phys.-Chim. Sin. 2006, 22, 712.
10 顾虹; 许波连; 周静; 李远志; 范以宁. 物理化学学报, 2006, 22, 712.
11 Guo Z. L. ; Huang L. Q. ; Chu W. ; Luo S. Z. Acta Phys.-Chim.Sin. 2014, 30, 723.
11 郭章龙; 黄丽琼; 储伟; 罗仕忠. 物理化学学报, 2014, 30, 723.
12 Kontapakdee K. ; Panpranot J. ; Praserthdam P. Catal.Commun. 2007, 8, 2166.
13 He Y. ; Liang L. ; Liu Y. ; Feng J. ; Ma C. ; Li D. J. Catal. 2014, 309, 166.
14 Osswald J. ; Giedigkeit R. ; Jentoft R. ; Armbruster M. ; Girgsdies F. ; Kovnir K. ; Ressler T. ; Grin Y. ; Schlogl R. J. Catal. 2008, 258, 210.
15 Neumann M. ; Teschner D. ; Knop-Gericke A. ; Reschetilowski W. ; Armbrüster M. J. Catal. 2016, 340, 49.
16 Gao Z. ; Zhang Y. ; Li D. ; Werth C. J. ; Zhang Y. ; Zhou X. J. Hazard. Mater. 2015, 286, 425.
17 Teschner D. ; Borsodi J. ; Wootsch A. ; Révay Z. ; H?vecker M. ; Knop-Gericke A. ; Jackson S. D. ; Schl?gl R. Science 2008, 320, 86.
18 Chen M. H. ; Chu W. ; Dai X. Y. ; Zhang X. W. Catal. Today 2004, 89, 201.
19 Li Y. ; Jang B.W. L. Appl. Catal. A 2011, 392, 173.
20 Chu W. ; Xu J. ; Hong J. ; Lin T. ; Khodakov A. Catal. Today 2015, 256, 41.
21 Panpranot J. ; Nakkararuang L. ; Ngamsom B. ; Praserthdam P. Catal. Lett. 2005, 103, 53.
22 Panpranot J. ; Kontapakdee K. ; Praserthdam P. Appl. Catal. A 2006, 314, 128.
23 Wang N. ; Qian W. ; Chu W. ; Wei F. Catal. Sci. Technol. 2016, 6, 3594.
24 Si R. ; Flytzani-Stephanopoulos M. Angew. Chem. Int. Ed. 2008, 47, 2884.
25 Liu L. ; Yao Z. ; Deng Y. ; Gao F. ; Liu B. ; Dong L. ChemCatChem 2011, 3, 978.
26 Wang F. ; Zhang S. ; Li C. ; Liu J. ; He S. ; Zhao Y. ; Yan H. ; Wei M. ; Evans D. G. ; Duan X. RSC Adv. 2014, 4, 10834.
27 Shi Q. ; Li Y. ; Zhou Y. ; Miao S. ; Ta N. ; Zhan E. ; Liu J. ; Shen W. J. Mater. Chem. A 2015, 3, 14409.
28 Liu L. ; Gu X. ; Cao Y. ; Yao X. ; Zhang L. ; Tang C. ; Gao F. ; Dong L. ACS Catal. 2013, 3, 2768.
29 Yang J. ; Cao L. X. ; Wang G. C. J. Mol. Model. 2012, 18, 3329.
30 Han X. ; Kuang Q. ; Jin M. ; Xie Z. ; Zheng L. J. Am. Chem.Soc. 2009, 131, 3152.
31 He Y. ; Fan J. ; Feng J. ; Luo C. ; Yang P. ; Li D. J. Catal. 2015, 331, 118.
32 Tan Z. ; Sato K. ; Takami S. ; Numako C. ; Umetsu M. ; Soga K. ; Nakayama M. ; Sasaki R. ; Tanaka T. ; Ogino C. ; Kondo A. ; Yamamoto K. ; Hashishin T. ; Ohara S. RSC Adv. 2013, 3, 19268.
33 Zheng J. ; Liu Z. ; Liu X. ; Yan X. ; Li D. ; Chu W. J. Alloy.Compd. 2011, 509, 3771.
34 Tian F. ; Zhang Y. ; Zhang J. ; Pan C. J. Phys. Chem. C 2012, 116, 7515.
35 Komhom S. ; Mekasuwandumrong O. ; Praserthdam P. ; Panpranot J. Catal. Commun. 2008, 10, 86.
36 Sárkány A. ; Schay Z. ; Frey K. ; Széles é. ; Sajó I. Appl. Catal.A 2010, 380, 133.
37 Menezes W. G. ; Altmann L. ; Zielasek V. ; Thiel K. ; B?umer M. J. Catal. 2013, 300, 125.
38 Vincent M. J. ; Gonzalez R. D. Appl. Catal. A 2001, 217, 143.
39 Wang N. ; Xu Z. ; Deng J. ; Shen K. ; Yu X. ; Qian W. ; Chu W. ; Wei F. ChemCatChem 2014, 6, 1470.
40 Douidah A. ; Marécot P. ; Szabo S. ; Barbier J. Appl. Catal. A 2002, 225, 21.
41 Dole H. A. E. ; Safady L. F. ; Ntais S. ; Couillard M. ; Baranova E. A. J. Catal. 2014, 318, 85.
42 Panagiotopoulou P. ; Kondarides D. I. J. Catal. 2009, 267, 57.
43 Yu W. Y. ; Mullen G. M. ; Mullins C. B. J. Phys. Chem. C 2013, 117, 19535.
44 Huang L. ; Chu W. ; Zhang T. ; Yin Y. ; Tao X. J. Nat. Gas Chem. 2009, 18, 35.
45 Han X. ; Chu W. ; Ni P. ; Luo S. Z. ; Zhang T. J. Fuel Chem.Technol. 2007, 35, 691.
46 Ikeda S. ; Sugiyama N. ; Murakami S. Y. ; Kominami H. ; Kera Y. ; Noguchi H. ; Uosaki K. ; Torimoto T. ; Ohtani B. Phys.Chem. Chem. Phys. 2003, 5, 778.
