Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 539-547    DOI: 10.3866/PKU.WHXB201611252
ARTICLE     
Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals
1 Institute of Theoretical and Computational Chemistry, College of Chemistry and Molecular Engineering, Beijing National Laboratory of Molecular Sciences, Peking University, Beijing 100871, P. R. China
2 Biodynamic Optical Center, Peking University, Beijing 100871, P. R. China
Download: HTML     PDF(5256KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

In this study, a coarse-grained lattice Monte Carlo model was used to investigate the formation of Sierpiński triangle (ST) fractals through self-assembly on a triangular lattice surface. In the simulations, both symmetric and asymmetric molecular building blocks can spontaneously form ST fractal patterns, although the mixture of enantiomers of asymmetric molecule is more difficult to self-organize into ST of a high order owing to the presence of a large variety of competing three-membered nodes. The formation of ST fractals is favored at low surface coverage and is sensitive to temperature. Furthermore, to test whether the assembly pathway and outcome could be controlled by molecular design, we guided the self-assembly process forming ST fractal into the otherwise disfavored self-assembled structures using templates different from the assembling molecules. The templates are designed to act as"catassemblers"that initiate the self-assembling but are excluded from the final assembled structure.



Key wordsSelf-assembly      Monte carlo simulation      Fractal      Sierpiń      ski triangle      Catassembly     
Received: 07 September 2016      Published: 25 November 2016
MSC2000:  O647  
Fund:  the National Natural Science Foundation of China(91427304);the National Natural Science Foundation of China(21573006);the National Natural Science Foundation of China(U1430237);the National Natural Science Foundation of China(21233002);the National Natural Science Foundation of China(21125311);National Key Basic Research Program of China (973)(2012CB917304)
Cite this article:

. Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals. Acta Physico-Chimica Sinca, 2017, 33(3): 539-547.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611252     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/539

 
 
 
 
 
 
 
 
