Please wait a minute...
Acta Phys. -Chim. Sin.  2017, Vol. 33 Issue (3): 573-581    DOI: 10.3866/PKU.WHXB201612122
ARTICLE     
Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode
Yan-Gong ZHENG1,*(),Li-Na ZHU1,Han-Yu LI1,Jia-Wen JIAN1,*(),Hai-Ying DU2
Download: HTML     PDF(2746KB) Export: BibTeX | EndNote (RIS)       Supporting Info

Abstract  

This paper describes the sensing properties of a potentiometric sensor based on a palladium oxide (PdO) electrode. Our investigation of the sensing mechanism is also discussed. We studied carbon monoxide (CO) sensing performance of a PdO electrode doped with Mg, Ni, and La, printed on zirconia. The results indicated that defects on the surface of PdO, which allow adsorption of CO, can effectively enhance the sensitivity of the sensors. To explore the source of the signal, a PdO-based electrode was printed on an alumina disc and a zeolite pellet for CO detection at 450℃. Notably the zeolite coupled with the PdO-based electrode to generate potentiometric responses to changes in CO concentration. According to the resistance and impedance measurements, the response to CO was ascribed to the changing interfacial potential between the PdO electrode and electrolyte. A model based on an electrochemical double layer between the PdO and electrolyte was determined to explain the behavior of the potentiometric sensor. It may be possible to harness these effects at PdO electrodes for the development of electrochemical sensors.



Key wordsPalladium oxide      Potentiometric sensor      Doping effect      Carbon monoxide      Electrolyte     
Received: 24 October 2016      Published: 12 December 2016
MSC2000:  O646  
Fund:  The project was supported by the National Natural Science Foundation of China(61471210);The project was supported by the National Natural Science Foundation of China(61501271);The project was supported by the National Natural Science Foundation of China(51472126);Natural Science Foundation ofNingbo Municipality, China(2015A610108);K. C. Wong Magna Fund in Ningbo University, China
Corresponding Authors: Yan-Gong ZHENG,Jia-Wen JIAN     E-mail: zhengyangong@nbu.edu.cn;jianjiawen@nbu.edu.cn
Cite this article:

Yan-Gong ZHENG,Li-Na ZHU,Han-Yu LI,Jia-Wen JIAN,Hai-Ying DU. Operating Mechanism of Palladium Oxide as a Potentiometric Sensing Electrode. Acta Phys. -Chim. Sin., 2017, 33(3): 573-581.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612122     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I3/573

 
 
Ni-doped PdO a/nm b/nm c/nm Volume/nm3 Density/(g?cm-3)
PdO 0.30429 0.30429 0.53347 0.04941 8.2293
Ni-PdO-5 0.30547 0.30547 0.53482 0.04991 8.1454
Ni-PdO-10 0.30530 0.30530 0.53353 0.04973 8.1744
Ni-PdO-15 0.30441 0.30441 0.53478 0.04953 8.2063
 
 
Sample series Molar fraction/% Formula
palladium oxygen nickel
PdO 56.48 43.52 PdO0.77
Ni-PdO-5 63.16 34.79 2.04 Pd0.97Ni0.03O0.53
Ni-PdO-10 67.52 27.40 5.08 Pd0.93Ni0.07O0.38
Ni-PdO-15 44.64 43.67 11.79 Pd0.79Ni0.21O0.77
 
 
 
 
 
 
 