47 Nakaoka Y. ; Nosaka Y. J. Photochem. Photobiol. A 1997, 110, 299.
48 Salama T. M. ; Hattori H. ; Kita H. ; Ebitani K. ; Tanaka T. J. Chem. Soc. Faraday Trans. 1993, 89, 2067.
49 McCue A. J. ; McKenna F. M. ; Anderson J. A. Catal. Sci.Technol. 2015, 5, 2449.
50 Riyapan S. ; Boonyongmaneerat Y. ; Mekasuwandumrong O. ; Praserthdam P. ; Panpranot J. Catal. Today 2015, 245, 134.
51 Neyertz C. ; Volpe M. Colloids Surf. A 1998, 136, 63.
52 Ziemecki S. B. ; Michel J. B. ; Jones G. A. Reac. Solids 1986, 2, 187.
53 Gómez-Quero S. ; Cárdenas-Lizana F. ; Keane M. A. Ind. Eng.Chem. Res. 2008, 47, 6841.
54 Aytam H. P. ; Akula V. ; Janmanchi K. ; Kamaraju S. R. R. ; Panja K. R. ; Gurram K. ; Niemantsverdriet J. W. J. Phys.Chem. B 2002, 106, 1024.
55 Panpranot J. ; Kontapakdee K. ; Praserthdam P. J. Phys. Chem.B 2006, 110, 8019.
56 Xu J. ; Sun K. ; Zhang L. ; Ren Y. ; Xu X. Catal. Commun. 2005, 6, 462.
57 Liu Y. N. ; Feng J. T. ; He Y. F. ; Sun J. H. ; Li D. Q. Catal. Sci.Technol. 2015, 5, 1231.
58 Kim E. ; Shin E.W. ; Bark C.W. ; Chang I. ; Yoon W. J. ; Kim W. J. Appl. Catal. A 2014, 471, 80.
59 Zhang S. ; Chen C. Y. ; Jang B.W. L. ; Zhu A. M. Catal. Today 2015, 256, 161.
60 Pachulski A. ; Sch?del R. ; Claus P. Appl. Catal. A 2011, 400, 14.
61 Lopez E. ; Ordonez S. ; Diez F. V. Appl. Catal. B 2006, 62, 57.
62 Azizi Y. ; Petit C. ; Pitchon V. J. Catal. 2008, 256, 338.
[1] Xiuli LU,Yingying HAN,Tongbu LU. Structure Characterization and Application of Graphdiyne in Photocatalytic and Electrocatalytic Reactions[J]. Acta Phys. -Chim. Sin., 2018, 34(9): 1014-1028.
[2] Jin-Xiao ZHU,Xiao-Dong LIU,Min-Zhao XUE,Chang-Xin CHEN. Phosphorene: Synthesis, Structure, Properties and Device Applications[J]. Acta Phys. -Chim. Sin., 2017, 33(11): 2153-2172.
[3] TANG Peng, XIAO Jian-Jian, ZHENG Chao, WANG Shi, CHEN Run-Feng. Graphene-Like Molybdenum Disulfide and Its Application in Optoelectronic Devices[J]. Acta Phys. -Chim. Sin., 2013, 29(04): 667-677.
[4] YUN Hong, LIN Chang-Jian, DU Rong-Gui. Anticorrosion Properties of Nano Anatase TiO2 Films Derived from Sol-Gel and Hydrothermal Crystallization[J]. Acta Phys. -Chim. Sin., 2011, 27(05): 1122-1127.
[5] GE Ai-ying; XU Bing-she; WANG Xiao-min; LI Tian-bao; HAN Peide; LIU Xu-guang. Study on Electromagnetic Property of Nano Onion-like Fullerenes[J]. Acta Phys. -Chim. Sin., 2006, 22(02): 203-208.
[6] Zhang Xiao-Xin, Ma Ai-Zeng, Mu Xu-Hong, Min En-Ze, Huang Xiao-Xi, Wang Rong. Structure Characterization of the Supported Amorphous Ni-B/SiO2 Catalysts[J]. Acta Phys. -Chim. Sin., 2000, 16(02): 180-183.
[7] Ji Shi-Shan, Weng Duan, Tan Rui-Qin, Zhang Zhi-Qiang, Cao Li-Li. Studies of SO2 Poisoning Mechanism on La-Ce-Cu Catalysts[J]. Acta Phys. -Chim. Sin., 1998, 14(06): 527-533.
[8] Bian Guo-Zhu; Jiang Ming; Fu Yi-Lu; Ji Ming-Rong. Chemical States and Composition of the Surface Species of K-MoO3/γ-Al2O3 Catalysts[J]. Acta Phys. -Chim. Sin., 1993, 9(05): 650-656.