Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (3): 582-589    DOI: 10.3866/PKU.WHXB201611292
ARTICLE     
A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials
Hai-Kuan YANG*()
Download: HTML     PDF(2012KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A hybrid molecule having a molecular structure of cholesterol-polyoxometalate-cholesterol, was created by covalently connecting two cholesterol molecules onto the two sides of an organically modified Anderson-type polyoxometalate (POM). This hybrid molecule could self-assemble into highly ordered hexagonally packed cylinders in a bulk sample. The POM cluster of the hybrid molecule dissolved well in N, N-dimethylformamide (DMF) solvent and cholesterol moieties had appropriate solubility in toluene. In mixed DMF/toluene solvents, the hybrid molecule self-assembled into fibril-shaped aggregates. These aggregates further twisted around each other to form the three-dimensional network structures. These formations were attributed to the solubility difference between the POM cluster and cholesterol moieties, van der Waals interactions among the cholesterol moieties, and electrostatic interactions among the POM clusters. Within the fibrous structure, the POM cluster and cholesterol moieties in the hybrid molecule assembled into a well-organized structure with alternatively arranged POM layer and cholesterol layer. The results described herein has potential application value toward design, assembly, and application of nanomaterials.



Key wordsMaterial design      Hybrid molecule      Polyoxometalates      Self-assembly      Fibrous structure     
Received: 20 October 2016      Published: 29 November 2016
MSC2000:  O645  
Fund:  The project was supported by the Natural Science Foundation of North University of China(XJJ2016015)
Corresponding Authors: Hai-Kuan YANG     E-mail: haikuanyang@nuc.edu.cn
Cite this article:

Hai-Kuan YANG. A Solution-Based Self-Assembly Approach to Preparing Functional Supramolecular Hybrid Materials. Acta Phys. -Chim. Sin., 2017, 33(3): 582-589.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201611292     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/582

Fig 1 Hybrid molecule of cholesterol-polyoxometalate-cholesterol structure
Fig 2 Powder X-ray diffration (XRD) pattern (a) and small-angle X-ray scattering (SAXS) diffractogram (b) ofthe hybrid molecule
Fig 3 Transmission electron microscopy (TEM) images (a, b) and energy-dispersive X-ray spectroscopy (EDX) analysis (c)of the supramolecular structures formed by hybrid in mixed DMF/toluene solvents
Fig 4 Atomic force microscopy (AFM) characterization and analyses of the supramolecular structures formed byhybrid in mixed DMF/toluene solvents (c) vertical distance: (1) 3.393 nm; (2) 3.329 nm
Fig 5 XRD pattern of the dried sample of hybrid inmixed DMF/toluene solvents and a molecularpacking mode within monolayer fibril
Fig 6 Formation of supramolecular structures and packing models formed by hybrid in the bulk sample andmixed DMF/toluene solvents
1 Ariga K. ; Li J. B. ; Fei J. B. ; Ji Q. M. ; Hill J. P. Adv. Mater. 2016, 6, 1251.
2 Walther A. ; Müller A. H. E. Chem. Rev. 2013, 113, 5194.
3 Grzelczak M. ; Vermant J. ; Furst E. M. ; Liz-Marzán L. M. ACS Nano 2010, 4, 3591.
4 Busseron E. ; Ruff Y. ; Moulina E. ; Giuseppone N. Nanoscale 2013, 5, 7098.
5 Iijima T. ; Vignon S. A. ; Tseng H. R. ; Jarrosson T. ; Sanders J.K. M. ; Marchioni F. ; Venturi M. ; Apostoli E. ; Balzani V. ; Stoddart J. F. Chem. Eur. J. 2004, 24, 6375.
6 Wu T. ; Zhang X. Chem. J. Chin. Univ. 2001, 22, 1057.
6 吴涛; 张希. 高等学校化学学报, 2001, 22, 1057.