1 Stepanow S. ; Lingenfelder M. ; Dmitriev A. ; Spillmann H. ; Delvigne E. ; Lin N. ; Deng X. ; Cai C. ; Barth J. V. ; Kern K. Nat. Mater. 2004, 3, 229.
2 Zhang R. ; Wang L. C. ; Li M. ; Zhang X. M. ; Li Y. B. ; Shen Y. T. ; Zheng Q. Y. ; Zeng Q. D. ; Wang C. Nanoscale 2001, 3, 3755.
3 Ivasenko O. ; MacLeod J. M. ; Chernichenko K. Y. ; Balenkova E. S. ; Shpanchenko R. V. ; Nenajdenko V. G. ; Rosei F. ; Perepichka D. F. Chem. Commun. 2009, 1192.
4 Theobald J. A. ; Oxtoby N. S. ; Phillips M. A. ; Champness N.R. ; Beton P. H. Nature 2003, 424, 1029.
5 Kudernac T. ; Lei S. ; Elemans J. A. A.W. ; De Feyter S. Chem.Soc. Rev. 2009, 38, 402.
6 Furukawa S. ; Uji-i H. ; Tahara K. ; Ichikawa T. ; Sonoda M. ; De Schryver F. C. ; Tobe Y. ; De Feyter S. J.Am. Chem. Soc. 2006, 128, 3502.
7 De Feyter S. ; De Schryver F. C. Chem. Soc. Rev. 2003, 32, 139.
8 Lei S. ; Tahara K. ; Müllen K. ; Szabelski P. ; Tobe Y. ; DeFeyter S. ACS Nano 2011, 5, 4145.
9 Ernst K. H. Top. Curr. Chem. 2006, 265, 209.
10 Blunt M. O. ; Russell J. C. ; Giménez-López M. D. C. ; Garrahan J. P. ; Lin X. ; Schr?der M. ; Champness N. R. ; Beton P. H. Science 2008, 322, 1077.
11 Tahara K. ; Furukawa S. ; Uji-i H. ; Uchino T. ; Ichikawa T. ; Zhang J. ; Mamdouh W. ; Sonoda M. ; De Schryver F. C. ; DeFeyter S. ; Tobe Y. J.Am. Chem. Soc. 2006, 128, 16613.
12 Mandelbrot, B. B. The Fractal Grometry of Nature; W. H.Freeman and Company:San Francisco, 1982.
13 Newkome G. R. ; Wang P. ; Moorefield C. N. ; Cho T. J. ; Mohapatra P. P. ; Li S. ; Hwang S. H. ; Lukoyanova O. ; Echegoyen L. ; Palagallo J. A. ; Iancu V. ; Hla S.W. Science 2006, 312, 1782.
14 Wang M. ; Wang C. ; Hao X. Q. ; Liu J. ; Li X. ; Xu C. ; Lopez A. ; Sun L. ; Song M. P. ; Yang H. B. ; Li X. J.Am. Chem. Soc. 2014, 136, 6664.
15 Sun Q. ; Cai L. ; Ma H. ; Yuan C. ; Xu W. Chem. Commun. 2015, 51, 14164.
16 Shang J. ; Wang Y. ; Chen M. ; Dai J. ; Zhou X. ; Kuttner J. ; Hilt G. ; Shao X. ; Gottfried J. M. ; Wu K. Nat. Chem. 2015, 7, 389.
17 Nieckarz D. ; Szabelski P. J.Phys. Chem. C 2013, 117, 11229.
18 Nieckarz D. ; Szabelski P. Chem. Commun. 2014, 50, 6843.
19 Zhang X. ; Li N. ; Gu G. C. ; Wang H. ; Nieckarz D. ; Szabelski P. ; He Y. ; Wang Y. ; Xie C. ; Shen Z. Y. ; Lü J. T. ; Tang H. ; Peng L. M. ; Hou S. M. ; Wu K. ; Wang Y. F. ACS Nano 2015, 9, 11909.
20 Wang Y. ; Lin H. X. ; Chen L. ; Ding S. Y. ; Lei Z. C. ; Liu D.Y. ; Cao X. Y. ; Liang H. J. ; Jiang Y. B. ; Tian Z. Q. Chem. Soc.Rev. 2014, 43, 399.
21 Wang Y. ; Lin H. X. ; Ding S. Y. ; Liu D. Y. ; Chen L. ; Lei Z.C. ; Fan F. R. ; Tian Z. Q. Sci. Sin. Chim. 2012, 42, 525.
21 王宇; 林海昕; 丁松园; 刘德宇; 陈亮; 雷志超; 范凤茹田中群. 中国科学:化学, 2012, 42, 525.
22 Lu Y. ; Zou J. ; Wang H. ; Yu Q. ; Zhang H. ; Jiang Y. J.Phys.Chem. A 2005, 109, 11956.
23 Cavallo G. ; Metrangolo P. ; Milani R. ; Pilati T. ; Priimagi A. ; Resnati G. ; Terraneo G. Chem. Rev. 2016, 116, 2478.
24 Walch H. ; Gutzler R. ; Sirtl T. ; Eder G. ; Lackinger M. T. J. Phys. Chem. C 2010, 114, 12604.
25 Chung K. H. ; Park J. ; Kim K. Y. ; Yoon J. K. ; Kim H. ; Han S. ; Kahng S. J.Chem. Commun. 2011, 47, 11492.
26 Desiraju G. R. ; Parthasarathy R. J.Am. Chem. Soc. 1989, 111, 8725.
27 Pedireddi V. R. ; Reddy D. S. ; Goud B. S. ; Craig D. C. ; Rae A. D. ; Desiraju G. R. J.Chem. Soc. Perkin Trans. 1994, 2, 2353.
28 Frenkel D. ; Smit B. Understanding Molecular Simulation From Algorithm to Applications London: Academic Press, 2002.
29 VandeVondele J. ; Krack M. ; Mohamed F. ; Parrinello M. ; Chassaing T. ; Hutter J. Comp. Phys. Comm. 2005, 167, 103.
30 Ferrario M. ; Ciccotti G. ; Binder K. Computer Simulations in Condensed Matter Systems:From Materials to Chemical Biology Berlin Heidelberg: Springer, 2006, Vol. 1, pp 287- 314.
31 Perdew J. P. ; Burke K. ; Ernzerhof M. Phys. Rev. Lett. 1996, 77, 3865.
32 VandeVondele J. ; Hutter J. J.Chem. Phys. 2007, 127, 114105.
[1] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1520-1532.
[2] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[3] YANG Hai-Kuan. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 582-589.
[4] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2255-2263.
[5] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2826-2840.
[6] HAOWei-Ju, ZHANG Jun-Qi, SHANG Ya-Zhuo, XU Shou-Hong, LIU Hong-Lai. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2628-2635.
[7] YE Juan, SUN Kai, TAO Min-Long, TU Yu-Bing, XIE Zheng-Bo, WANG Ya-Li, HAO Shao-Jie, XIAO Hua-Fang, WANG Jun-Zhong. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2593-2598.
[8] WANG Xiu-Feng, ZHANG Li, LIU Ming-Hua. Supramolecular Gels: Structural Diversity and Supramolecular Chirality[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 227-238.
[9] GU Gao-Chen, LI Na, ZHANG Xue, HOU Shi-Min, WANG Yong-Feng, WU Kai. Sierpiński Triangle Fractal Structures Investigated by STM[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 195-200.
[10] WANG Hui-Yong, LI Hong-Pei, CUI Guo-Kai, LI Zhi-Yong, WANG Jian-Ji. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 249-260.
[11] WANG Ji-Qian, SUN Ying-Jie, DAI Jing-Ru, ZHAO Yu-Rong, CAO Mei-Wen, WANG Dong, XU Hai. Effects of Alkyl Chain Length and Peptide Charge Distribution on Self-Assembly and Hydrogelation of Lipopeptide Amphiphiles[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1365-1373.
[12] LIANG Ju, LAI Dan-Yu, WU Wen-Lan, LI Guo-Zhi, LI Jun-Bo, FANG Cai-Lin. Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 722-728.
[13] DENG Yong-Hong, LIU You-Fa, ZHANG Wei-Jian, QIU Xue-Qing. Formation of Colloidal Spheres from a Lignin-Based Azo Polymer[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 505-511.
[14] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1650-1658.
[15] HE You-Zhou, LIU Yun, LIU Peng, FENG Wen, YUAN Li-Hua. Self-Assembly of Vesicles from Oligoaramide Based on Multiple Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1501-1508.