Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (3): 548-553    DOI: 10.3866/PKU.WHXB201612081
ARTICLE     
Structure and Electronic Properties of Single Walled Nanotubes from AlAs (111) Sheets: A DFT Study
Wei WANG,Kai TAN*()
Download: HTML     PDF(1301KB) Export: BibTeX | EndNote (RIS)      

Abstract  

A series of AlAs nanotubes (NTs) can be formed by rolling up two dimensional periodic (111) single layer sheets, namely (n, 0) and (n, m) nanotubes. Optimized parameters of the atomic arrangement, energy levels and electronic structure of corresponding nanotubes of different types were calculated and compared by the density functional theory (DFT) method. The calculated results showed that strain energies (Es) are negative over most of the diameter range for the (n, 0) and (n, m) series, indicating that these NTs are more stable than a planar AlAs (111) single layer. The strain energy gradually decreases with increasing diameter. The calculated electronic band structures and density of states profiles reveal that the indirect band gaps (Eg) of armchair AlAs nanotubes gradually decreases with increasing diameter, which is distinct behavior from the zigzag nanotubes. The zigzag AlAs nanotubes feature a direct Eg with a peak value (2.11 eV) for a tube of radius 1.87 nm. The origin of the differences in band gaps could be attributed to the p-p coupling interaction between Al 3p orbitals in the conduction band of the AlAs zigzag nanotube.



Key wordsDensity functional theory      AlAs      Zigzag      Armchair      Nanotube     
Received: 12 September 2016      Published: 08 December 2016
MSC2000:  O641  
Fund:  The project was supported by the National Natural Science Foundation of China(21573182)
Corresponding Authors: Kai TAN     E-mail: ktan@xmu.edu.cn
Cite this article:

Wei WANG,Kai TAN. Structure and Electronic Properties of Single Walled Nanotubes from AlAs (111) Sheets: A DFT Study. Acta Physico-Chimica Sinca, 2017, 33(3): 548-553.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612081     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/548