7 Li S. L. ; Xiao T. X. ; Lin C. ; Wang L. Y. Chem. Soc. Rev. 2012, 41, 5950.
8 Yin X. M. ; Li C. C. ; Zhang M. ; Hao Q. Y. ; Liu S. ; Chen L.B. ; Wang T. H. J. Phys. Chem. C 2010, 114, 8084.
9 Fang Y. X. ; Guo S. J. ; Zhu C. Z. ; Zhai Y. M. ; Wang E. Langmuir 2010, 26, 11277.
10 He Q. J. ; Gao Y. ; Zhang L. X. ; Zhang Z. W. ; Gao F. ; Ji X. F. ; Li Y. P. ; Shi J. L. Biomaterials 2011, 30, 7711.
11 Huang Y. ; Huang X. L. ; Lian J. S. ; Xu D. ; Wang L. M. ; Zhang X. B. J. Mater. Chem. 2012, 22, 2844.
12 Wang S. S. ; Yang G. Y. Chem. Rev. 2015, 115, 4893.
13 Long D. L. ; Burkholder E. ; Cronin L. Chem. Soc. Rev. 2007, 36, 105.
14 Dolbecq A. ; Dumas E. ; Mayer C. R. ; Mialane P. Chem. Rev. 2010, 110, 6009.
15 López X. ; Carbó J.J. ; Bo C. ; Poblet J. M. Chem. Soc. Rev. 2012, 41, 7537.
16 Khenkin A. M. ; Efremenko I. ; Weiner L. ; Martin J. M. L. ; Neumann R. Chem. Eur. J. 2010, 4, 1356.
17 Song Y. F. ; McMillan N. ; Long D. L. ; Thiel J. ; Ding Y. L. ; Chen H. S. ; Gadegaard N. ; Cronin L. Chem. Eur. J. 2008, 14, 2349.
18 Yan Y. ; Wang H. B. ; Li B. ; Hou G. F. ; Yin Z. D. ; Wu L. X. ; Yam V. W. W. Angew. Chem. Int. Ed. 2010, 49, 9233.
19 Allain C. ; Schaming D. ; Karakostas N. ; Erard M. ; Gisselbrecht J. P. ; Sorgues S. ; Lampre I. ; Ruhlmann L. ; Hasenknopf B. Dalton Trans. 2013, 42, 2745.
20 Schulz J. ; Gyepes R. ; Císa?ová I. ; ?těpni?ka P. New J. Chem. 2010, 34, 2749.
21 Yan Y. ; Li B. ; He Q. Y. ; He Z. F. ; Ai H. ; Wang H. B. ; Yin Z.D. ; Wu L. X. Soft Matter 2012, 8, 1593.
22 He Z. F. ; Li B. ; Ai H. ; Li H. L. ; Wu L. X. Chem. Commun. 2013, 49, 8039.
23 Tong U. S. ; Chen W. ; Ritchie C. ; Wang X. T. ; Song Y. F. Chem. Eur. J. 2014, 20, 1500.
24 Yang H. K. ; Su M. M. ; Ren L. J. ; Zheng P. ; Wang W. RSCAdv. 2014, 4, 1138.
25 Su M. M. ; Yang H. K. ; Ren L. J. ; Zheng P. ; Wang W. SoftMatter 2015, 11, 741.
26 Hasenknopf B. ; Delmont R. ; Herson P. ; Gouzerh P. Eur. J.Inorg. Chem. 2002, 1081
27 Marcoux P. R. ; Hasenknopf B. ; Vaissermann J. ; Gouzerh P. Eur. J. Inorg. Chem. 2003, 2406
28 Nordhei C. ; Mathisen K. ; Safonova O. ; van Beek W. ; Nicholson D. G. J. Phys. Chem. C 2009, 113, 19568.
29 Yui H. ; Minamikawa H. ; Danev R. ; Nagayama K. ; Kamiya S. ; Shimizu T. Langmuir 2008, 24, 709.
30 Lin X. K. ; Wang Y. L. ; Wu L. X. Langmuir 2009, 25, 6081.
31 Wang Y. L. ; Wang X. L. ; Zhang X. J. ; Xia N. ; Liu B. ; Yang J. ; Yu W. ; Hu M. B. ; Yang M. ; Wang W. Chem. Eur. J. 2010, 16, 12545.
32 Yue L. ; Ai H. ; Yang Y. ; Lu W. J. ; Wu L. X. Chem. Commun. 2013, 49, 9770.
33 Fang X. ; Hill C. L. Angew. Chem. 2007, 119, 3951.
34 Bourlinos A. B. ; Raman K. ; Herrera R. ; Zhang Q. ; Archer L.A. ; Giannelis E. P. J. Am. Chem. Soc. 2004, 126, 15358.
