Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 563-572    DOI: 10.3866/PKU.WHXB201612072
ARTICLE     
Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction
Ming-Hui HUANG1,Bi-Yao JIN1,Lian-Hua ZHAO1,*(),Shi-Gang SUN2
1 Department of Chemistry, College of Science, Yanbian University, Yanji 133002, Jilin Province, P. R. China
2 State Key Laboratory of Physical Chemistry of Solid Surfaces of Xiamen University, Xiamen 361005, Fujian Province, P. R. China
Download: HTML     PDF(3063KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of Pt/C, Pt-Ni1/3/C, Pt-SnO2/C and Pt-Nix-SnO2/C (x=1/4, 1/3, 2/3, 1) anode electro-catalysts have been synthesized by an improved B?nnemann method. The crystal structure, surface morphology and surface electronic structure were characterizated by X-ray diffraction (XRD), high resolution transmission electron microscope (HR-TEM) and X-ray photoelectron spectroscopy (XPS). The electro-catalytic activities were characterizated by linear sweep voltammetry (LSV) and amperometric current density-time (j-t) curve techniques for ethanol oxidation reaction (EOR). In situ spectroelectrochemical studies have been used to identity adsorbed reaction intermediates and products (in situ Fourier transform infrared spectroscopy, FT-IR). XRD and HR-TEM analysis revealed two phases in the ternary Pt-Ni-SnO2/C catalyst:Pt-Ni alloys and SnO2. XPS results show that the electronic structure of the Pt in Pt-Ni1/3-SnO2/C might be changed due to the addition of Ni. The activity of Pt-Ni-SnO2/C for EOR was found to be higher than that of Pt/C, Pt-Ni/C and Pt-SnO2/C catalysts. The incorporation of Ni and SnO2 did not significantly improve C-C bond breaking for complete oxidation of ethanol, but the synergy under the low potential (0.1 V) to strengthen the further oxidation of acetaldehyde, generate the acetic acid.



Key wordsPlatinum      Nickel      Stannic oxide      Ethanol electricoxidation     
Received: 12 October 2016      Published: 07 December 2016
MSC2000:  O643  
  O646  
Fund:  The project was supported by the Jilin Provincial Science and Technology Project of China(20120741);Opening Foundation of State KeyLaboratory of Physical Chemistry of Solid Surface of Xiamen University, China(201407)
Corresponding Authors: Lian-Hua ZHAO     E-mail: zhaolianhua@ybu.edu.cn
Cite this article:

Ming-Hui HUANG,Bi-Yao JIN,Lian-Hua ZHAO,Shi-Gang SUN. Preparation and Characterization of Pt-Ni-SnO2/C for Ethanol Oxidation Reaction. Acta Physico-Chimica Sinca, 2017, 33(3): 563-572.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612072     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/563

Fig 1 XRD patterns of catalyst with different composites (A) and dependence of the FCC lattice parameter ofthe catalysts on Ni molar number (B) (a) Pt/C, (b) Pt-SnO2/C, (c) Pt-Ni1/3/C, (d) Pt-Ni1/4-SnO2/C, (e) Pt-Ni1/3-SnO2/C, (f) Pt-Ni2/3-SnO2/C, (g) Pt-Ni-SnO2/C
