Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 582-589    DOI: 10.3866/PKU.WHXB201611292
ARTICLE     
A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials
Hai-Kuan YANG*()
Download: HTML     PDF(2012KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A hybrid molecule having a molecular structure of cholesterol-polyoxometalate-cholesterol, was created by covalently connecting two cholesterol molecules onto the two sides of an organically modified Anderson-type polyoxometalate (POM). This hybrid molecule could self-assemble into highly ordered hexagonally packed cylinders in a bulk sample. The POM cluster of the hybrid molecule dissolved well in N, N-dimethylformamide (DMF) solvent and cholesterol moieties had appropriate solubility in toluene. In mixed DMF/toluene solvents, the hybrid molecule self-assembled into fibril-shaped aggregates. These aggregates further twisted around each other to form the three-dimensional network structures. These formations were attributed to the solubility difference between the POM cluster and cholesterol moieties, van der Waals interactions among the cholesterol moieties, and electrostatic interactions among the POM clusters. Within the fibrous structure, the POM cluster and cholesterol moieties in the hybrid molecule assembled into a well-organized structure with alternatively arranged POM layer and cholesterol layer. The results described herein has potential application value toward design, assembly, and application of nanomaterials.



Key wordsMaterial design      Hybrid molecule      Polyoxometalates      Self-assembly      Fibrous structure     
Received: 20 October 2016      Published: 29 November 2016
MSC2000:  O645  
Fund:  The project was supported by the Natural Science Foundation of North University of China(XJJ2016015)
Corresponding Authors: Hai-Kuan YANG     E-mail: haikuanyang@nuc.edu.cn
Cite this article:

Hai-Kuan YANG. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials. Acta Physico-Chimica Sinca, 2017, 33(3): 582-589.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611292     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/582

Fig 1 Hybrid molecule of cholesterol-polyoxometalate-cholesterol structure
Fig 2 Powder X-ray diffration (XRD) pattern (a) and small-angle X-ray scattering (SAXS) diffractogram (b) ofthe hybrid molecule
Fig 3 Transmission electron microscopy (TEM) images (a, b) and energy-dispersive X-ray spectroscopy (EDX) analysis (c)of the supramolecular structures formed by hybrid in mixed DMF/toluene solvents
Fig 4 Atomic force microscopy (AFM) characterization and analyses of the supramolecular structures formed byhybrid in mixed DMF/toluene solvents (c) vertical distance: (1) 3.393 nm; (2) 3.329 nm
Fig 5 XRD pattern of the dried sample of hybrid inmixed DMF/toluene solvents and a molecularpacking mode within monolayer fibril
Fig 6 Formation of supramolecular structures and packing models formed by hybrid in the bulk sample andmixed DMF/toluene solvents
1 Ariga K. ; Li J. B. ; Fei J. B. ; Ji Q. M. ; Hill J. P. Adv. Mater. 2016, 6, 1251.
2 Walther A. ; Müller A. H. E. Chem. Rev. 2013, 113, 5194.
3 Grzelczak M. ; Vermant J. ; Furst E. M. ; Liz-Marzán L. M. ACS Nano 2010, 4, 3591.
4 Busseron E. ; Ruff Y. ; Moulina E. ; Giuseppone N. Nanoscale 2013, 5, 7098.
5 Iijima T. ; Vignon S. A. ; Tseng H. R. ; Jarrosson T. ; Sanders J.K. M. ; Marchioni F. ; Venturi M. ; Apostoli E. ; Balzani V. ; Stoddart J. F. Chem. Eur. J. 2004, 24, 6375.
6 Wu T. ; Zhang X. Chem. J. Chin. Univ. 2001, 22, 1057.
6 吴涛; 张希. 高等学校化学学报, 2001, 22, 1057.