 
1 Park C. O. ; Fergus J. W. ; Miura N. ; Park J. ; Choi A. Ionics 2009, 15, 261.
2 Di Bartolomeo E. ; Grilli M. L. ; Traversa E. J. Electrochem. Soc. 2004, 151, H133.
3 Di Bartolomeo E. ; Grilli M. L. ; Yoon J. W. ; Traversa E.J. Am. Chem. Soc. 2004, 87, 1883.
4 Tang W. ; Wang J. ; Yao P. J. ; Du H. Y. ; Sun Y. H. ActaPhys. -Chim. Sin. 2014, 30 (4), 781.
4 唐伟; 王兢; 姚朋军; 杜海英; 孙炎辉. 物理化学学报, 2014, 30 (4), 781.
5 Feng Q. X. ; Yu P. ; Wang J. ; Li X. G. Acta Phys. -Chim. Sin. 2015, 31 (12), 2405.
5 冯秋霞; 于鹏; 王兢; 李晓干. 物理化学学报, 2015, 31 (12), 2405.
6 Korotcenkov G. Mat. Sci. Eng. B-Solid 2007, 139, 1.
7 Chiang Y. J. ; Pan F. M. J. Phys. Chem. C. 2013, 117, 15593.
8 Zhu L. ; Zheng Y. ; Jian J. Ionics 2015, 21, 2919.
9 Zhang W. F. ; Schmidt-Zhang P. ; Guth U. Solid State Ionics 2004, 169, 121.
10 Auerbach S. M. ; Carrado K. A. ; Dutta P. K. Handbook ofZeolite Science and Technology; Marcel Dekker Inc.: New York 2003.
11 Zheng Y. ; Qiao Q. ; Wang J. ; Li X. ; Jian J. Sens. Actuator BChem. 2015, 212, 256.
12 Bukhari S. M. ; Giorgi J. B. Solid State Ionics 2010, 181, 392.
13 McFarland E. W. ; Metiu H. Chem. Rev. 2013, 113, 4391.
14 Zheng Y. ; Wang J. ; Yao P. Sens. Actuator B-Chem. 2011, 156, 723.
15 Gurlo A. Nanoscale 2011, 3, 154.
16 Burbano M. ; Norberg S. T. ; Hull S. ; Eriksson S. G. ; Marrocchelli D. ; Madden P. A. ; Watson G. W. Chem. Mater. 2011, 24, 222.
17 Zhang J. ; Xie K. ; Wei H. ; Qin Q. ; Qi W. ; Yang L. ; Ruan C. ; Wu Y. Sci. Rep. 2014, 4, 7082.
18 Kim Y. M. ; He J. ; Biegalski M. D. ; Ambaye H. ; Lauter V. ; Christen H. M. ; Pantelides S. T. ; Pennycook S. J. ; Kalinin S.V. ; Borisevich A. Y. Nat. Mater. 2012, 11, 888.
19 Elumalai P. ; Wang J. ; Zhuiykov S. ; Terada D. ; Hasei M. ; Miura N. J. Electrochem. Soc. 2005, 152, H95.
20 Mukundan R. ; Brosha E. L. ; Brown D. R. ; Garzon F. H.J. Electrochem. Soc. 2000, 147, 1583.
21 Stetter J. R. ; Li J. Chem. Rev. 2008, 108, 352.
22 Garzon F. H. ; Mukundan R. ; Brosha E. L. Solid-State MixedPotential Gas Sensors: Theory, Experiments and Challenges; Elsevier: Kidlington, Royaume-Uni 2000.
23 Sridhar S. ; Stancovski V. ; Pal U. B. Solid State Ionics 1997, 100, 17.
24 Lim D. K. ; Im H. N. ; Song S. J. Sci. Rep. 2016, 6, 18804.
25 Simon P. ; Gogotsi Y. Nat. Mater. 2008, 7, 845.
26 Gong X. Q. ; Hu P. ; Raval R. J. Chem. Phys. 2003, 119, 6324.
27 Gabasch H. ; Knop-Gericke A. ; Schlogl R. ; Borasio M. ; Weilach C. ; Rupprechter G. ; Penner S. ; Jenewein B. ; Hayek K. ; Klotzer B. Phys. Chem. Chem. Phys. 2007, 9, 533.
28 Weaver J. F. Chem. Rev. 2013, 113, 4164.
29 Macam E. R. ; Blackburn B. M. ; Wachsman E. D. Sens.Actuator B-Chem. 2011, 157, 353.
30 Miura N. ; Raisen T. ; Lu G. ; Yamazoe N. J. Electrochem. Soc. 1997, 144, L198.
[1] Shuang LIU,Lianyi SHAO,Xuejing ZHANG,Zhanliang TAO,Jun CHEN. Advances in Electrode Materials for Aqueous Rechargeable Sodium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(6): 581-597.