Fig 2 TEM images (a-g) and particle size distributions (a?-g?) of catalyst with different composites (a, a?) Pt/C, (b, b?) Pt-Ni1/3/C, (c, c?) Pt-SnO2/C, (d, d?) Pt-Ni1/4-SnO2/C, (e, e?) Pt-Ni1/3-SnO2/C, (f, f?) Pt-Ni2/3-SnO2/C, (g, g?) Pt-Ni-SnO2/C
Fig 3 Energy dispersive X-ray (EDX) images of catalyst with different composites (a) Pt/C, (b), Pt-SnO2/C, (c) Pt-Ni1/3/C, (d) Pt-Ni1/4-SnO2/C, (e) Pt-Ni1/3-SnO2/C, (f) Pt-Ni2/3-SnO2/C, (g) Pt-Ni-SnO2/C
Electrocatalyst Pt/Ni/Sn atom ratioa Pt/Ni/Sn atom ratiob Particle size/nmc
Pt/C 100:0:0 100:0:0 2.71
Pt-Ni1/3/C 75:25:0 75.3:24.7:0 2.17
Pt-SnO2/C 50:0:50 55.7:0:44.3 1.97
Pt-Ni1/4-SnO2/C 44.4:11.2:44.4 42.0:17.0:41.0 2.21
Pt-Ni1/3-SnO2/C 42.9:14.2:42.9 51.0:12.0:37.0 2.68
Pt-Ni2/3-SnO2/C 37.5:25.0:37.5 40.1:17.8:42.1 2.31
Pt-Ni-SnO2/C 37.5:25.0:37.5 40.0:29.0:31.08 3.25
Table 1 Compositional characterization ofelectrocatalysts and particle size distribution
Fig 4 EDS (A) and HR-TEM (B) images of Pt-Ni1/3-SnO2/C and pixel intensity profiles (C, D) for the SnO2 and Pt-Ni crystallites
Fig 5 Pt 4fXPS spectra of Pt-SnO2/C (A) and Pt-Ni1/3-SnO2/C (B)
Fig 6 CV of 0.5 mol?L-1 H2SO4 electrolyte on different composites catalysts scan rate: 10 mV?s-1, 30 ℃; (a) Pt/C, (b) Pt-SnO2/C, (c) Pt-Ni1/3/C, (d) Pt-Ni1/4-SnO2/C, (e) Pt-Ni1/3-SnO2/C, (f) Pt-Ni2/3-SnO2/C, (g) Pt-Ni-SnO2/C
Fig 7 LSV curves of ethanol oxidation on differentcomposites catalysts recorded in 0.5 mol?L-1 H2SO4 + 0.5mol?L-1 C2H5OH electrolyte scan rate: 10 mV?s-1, 30 ℃; (a) Pt/C, (b) Pt-SnO2/C, (c) Pt-Ni1/3/C, (d) Pt-Ni1/4-SnO2/C, (e) Pt-Ni1/3-SnO2/C, (f) Pt-Ni2/3-SnO2/C, (g) Pt-Ni-SnO2/C. Inset is the influence of Ni molar fraction (x) onthe mass activities for ethanol oxidation.
Fig 8 Amperometric j-t curves for the electrooxidation ofa C2H5OH solution on different composites catalysts reaction conditions: 0.5 mol?L-1 H2SO4 + 0.5 mol?L-1 C2H5OH, at0.5 V (vs SCE), 30 ℃; (a) Pt/C, (b) Pt-SnO2/C, (c) Pt-Ni1/3/C, (d) PtNi1/4-SnO2/C, (e) Pt-Ni1/3-SnO2/C, (f) Pt-Ni2/3-SnO2/C, (g) Pt-Ni-SnO2/C
Fig 9 In situ MS-FTIR spectra of samples for ethanol oxidation in 0.5 mol?L-1 ethanol and0.5 mol?L-1 H2SO4 solution from different catalysts
Fig 10 Integrated band intensities of products forethanol oxidation
1 Vigier F. ; Rousseau S. ; Coutanceau C. ; Leger J. M. ; Lamy C. Top Catal. 2006, 40, 111.
2 Antolini E. J. Power Sources 2007, 170, 1.
3 Roelofs K. S. ; Hirth T. ; Schiestel T. Mater. Science Eng. B 2011, 176, 727.
4 Li H. Q. ; Sun G. Q. ; Cao L. ; Jiang L. H. ; Xin Q. Electrochim. Acta 2007, 52, 6622.
5 Lamy C. ; Belgsir E. M. ; Léger J. M. J. Appl. Electrochem. 2001, 31 (7), 799.
6 Tang Y. W. ; Ma G. X. ; Zhou Y. M. ; Bao J. C. ; Lu L. D. ; Lu T. H. Acta Phys. -Chim. Sin. 2008, 24, 1615.
6 唐亚文; 马国仙; 周益明; 包建春; 陆路德; 陆天虹. 物理化学学报, 2008, 24, 1615.
7 Chu D. B. ; Yin X. J. ; Feng D. X. ; Lin H. S. ; Tian Z. W. ActaPhys. -Chim. Sin. 2006, 22, 1238.
7 褚道葆; 尹晓娟; 冯德香; 林华水; 田昭武. 物理化学学报, 2006, 22, 1238.
8 Song S. Q. ; Chen L. K. ; Liu J. G. ; Wei Z. B. ; Xin Q. Electrochemistry 2002, 8 (1), 105.
8 宋树芹; 陈利康; 刘建国; 魏昭彬; 辛勤. 电化学, 2002, 8 (1), 105.
