Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (3): 506-512    DOI: 10.3866/PKU.WHXB201612061
ARTICLE     
Ultrafast Nonadiabatic Dynamics of Electronically Excited 2-Methyl Furan
1 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan 430071, P. R. China
2 College of Electronics and Information, South-Central University for Nationalities, Wuhan 430074, P. R. China
Download: HTML     PDF(1143KB) Export: BibTeX | EndNote (RIS)      

Abstract  

Excited-state dynamics of 2-methyl furan has been studied by femtosecond time-resolved photoelectron imaging. The molecule 2-methyl furan was simultaneously excited to the n=3 Rydberg series of S1[1A"(π3s)], 1A'(π3px), 1A"(π3py) and 1A"(π3pz) and the valence state of 1A'(ππ*) by two 400 nm photons and subsequently probed by two 800 nm photons. The average lifetime of the Rydberg series and the valence state was measured to be on the time scale of 50 fs by the time-dependent ion yield of the parent ion. Ultrafast internal conversions among these excited states were observed and extracted from the time-dependences of the photoelectron kinetic energy components of these excited states in the photoelectron kinetic energy spectra. Furthermore, it is identified that the 1A'(ππ*) state might play an important role in internal conversions among these excited states. The Rydberg-valence mixings, which result in numerous conical intersections, act as the driving force to accomplish such ultrafast internal conversions.



Key wordsUltrafast      Photoelectron imaging      Nonadiabatic dynamics      2-Methyl furan     
Received: 14 September 2016      Published: 06 December 2016
MSC2000:  O644  
Fund:  国家自然科学基金(21273274);国家自然科学基金(21303255);国家自然科学基金(11404411)
Cite this article:

. Ultrafast Nonadiabatic Dynamics of Electronically Excited 2-Methyl Furan. Acta Phys. -Chim. Sin., 2017, 33(3): 506-512.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612061     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/506

 
 
 
 