[2] Qiang MA,Yongsheng HU,Hong LI,Liquan CHEN,Xuejie HUANG,Zhibin ZHOU. An Sodium Bis (trifluoromethanesulfonyl) imide-based Polymer Electrolyte for Solid-State Sodium Batteries[J]. Acta Phys. -Chim. Sin., 2018, 34(2): 213-218.
[3] Zhi-Dan FU,Jia-Xin ZANG,Qing YE,Shui-Yuan CHENG,Tian-Fang KANG. Cu-Doped Octahedral Layered Birnessites Catalysts for the Catalytic Oxidation of CO and Ethyl Acetate[J]. Acta Phys. -Chim. Sin., 2017, 33(9): 1855-1864.
[4] Yang ZHOU,Gao LI. A Critical Review on Carbon-Carbon Coupling over Ultra-Small Gold Nanoclusters[J]. Acta Phys. -Chim. Sin., 2017, 33(7): 1297-1309.
[5] Yan-Tao ZHANG,Zhen-Jie LIU,Jia-Wei WANG,Liang WANG,Zhang-Quan PENG. Recent Advances in Li Anode for Aprotic Li-O2 Batteries[J]. Acta Phys. -Chim. Sin., 2017, 33(3): 486-499.
[6] Yong-Min XIE,Xiao-Qiang WANG,Jiang LIU,Chang-Lin YU. Fabrication and Performance of Tubular Electrolyte-Supporting Direct Carbon Solid Oxide Fuel Cell by Dip Coating Technique[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 386-392.
[7] Zhong WU,Xin-Bo ZHANG. Design and Preparation of Electrode Materials for Supercapacitors with High Specific Capacitance[J]. Acta Phys. -Chim. Sin., 2017, 33(2): 305-313.
[8] Zhao-Yang JIA,Mei-Nan LIU,Xin-Luo ZHAO,Xian-Shu WANG,Zheng-Hui PAN,Yue-Gang ZHANG. Lithium Ion Hybrid Supercapacitor Based on Three-Dimensional Flower-Like Nb2O5 and Activated Carbon Electrode Materials[J]. Acta Phys. -Chim. Sin., 2017, 33(12): 2510-2516.
[9] Jing-Lun WANG,Xiao-Dan YAN,Tian-Qiao YONG,Ling-Zhi ZHANG. Nitrile-Modified 2, 5-Di-tert-butyl-hydroquinones as Redox Shuttle Overcharge Additives for Lithium-Ion Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(9): 2293-2300.
[10] Shou-Li BAI,Xin LI,Yue-Hua WEN,Jie CHENG,Gao-Ping CAO,Yu-Sheng YANG,Dian-Qing LI. Effect of Electrolyte on the Electrochemical Performance of the MnO2 Cathode for Aqueous Rechargeable Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 2007-2017.
[11] Ai-Ming WU,Guo-Feng XIA,Shui-Yun SHEN,Jie-Wei YIN,Ya MAO,Qing-You BAI,Jing-Ying XIE,Jun-Liang ZHANG. Recent Progress in Non-Aqueous Lithium-Air Batteries[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1866-1879.
[12] Shan-Fu LU,Si-Kan PENG,Yan XIANG. Perspectives on the Research Progress of Bipolar Interfacial Polyelectrolyte Membrane Fuel Cell[J]. Acta Phys. -Chim. Sin., 2016, 32(8): 1859-1865.
[13] Jun-Lin MAI,De-Lin SUN,Xue-Bo QUAN,Li-Bo LI,Jian ZHOU. Mesoscopic Structure of Nafion-Ionic Liquid Membrane Using Dissipative Particle Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(7): 1649-1657.
[14] Zi-Yu LIU,Qi LIAO,Zhi-Qiang JIN,Lei ZHANG,Lu ZHANG. Effect of Electrolytes on the Interfacial Behavior of Nonionic-Anionic Surfactant Solutions Using Molecular Dynamics Simulations[J]. Acta Phys. -Chim. Sin., 2016, 32(5): 1168-1174.
[15] Ji-Fu SHI,Qi-Zhang HUANG,Qing-Cui WAN,Xue-Qing XU,Chun-Sheng LI,Gang XU. Sulfide-Based Ionic Liquid Electrolyte Widening the Application Temperature Range of Quantum-Dot-Sensitized Solar Cells[J]. Acta Phys. -Chim. Sin., 2016, 32(4): 822-827.