7 Li S. L. ; Xiao T. X. ; Lin C. ; Wang L. Y. Chem. Soc. Rev. 2012, 41, 5950.
8 Yin X. M. ; Li C. C. ; Zhang M. ; Hao Q. Y. ; Liu S. ; Chen L.B. ; Wang T. H. J. Phys. Chem. C 2010, 114, 8084.
9 Fang Y. X. ; Guo S. J. ; Zhu C. Z. ; Zhai Y. M. ; Wang E. Langmuir 2010, 26, 11277.
10 He Q. J. ; Gao Y. ; Zhang L. X. ; Zhang Z. W. ; Gao F. ; Ji X. F. ; Li Y. P. ; Shi J. L. Biomaterials 2011, 30, 7711.
11 Huang Y. ; Huang X. L. ; Lian J. S. ; Xu D. ; Wang L. M. ; Zhang X. B. J. Mater. Chem. 2012, 22, 2844.
12 Wang S. S. ; Yang G. Y. Chem. Rev. 2015, 115, 4893.
13 Long D. L. ; Burkholder E. ; Cronin L. Chem. Soc. Rev. 2007, 36, 105.
14 Dolbecq A. ; Dumas E. ; Mayer C. R. ; Mialane P. Chem. Rev. 2010, 110, 6009.
15 López X. ; Carbó J.J. ; Bo C. ; Poblet J. M. Chem. Soc. Rev. 2012, 41, 7537.
16 Khenkin A. M. ; Efremenko I. ; Weiner L. ; Martin J. M. L. ; Neumann R. Chem. Eur. J. 2010, 4, 1356.
17 Song Y. F. ; McMillan N. ; Long D. L. ; Thiel J. ; Ding Y. L. ; Chen H. S. ; Gadegaard N. ; Cronin L. Chem. Eur. J. 2008, 14, 2349.
18 Yan Y. ; Wang H. B. ; Li B. ; Hou G. F. ; Yin Z. D. ; Wu L. X. ; Yam V. W. W. Angew. Chem. Int. Ed. 2010, 49, 9233.
19 Allain C. ; Schaming D. ; Karakostas N. ; Erard M. ; Gisselbrecht J. P. ; Sorgues S. ; Lampre I. ; Ruhlmann L. ; Hasenknopf B. Dalton Trans. 2013, 42, 2745.
20 Schulz J. ; Gyepes R. ; Císa?ová I. ; ?těpni?ka P. New J. Chem. 2010, 34, 2749.
21 Yan Y. ; Li B. ; He Q. Y. ; He Z. F. ; Ai H. ; Wang H. B. ; Yin Z.D. ; Wu L. X. Soft Matter 2012, 8, 1593.
22 He Z. F. ; Li B. ; Ai H. ; Li H. L. ; Wu L. X. Chem. Commun. 2013, 49, 8039.
23 Tong U. S. ; Chen W. ; Ritchie C. ; Wang X. T. ; Song Y. F. Chem. Eur. J. 2014, 20, 1500.
24 Yang H. K. ; Su M. M. ; Ren L. J. ; Zheng P. ; Wang W. RSCAdv. 2014, 4, 1138.
25 Su M. M. ; Yang H. K. ; Ren L. J. ; Zheng P. ; Wang W. SoftMatter 2015, 11, 741.
26 Hasenknopf B. ; Delmont R. ; Herson P. ; Gouzerh P. Eur. J.Inorg. Chem. 2002, 1081
27 Marcoux P. R. ; Hasenknopf B. ; Vaissermann J. ; Gouzerh P. Eur. J. Inorg. Chem. 2003, 2406
28 Nordhei C. ; Mathisen K. ; Safonova O. ; van Beek W. ; Nicholson D. G. J. Phys. Chem. C 2009, 113, 19568.
29 Yui H. ; Minamikawa H. ; Danev R. ; Nagayama K. ; Kamiya S. ; Shimizu T. Langmuir 2008, 24, 709.
30 Lin X. K. ; Wang Y. L. ; Wu L. X. Langmuir 2009, 25, 6081.
31 Wang Y. L. ; Wang X. L. ; Zhang X. J. ; Xia N. ; Liu B. ; Yang J. ; Yu W. ; Hu M. B. ; Yang M. ; Wang W. Chem. Eur. J. 2010, 16, 12545.