 
1 Stolow A. Annu. Rev. Phys. Chem. 2003, 54, 89.
2 Jortner J. ; Bixon M. J.Chem. Phys. 1995, 102, 5636.
3 Softley T. P. ; Hudson A. J. ; Watson R. J.Chem. Phys. 1997, 106, 1041.
4 Song J. K. ; Tsubouchi M. ; Suzuki T. J.Chem. Phys. 2001, 115, 8810.
5 Suzuki T. Annu. Rev. Phys. Chem. 2006, 57, 555.
6 Palmer M. H. ; Walker I. C. ; Ballard C. C. ; Guest M. F. Chem.Phys. 1995, 192, 111.
7 Spesyvtsev R. ; Horio T. ; Suzuki Y. ; Suzuki T. J.Chem. Phys. 2015, 143, 014302.
8 Fuji T. ; Suzuki Y. ; Horio T. ; Suzuki T. ; Mitric R. ; Werner U. ; Bonacic-Koutecky V. J.Chem. Phys. 2010, 133, 234303.
9 Liu Y. ; Knopp G. ; Qin C. ; Gerber T. Chem. Phys. 2015, 446, 142.
10 Fringuelli F. ; Marino G. ; Taticchi A. ; Distefano G. ; Colonna F. P. ; Pignatarro S. J.Chem. Soc. Perkin Trans. 1976, 22, 276.
11 Kobayashi T. ; Kubota T. ; Ezumi K. ; Utsunomiya C. Bull.Chem. Soc. Jpn. 1982, 55, 3915.
12 Zykov B. G. ; Erchak N. P. ; Khvostenko V. I. ; Matorykina V.F. ; Asfandiarov N. L. J.Organomet. Chem. 1983, 253, 301.
13 Modelli A. J. Electron. Spectrosc. Relat. Phenom 1983, 31, 63.
14 Veszpremi T. ; Nyulaszi L. ; Nagy J. J.Organomet. Chem. 1987, 331, 175.
15 Nyulaszi L. ; Reffy J. ; Veszpremi T. ; Kovac B. ; Cvitas T. ; Klasinc L. ; McGlynn S. P. Int. J.Quantum Chem. Symp. 1991, 25, 479.
16 Nyulaszi L. J.Mol. Struct. 1992, 273, 133.
17 Modelli A. Trends Chem. Phys0 1997, 6, 57.
18 Giuliani A. ; Hubin-Franskin M. J.Chem. Phys. Lett. 2001, 348, 34.
19 Giuliani A. ; Delwiche J. ; Hoffmann S. V. ; Limao-Vieira P. ; Mason N. J. ; Hubin-Franskin M. J. J.Chem. Phys. 2003, 119, 3670.
20 Philis J. G. ; Melissas V. S. Chem. Phys. 2007, 336, 136.
21 Buss S. ; Jug K. J.Am. Chem. Soc. 1987, 109, 1044.
22 Su M. J. J.Phys. Chem. A 2008, 112, 194.
23 Ghazal A. Y. ; Qiu X. J. ; Qin C. C. ; Long J. Y. ; Abulimiti B. ; Zhang B. Acta Phys.-Chim. Sin. 2012, 28, 2543.
23 GhazalAhmed-Yousif; 邱学军; 秦朝朝; 龙金友; 布玛丽亚阿布力米提; 张冰. 物理化学学报, 2012, 28, 2543.
24 Dribinski V. ; Ossadtchi A. ; Mandelshtam V. A. ; Reisler H. Rev. Sci. Instrum. 2002, 73, 2634.
25 Liu Y. Z. ; Qin C. C. ; Zhang S. ; Wang Y. M. ; Zhang B. Acta Phys.-Chim. Sin. 2011, 27, 965.
25 刘玉柱; 秦朝朝; 张嵩; 王艳梅张冰. 物理化学学报, 2011, 27, 965.
26 Suzuki T. ; Wang L. ; Tsubouchi M. J.Phys. Chem. A 2004, 108, 5764.
27 Gosselin J. L. ; Weber P. M. J.Phys. Chem. A 2005, 109, 4899.
28 WojdyrM. J. Appl. Cryst. 2010, 43, 1126.
29 Han K. L. ; He G. Z. J.Photochem. Photobiol. C 2007, 8, 55.
30 Liu Y. ; Knopp G. ; Xiao S. ; Gerber T. Chin. Phys. Lett. 2014, 31, 127802.
31 Liu Y. ; Gerber T. ; Qin C. ; Jin F. ; Knopp G. J.Chem. Phys. 2016, 144, 084201.
[1] Jiao LIU,Jicun HUO,Min ZHANG,Xiandui DONG. Ultrafast Photoluminescence Dynamics of Organic Photosensitizers with Conjugated Linkers Containing Different Heteroatoms[J]. Acta Phys. -Chim. Sin., 2018, 34(4): 424-436.
[2] . Multiphoton Dissociation and Ionization Dynamics of Allyl Chloride Using Femtosecond Laser Pulses[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 500-505.
[3] Hai-Long CHEN,Hong-Tao BIAN,Jun-Rong ZHENG. Determining 3D Molecular Conformations with Ultrafast Multiple-Dimensional Vibrational Spectroscopy[J]. Acta Phys. -Chim. Sin., 2017, 33(1): 40-62.
[4] Xiao-Ying. LI,Li. WANG,Yan-Qiu. WANG,Zhe. SONG,Ben-Kang. LIU. Dynamics of Excited o-Dichlorobenzene[J]. Acta Phys. -Chim. Sin., 2015, 31(9): 1655-1661.
[5] YANG Fan, YU Peng-Yun, ZHAO Juan, ZHAO Yan, WANG Jian-Ping. Intermolecular Hydrogen Bonding Structural Dynamics in Ethylene Glycol by Femtosecond Nonlinear Infrared Spectroscopy[J]. Acta Phys. -Chim. Sin., 2015, 31(7): 1275-1282.
[6] WANG Liu-Heng, PENG Rong-Zong, ZHAO Yu-Xia, WU Fei-Peng. Synthesis and Optical Limiting Behaviors of Malononitrile Derivatives[J]. Acta Phys. -Chim. Sin., 2014, 30(5): 980-986.
[7] ABULIMITI Bumaliya, ZHU Rong-Shu, QIU Xue-Jun, QIN Chen, ZHANG Bing. Studies of Ultrafast Dynamics of 3-Picoline with Femtosecond Time-Resolved Photoelectron Imaging[J]. Acta Phys. -Chim. Sin., 2014, 30(1): 22-27.
[8] DING Zhong-Hua, QIU Xue-Jun, XU Yan-Qi, WANG Yan-Mei, ZHANG Bing. Ultrafast Internal Conversion Dynamics of Benzyl Chloride by Femtosecond Time-Resolved Photoelectron Imaging[J]. Acta Phys. -Chim. Sin., 2012, 28(12): 2761-2766.
[9] GHAZAl Ahmed-Yousif, QIU Xue-Jun, QIN Chao-Chao, LONG Jin-You, ABULIMITI Bumaliya, ZHANG Bing. Ultrafast Internal Conversion Dynamics of 2-Chloropyridine by Femtosecond Time-Resolved Photoelectron Imaging[J]. Acta Phys. -Chim. Sin., 2012, 28(11): 2543-2548.
[10] ZHANG Rong-Rong, QIN Chao-Chao, LONG Jin-You, YANG Ming-Hui, ZHANG Bing. Ultrafast Predissociation Dynamics of Excited State of Acrylic Acid[J]. Acta Phys. -Chim. Sin., 2012, 28(03): 522-527.
[11] LIU Yu-Zhu, QIN Chao-Chao, ZHANG Song, WANG Yan-Mei, ZHANG Bing. Ultrafast Dynamics of the First Excited State of Chlorobenzene[J]. Acta Phys. -Chim. Sin., 2011, 27(04): 965-970.
[12] BAI Ming-Ze, CHENG Li, TANG Hong, DOU Yu-Sheng. Molecular Dynamics Simulation of the Laser-Induced Melting of an Al Nanofilm[J]. Acta Phys. -Chim. Sin., 2010, 26(12): 3143-3149.
[13] LIU Ben-Kang, WANG Yan-Qiu, WANG Li. Time-Resolved Multiphoton Ionization Process of Xenon Investigated by Photoelectron Imaging Method[J]. Acta Phys. -Chim. Sin., 2010, 26(12): 3157-3162.
[14] YANG Fan, YU Long-Jiang, WANG Peng, AI Xi-Cheng, WANG Zheng-Yu, ZHANG Jian-Ping. Excitation Dynamics of the Light-Harvesting Complex 2 from Thermochromatium Tepidum[J]. Acta Phys. -Chim. Sin., 2010, 26(07): 2021-2030.
[15] Han Ke-Li. Nonadiabatic Dynamics with Split-Operator Scheme on Multiple Potential Energy Surfaces[J]. Acta Phys. -Chim. Sin., 2004, 20(08S): 1032-1036.