Fig 1 AlAs (111) single layer sheet and zigzag (8, 0) (a), armchair (6, 6) (b) nanotubes Pink and grey spheres indicate Al and As atoms, respectively. color online
D/nm Band gap/eV Estrain/eV Buckling/nm Bond length/nm
Al-As Al-As
AlAs-bulk - 1.41 - - 0.2452 0.2452
slab - 1.98 - 0.0500 0.2360 0.2360
(n, n) VBM CBM gap
(4, 4) 0.9656 -0.24 2.10 2.34 -0.158 0.0654 0.2419 0.2397
(6, 6) 1.4056 -1.06 1.13 2.19 -0.122 0.0594 0.2404 0.2392
(8, 8) 1.8565 -1.10 1.00 2.10 -0.099 0.0549 0.2393 0.2390
(10, 10) 2.2968 -1.10 0.95 2.05 -0.084 0.0549 0.2393 0.2390
(12, 12) 2.7446 -1.06 0.93 1.99 -0.072 0.0532 0.2389 0.2389
(14, 14) 3.1947 -1.09 0.87 1.96 -0.063 0.0519 0.2388 0.2390
(16, 16) 3.6404 -1.11 0.85 1.96 -0.057 0.0519 0.2386 0.2389
(n, 0)
(8, 0) 1.1052 -1.18 0.68 1.86 -0.140 0.0564 0.2420 0.2405
(10, 0) 1.3591 -1.15 0.87 2.02 -0.124 0.0596 0.2410 0.2401
(12, 0) 1.6144 -1.17 0.91 2.08 -0.110 0.0579 0.2403 0.2397
(14, 0) 1.8716 -1.10 1.01 2.11 -0.098 0.0562 0.2399 0.2394
(16, 0) 2.1314 -1.08 0.96 2.04 -0.089 0.0551 0.2395 0.2394
(18, 0) 2.3890 -1.09 0.91 2.01 -0.081 0.0542 0.2393 0.2393
(20, 0) 2.6484 -1.10 0.89 1.99 -0.071 0.0534 0.2391 0.2392
(22, 0) 2.9048 -1.11 0.86 1.97 -0.069 0.0527 0.2389 0.2392
(24, 0) 3.1669 -1.11 0.83 1.94 -0.064 0.0520 0.2388 0.2391
(26, 0) 3.4301 -1.09 0.83 1.92 -0.060 0.0517 0.2387 0.2391
Table 1 Optimized geometry and energy of AlAs bulk, single layer (111) nanosheet, armchair and zigzag nanotubes
Fig 2 Relationships between strain energy (Estrain) and diameter of two types of AlAs (111) nanotubes
Fig 3 Relationships between band gap (Egap) anddiameter of different AlAs (111) nanotubes
Fig 4 Electronic band structures and projected density of states (PDOS) of AlAs nanotube (a) zigzag (8, 0), (b) armchair (6, 6), (c) zigzag (14, 0), (d) armchair (12, 12)
Fig 5 Plots of the charge density distribution alongvalence band (VB) (a, c) and conduction band (CB) (b, d)of (8, 0) (a, b) and (14, 0) (c, d) ρ=5 electron?nm-3
1 Thornton T. J. ; Pepper M. ; Ahmed H. ; Andrews D. ; Davies G. J. Phys.Rev. Lett. 1986, 56, 1198.
2 Schwabe R. ; Pietag F. ; Gottschalch V. ; Wagner G. ; Di Ventra M. ; Bitz A. ; Staehli J. L. Phys. Rev. B 1997, 56, R4329.
3 Kang J. U. ; Stegeman G. I. ; Aitchison J. S. ; Akhmediev N. Phys. Rev. Lett. 1996, 76, 3699.
4 Gunawan O. ; Shkolnikov Y. P. ; Poortere E. P. D. ; Tutuc E. ; Shayegan M. Phys. Rev. Lett. 2004, 93, 246603.
5 Funk S. ; Li A. ; Ercolani D. ; Gemmi M. ; Sorba L. ; Zardo I. ACS Nano 2013, 7, 1400.
6 Li A. ; Ercolani D. ; Lugani L. ; Nasi L. ; Rossi F. ; Salviati G. ; Beltram F. ; Sorba L. Cryst. Growth Des. 2011, 11, 4053.
7 Srivastava A. ; Tyagi N. Mater. Chem. Phys. 2012, 137, 103.
8 Singh A. K. ; Zhuang H. L. ; Hennig R. G. Phys. Rev. B 2014, 89, 245431.
9 Zhuang H. L. ; Singh A. K. ; Hennig R. G. Phys. Rev. B 2013, 87, 165415.
10 Jia S. P. ; Chen G. F. ; He W. ; Dai P. ; Chen J. X. ; Lu S. L. ; Yang H. Appl. Surf. Sci. 2014, 317, 828.
11 Prinz V. Y. ; Chekhovskiy A. V. ; Preobrazhenskii V. V. ; Semyagin B. R. ; Gutakovsky A. K. Nanotechnology 2002, 13, 231.
12 Ajayan P. M. ; Schadler L. S. ; Giannaris C. ; Rubio A. Adv.Mater. 2000, 12, 750.
13 Rubio A. ; Corkill J. L. ; Cohen M. L. Phys. Rev. B. 1994, 49, 5081.
14 Tanskanen J. T. ; Linnolahti M. ; Karttunen A. ; Pakkanen T. A.J. Phys. Chem. C 2009, 113, 10065.
15 Kresse G. ; Furthmüller J. Phys. Rev. B 1996, 54, 11169.
16 Perdew J. P. ; Chevary J. A. ; Vosko S. H. ; Jackson K. A. ; Pederson M. R. ; Singh D. J. ; Fiolhais C. Phys. Rev. B 1992, 46, 6671.
17 Perdew J. P. ; Wang Y. Phys. Rev. B 1992, 46, 12947.
18 Schmidt M. W. ; Baldridge K. K. ; Boatz J. A. ; Elbert S. T. ; Gordon M. S. ; Jensen J. H. ; Koseki S. ; Matsunaga N. ; Nguyen K. A. ; Su S. J. Comput. Chem. 1993, 14, 1347.
19 Ahmed R. ; Hashemifar S. J. ; Akbarzadeh H. ; Ahmed M. ; Fazal E. A. Comput. Mater. Sci. 2007, 39, 580.
20 Rushton P. P. ; Clark S. J. ; Tozer D. J. Phys. Rev. B. 2001, 63, 115206.
21 Vuraftman I. ; Meyer J. R. ; Ram-Mohan L. R. J. Appl. Phys. 2001, 89, 5815.
22 Perdew J. P. ; Levy M. Phys. Rev. Lett. 1983, 51, 1884.
23 Scharoch P. ; Winiarski M. Comput. Phys. Comm. 2013, 184, 2680.
24 Garza A. J. ; Scuseria G. E. J. Phys. Chem. Lett. 2016, 7, 4165.
25 Heyd J. ; Scuseria G. E. ; Ernzerhof M. J. Chem. Phys. 2003, 118, 8207.
[1] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[2] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[4] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[5] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[6] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[7] Xin-Ran XIANG,Xiao-Mei WAN,Hong-Bo SUO,Yi HU. Study of Surface Modifications of Multiwalled Carbon Nanotubes by Functionalized Ionic Liquid to Immobilize Candida antarctic lipase B[J]. Acta Physico-Chimica Sinca, 2018, 34(1): 99-107.
[8] Jing-Hua YU,Wen-Wen LI,Hong ZHU. Effect of the Diameter of Carbon Nanotubes Supporting Platinum Nanoparticles on the Electrocatalytic Oxygen Reduction[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1838-1845.
[9] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[10] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[11] Guang-Kai JU,Zhan-Liang TAO,Jun CHEN. Controllable Preparation and Electrochemical Performance of Self-assembled Microspheres of α-MnO2 Nanotubes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1421-1428.
[12] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[13] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[14] Ze-Yu GU,Song GAO,Hao HUANG,Xiao-Zhe JIN,Ai-Min WU,Guo-Zhong CAO. Electrochemical Behavior of MWCNT-Constraint SnS2 Nanostructure as the Anode for Lithium-Ion Batteries[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1197-1204.
[15] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.