32 Yue L. ; Ai H. ; Yang Y. ; Lu W. J. ; Wu L. X. Chem. Commun. 2013, 49, 9770.
33 Fang X. ; Hill C. L. Angew. Chem. 2007, 119, 3951.
34 Bourlinos A. B. ; Raman K. ; Herrera R. ; Zhang Q. ; Archer L.A. ; Giannelis E. P. J. Am. Chem. Soc. 2004, 126, 15358.
35 Xue M. ; Liu K. Q. ; Peng J. X. ; Zhang Q. H. ; Fang Y.J. Colloid Interface Sci. 2008, 327, 94.
[1] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1520-1532.
[2] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1010-1016.
[3] . Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Physico-Chimica Sinca, 2017, 33(3): 539-547.
[4] WANG Yun-He, QIN Yuan, YAO Man, WANG Xu-Dong, LI Shu-Ying, WANG Dong, CHEN Ting. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2016, 32(9): 2255-2263.
[5] LIU Dan, HU Yan-Yan, ZENG Chao, QU De-Yu. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Physico-Chimica Sinca, 2016, 32(12): 2826-2840.
[6] YE Juan, SUN Kai, TAO Min-Long, TU Yu-Bing, XIE Zheng-Bo, WANG Ya-Li, HAO Shao-Jie, XIAO Hua-Fang, WANG Jun-Zhong. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2593-2598.
[7] HAOWei-Ju, ZHANG Jun-Qi, SHANG Ya-Zhuo, XU Shou-Hong, LIU Hong-Lai. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2628-2635.
[8] WANG Xiu-Feng, ZHANG Li, LIU Ming-Hua. Supramolecular Gels: Structural Diversity and Supramolecular Chirality[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 227-238.
[9] GU Gao-Chen, LI Na, ZHANG Xue, HOU Shi-Min, WANG Yong-Feng, WU Kai. Sierpiński Triangle Fractal Structures Investigated by STM[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 195-200.
[10] WANG Hui-Yong, LI Hong-Pei, CUI Guo-Kai, LI Zhi-Yong, WANG Jian-Ji. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 249-260.
[11] WANG Ji-Qian, SUN Ying-Jie, DAI Jing-Ru, ZHAO Yu-Rong, CAO Mei-Wen, WANG Dong, XU Hai. Effects of Alkyl Chain Length and Peptide Charge Distribution on Self-Assembly and Hydrogelation of Lipopeptide Amphiphiles[J]. Acta Physico-Chimica Sinca, 2015, 31(7): 1365-1373.
[12] LIANG Ju, LAI Dan-Yu, WU Wen-Lan, LI Guo-Zhi, LI Jun-Bo, FANG Cai-Lin. Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides[J]. Acta Physico-Chimica Sinca, 2015, 31(4): 722-728.
[13] DENG Yong-Hong, LIU You-Fa, ZHANG Wei-Jian, QIU Xue-Qing. Formation of Colloidal Spheres from a Lignin-Based Azo Polymer[J]. Acta Physico-Chimica Sinca, 2015, 31(3): 505-511.
[14] LIU Jian-Hua, LIU Bin-Hong, LI Zhou-Peng. Fe3O4/Graphene Composites with a Porous 3D Network Structure Synthesized through Self-Assembly under Electrostatic Interactions as Anode Materials of High-Performance Li-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2014, 30(9): 1650-1658.
[15] HE You-Zhou, LIU Yun, LIU Peng, FENG Wen, YUAN Li-Hua. Self-Assembly of Vesicles from Oligoaramide Based on Multiple Hydrogen Bonds[J]. Acta Physico-Chimica Sinca, 2014, 30(8): 1501-1508.