9 Rousseau S. ; Coutanceau C. ; Lamy C. ; Léger J. M. J. PowerSources 2006, 158, 18.
10 Zhou W. ; Zhou Z. ; Song S. ; Li W. ; Sun G. Q. ; Xin Q. Appl.Cata1. B 2003, 46, 273.
11 Hayden B. E. ; Rendall M. E. J. Am. Chem. Soc. 2003, 125, 7738.
12 Vigier F. ; Coutanceau C. ; Hahn F. ; Belgsir E. M. ; Lamy C.J. Electroanal. Chem. 2004, 563, 81.
13 Takeguchi T. ; Wang G. X. ; Muhamad E. N. ; Ueda W. ECSTransactions 2008, 16, 713.
14 Kowal A. ; Li M. ; Shao M. ; Sasald K. ; Vulcmirovic M. B. ; Zhang J. ; Marinkovic N. S. ; Liu P. ; Frenkel A. I. ; Adzic R. R. Nat. Mater. 2009, 8, 325.
15 Zhao L. H. ; Mitsushima S. ; Ishihara A. ; Matsuzawa K. ; Ota K. Chin. J. Catal. 2011, 32, 1856.
16 Lee E. ; Park I. S. ; Manthiram A. J. Phys. Chem. C 2010, 114, 10634.
17 Jin B. Y. ; Sun H. Y. ; Zhao L. H. Electrochim. Acta 2014, 142, 223.
18 Spinacé E. V. ; Linardi M. ; Neto A. O. Electrochem. Commun. 2005, 7, 365.
19 Zhang Z. ; Xin L. ; Sun K. ; Li W. Int. J. Hydrog. Energy 2011, 36, 12686.
20 Bagchi J. ; Bhattacharya S. K. J. Power Sources 2007, 163, 661.
21 dos Santos Correa P. ; da Silva E. L. ; da Silva R. F. ; Radtke C. ; Moreno B. ; Chinarro E. ; de Fraga Malfatti C. ; Kamarudin M. Z. F. ; Kamarudin S. K. ; Masdar M. S. ; Daud W. R. W. Int.J. Hydrog.Energy 2013, 38, 9438.
22 Almeida T. S. ; Kokoh K. B. ; De Andrade A. R. Int. J. Hydrog.Energy 2011, 36, 3803.
23 Parreira L. S. ; da Silva J. C. M. ; D′Villa-Silva M. ; Simoes F.C. ; Garcia S. ; Gaubeur I. ; Cordeirob M. A. L. ; Leite E. R. ; dos Santos M. C. Electrochim. Acta 2013, 96, 243.
24 B?nnemann H. ; Brijoux W. ; Brinkmann R. ; Dinjus E. ; Joussen T. ; Korall B. Angew. Chem. Int. Ed. Engl. 1991, 30, l312.
25 Radmilovic V. ; Gasteiger H. A. ; Ross P. N. J. Catal. 1995, 154, 98.
26 Sun H. Y. ; Zhao L. H. ; Yu F. C. Acta Phys. -Chim. Sin. 2013, 29, 959.
26 孙洪岩; 赵莲花; 余凤春. 物理化学学报, 2013, 29, 959.
27 Sandoval-Gonzáleza A. ; Borja-Arcoa E. Int. J. Hydrog. Energy 2012, 37, 1752.
28 Sakamoto R. ; Kaoru O. J. Power Sources 2014, 269, 117.
29 Jiang L. H. ; Sun G. Q. ; Sun S. G. ; Liu J. G. ; Tang S. H. ; Li H. Q. ; Zhou B. ; Xin Q. Electrochim. Acta 2005, 50, 5384.
30 Gonzalo G. ; Nikolaos T. ; Elena P. ; Miguel A. P. ; Jose L. G. ; Fierro M. V. ; Martínez H. Int. J. Hydrog. Energy 2012, 37, 7131.
31 Wang Q. ; Sun G. Q. ; Jiang L. H. ; Xin Q. ; Sun S. G. ; Jiang Y.X. ; Chen S. P. ; Jusys Z. ; Behm R. J. Phys. Chem. Chem. Phys. 2007, 9, 2686.
32 De Souza R. F. B. ; Parreira L. S. ; Rascio D. C. ; Silva J. C.M. ; Teixeira-Neto E. ; Calegaro M. L. ; Spinace E. V. ; Neto A.O. ; Santos M. C. J. Power Sources 2010, 195, 1589.