35 Xue M. ; Liu K. Q. ; Peng J. X. ; Zhang Q. H. ; Fang Y.J. Colloid Interface Sci. 2008, 327, 94.
[1] Xiaomeng CHENG,Dongxia JIAO,Zhihao LIANG,Jinjin WEI,Hongping LI,Junjiao YANG. Self-Assembly Behavior of Amphiphilic Diblock Copolymer PS-b-P4VP in CO2-Expanded Liquids[J]. Acta Phys. -Chim. Sin., 2018, 34(8): 945-951.
[2] Lili HUANG,Xiang SHAO. CO Induced Single and Multiple Au Adatoms Trapped by Melem Self-Assembly[J]. Acta Phys. -Chim. Sin., 2018, 34(12): 1390-1396.
[3] Hong-Zhi ZHANG,Zhi-Qing ZHANG,Fang WANG,Ting ZHOU,Xiu-Feng WANG,Guo-Dong ZHANG,Ting-Ting LIU,Shu-Zhen LIU. Application of Structural DNA Nanotechnology[J]. Acta Phys. -Chim. Sin., 2017, 33(8): 1520-1532.
[4] Ai-Xi CHEN,Hong WANG,Sai DUAN,Hai-Ming ZHANG,Xin XU,Li-Feng CHI. Potential-Induced Phase Transition of N-Isobutyryl-L-cysteine Monolayers on Au (111) Surfaces[J]. Acta Phys. -Chim. Sin., 2017, 33(5): 1010-1016.
[5] . Simulation Studies of the Self-Assembly of Halogen-Bonded Sierpiński Triangle Fractals[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 539-547.
[6] Yun-He WANG,Yuan QIN,Man YAO,Xu-Dong WANG,Shu-Ying LI,Dong WANG,Ting CHEN. Molecular Dynamics Simulation of a Chiral Self-Assembled Structure of a BIC and HA System on a HOPG Surface Driven by Hydrogen Bonds[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2255-2263.
[7] Dan LIU,Yan-Yan HU,Chao ZENG,De-Yu QU. Soft-Templated Ordered Mesoporous Carbon Materials: Synthesis, Structural Modification and Functionalization[J]. Acta Phys. -Chim. Sin., 2016, 32(12): 2826-2840.
[8] Juan YE,Kai SUN,Min-Long TAO,Yu-Bing TU,Zheng-Bo XIE,Ya-Li WANG,Shao-Jie HAO,Hua-Fang XIAO,Jun-Zhong WANG. Chiral Features of the Achiral Copper Phthalocyanine on a Bi(111) Surface[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2593-2598.
[9] Wei-Ju HAO,Jun-Qi ZHANG,Ya-Zhuo SHANG,Shou-Hong XU,Hong-Lai LIU. Preparation of Fluorescently Labeled pH-Sensitive Micelles for Controlled Drug Release[J]. Acta Phys. -Chim. Sin., 2016, 32(10): 2628-2635.
[10] Xiu-Feng WANG,Li ZHANG,Ming-Hua LIU. supramolecular Gels: Structural Diversity and supramolecular Chirality[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 227-238.
[11] Gao-Chen GU,Na LI,Xue ZHANG,Shi-Min HOU,Yong-Feng WANG,Kai WU. Sierpiński Trangle Fractal Structures Investigated by STM[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 195-200.
[12] Hui-Yong WANG,Hong-Pei LI,Guo-Kai CUI,Zhi-Yong LI,Jian-Ji WANG. Recent Progress in Self-Assembly of Ionic Liquid Surfactants and Its Regulation and Control in Aqueous Solutions[J]. Acta Phys. -Chim. Sin., 2016, 32(1): 249-260.
[13] WANG Ji-Qian, SUN Ying-Jie, DAI Jing-Ru, ZHAO Yu-Rong, CAO Mei-Wen, WANG Dong, XU Hai. Effects of Alkyl Chain Length and Peptide Charge Distribution on Self-Assembly and Hydrogelation of Lipopeptide Amphiphiles[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1365-1373.
[14] LIANG Ju, LAI Dan-Yu, WU Wen-Lan, LI Guo-Zhi, LI Jun-Bo, FANG Cai-Lin. Self-Assembly and Acid-Responsive Behavior of Three Amphiphilic Peptides[J]. Acta Phys. -Chim. Sin., 2015, 31(4): 722-728.
[15] DENG Yong-Hong, LIU You-Fa, ZHANG Wei-Jian, QIU Xue-Qing. Formation of Colloidal Spheres from a Lignin-Based Azo Polymer[J]. Acta Phys. -Chim. Sin., 2015, 31(3): 505-511.