33 Lambert D. K. Electrochim. Acta 1996, 41, 623.
[1] Mingchuan LUO,Yingjun SUN,Yingnan Yingjun,Yong YANG,Dong WU,Shaojun GUO. Boosting Oxygen Reduction Catalysis by Tuning the Dimensionality of Pt-based Nanostructures[J]. Acta Physico-Chimica Sinca, 2018, 34(4): 361-376.
[2] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1838-1845.
[3] Chao LIAN,Kai ZHANG,Yuan WANG. Catalytic Properties of Platinum Nanoclusters Supported on Iron Oxides for the Solvent-Free Hydrogenation of Halonitrobenzene[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 984-992.
[4] CHANG Qiao-Wan, XIAO Fei, XU Yuan, SHAO Min-Hua. Core-Shell Electrocatalysts for Oxygen Reduction Reaction[J]. Acta Physico-Chimica Sinca, 2017, 33(1): 9-17.
[5] LU Shan-Fu, PENG Si-Kan, XIANG Yan. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Physico-Chimica Sinca, 2016, 32(8): 1859-1865.
[6] NIE Wang-Xin, ZOU Xiu-Jing, WANG Xue-Guang, DING Wei-Zhong, LU Xiong-Gang. Preparation of Highly Dispersed Ni-Ce-Zr Oxides over Mesoporous γ-Alumina and Their Catalytic Properties for CO2 Methanation[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2803-2810.
[7] WU Yu, LUO Jian. In situ Growth of a Pd/Ni(OH)2/NF Composite Catalyst for the Hydrogen Evolution Reaction[J]. Acta Physico-Chimica Sinca, 2016, 32(11): 2745-2752.
[8] ZHU Hong, LUO Ming-Chuan, CAI Ye-Zheng, SUN Zhao-Nan. Core-Shell Structured Electrocatalysts for the Cathodic Oxygen Reduction Reaction in Proton Exchange Membrane Fuel Cells[J]. Acta Physico-Chimica Sinca, 2016, 32(10): 2462-2474.
[9] LI Shu-Shuang, TAO Lei, ZHANG Qi, LIU Yong-Mei, CAO Yong. Recent Advances in Nano-Gold-Catalyzed Green Synthesis and Clean Reactions[J]. Acta Physico-Chimica Sinca, 2016, 32(1): 61-74.
[10] ZHANG Jie, DOU Mei-Ling, WANG Feng, LIU Jing-Jun, LI Zhi-Lin, JI Jing, SONG Ye. Synthesis of PDDA-Decorating MWCNTs Supported Pt Electrocatalysts and Catalytic Properties for Oxygen Reduction Reaction in Alkaline Medium[J]. Acta Physico-Chimica Sinca, 2015, 31(9): 1727-1732.
[11] PAN Jian-Ming, YANG Wei, SUN Hai-Biao, ZHENG Xiang, LI Guo-Hua. Preparation and Electrocatalytic Activity of Tungsten Carbide-Montmorillonite Composite[J]. Acta Physico-Chimica Sinca, 2015, 31(5): 998-1006.
[12] OU Zhi-Ze, JU Bao-Long, GAO Yun-Yan, WANG Zi-Chao, HUANG Gan, QIAN Yi-Meng. Alkynylplatinum(Ⅱ) 2,6-Bis(N-ethylbenzimidazol-2'-yl)pyridine Complexes: Effect of Alkynyl Ligand on G-quadruplex Binding Properties and Anticancer Activity[J]. Acta Physico-Chimica Sinca, 2015, 31(12): 2386-2394.
[13] HAN Yong, XU Qian, JU Huan-Xin, ZHU Jun-Fa. Growth, Electronic Structure and Thermal Stability of Ni on ZrO2(111) Thin Film Surfaces[J]. Acta Physico-Chimica Sinca, 2015, 31(11): 2151-2157.
[14] MA Yi-Ran, ZHOU Wei, CAO Wei, ZHENG Jin-Long, GUO Lin. Preparation of Hierarchical Ni@CuS Composites and the Application of the Enhanced Catalysis for 4-Nitrophenol Reduction[J]. Acta Physico-Chimica Sinca, 2015, 31(10): 1949-1955.
[15] JIANG Jun, LI Gang, KONG Ling-Hao. Hydrogenation of Nitrobenzene Catalyzed by Metal-Organic Framework-Supported Ni Nanoparticles[J]. Acta Physico-Chimica Sinca, 2015, 31(1): 137-144.