Please wait a minute...
Acta Physico-Chimica Sinca  2017, Vol. 33 Issue (4): 769-779    DOI: 10.3866/PKU.WHXB201612162
ARTICLE     
Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst
Ling-Ling LI1,Ren CHEN1,Jian DAI1,Ye SUN1,Zuo-Liang ZHANG1,Xiao-Liang LI1,Xiao-Wa NIE2,*(),Chun-Shan SONG2,3,Xin-Wen GUO2,*()
1 Department of Metallurgical Engineering, Liaoning Institute of Science and Technology, Benxi 117004, Liaoning Province, P. R. China
2 State Key Laboratory of Fine Chemicals, PSU-DUT Joint Center for Energy Research, School of Chemical Engineering, Dalian University of Technology, Dalian 116024, Liaoning Province, P. R. China
3 EMS Energy Institute, PSU-DUT Joint Center for Energy Research and Department of Energy & Mineral Engineering, Pennsylvania State University, University Park, PA 16802, USA
Download: HTML     PDF(2079KB) Export: BibTeX | EndNote (RIS)      

Abstract  

The stepwise and concerted mechanisms of benzene methylation with methanol were studied with the 5T, 12T, 104T9, and 104T12 H-ZSM-5 models using the"our own-N-layered integrated molecular orbital + molecular mechanics"(ONIOM) in combination with density functional theory (DFT) methods. The structures of intermediate species and transition states were described. The effect of the Br?nsted (B) acid strength of HZSM-5 catalyst on the reaction mechanism of benzene methylation with methanol was considered. The reaction activation energy results indicate that benzene methylation with methanol preferentially occurs over H-ZSM-5 catalyst with greater B acid strength, and a lowering of the activation barrier was observed. With increasing B acid strength, the reaction activation energy of the stepwise mechanism decreases more than that of the concerted mechanism. Increasing the B acidic strength is more beneficial to the stepwise mechanism. When the stepwise mechanism becomes the dominant reaction path, the secondary reaction arising from further formation of bulky hydrocarbons through the methoxide intermediate produced in the methanol dehydration step of the stepwise mechanism might lead to the inactivation of the H-ZSM-5 catalyst owing to coke formation. Reasonable modulation the acid strength of the H-ZSM-5 catalyst is important in improving its catalytic activity and stability of the catalyst.



Key wordsDensity functional theory      ONIOM      Benzene methylation      Methanol      H-ZSM-5     
Received: 31 October 2016      Published: 16 December 2016
MSC2000:  O641  
Fund:  the Scientific Research Foundation for the general Program of Department of Education of Liaoning Province of China(L2014503);Natural Science Foundation of Liaoning Province, China(201602403);Research Fund for the Doctoral Program of Liaoning Institute of Science and Technology, China(1406B08);National Natural Science Foundation of China(21503027)
Corresponding Authors: Xiao-Wa NIE,Xin-Wen GUO     E-mail: niexiaowa@dlut.edu.cn;guoxw@dlut.edu.cn
Cite this article:

Ling-Ling LI,Ren CHEN,Jian DAI,Ye SUN,Zuo-Liang ZHANG,Xiao-Liang LI,Xiao-Wa NIE,Chun-Shan SONG,Xin-Wen GUO. Reaction Mechanism of Benzene Methylation with Methanol over H-ZSM-5 Catalyst. Acta Physico-Chimica Sinca, 2017, 33(4): 769-779.

URL:

http://www.whxb.pku.edu.cn/10.3866/PKU.WHXB201612162     OR     http://www.whxb.pku.edu.cn/Y2017/V33/I4/769

Fig 1 Two models of the H-ZSM-5 molecular sieve
Fig 2 104T ONIOM2 model involving the internal H-ZSM-5 structure
Fig 3 Reaction energy profile and methylation transition state structures for benzene methylation with methanol on the 5T model
Fig 4 Reaction energy profile and methylation transition state structures for benzene methylation with methanol on the 12T model
Fig 5 Adsorbed species and transition states in methanol dehydration step of the stepwise mechanism in the 104T models
Fig 6 Reaction energy profile for the stepwise mechanism of benzene methylation with methanol to form toluene in (a) 104T9 model and (b) 104T12 model
Parameter 104T9 104T12
Ads1_Met TS1_Met Int1 Int1_Met_Ben TS1_Tol Ads2_Met TS2_Met Int2 Int2_Met_Ben TS2_Tol
L(Al―O1)/nm 0.179 0.169 0.167 0.166 0.169 0.179 0.169 0.167 0.166 0.169
L(Al―O2)/nm 0.167 0.172 0.179 0.180 0.171 0.167 0.173 0.180 0.181 0.171
L(Si―O1)/nm 0.163 0.156 0.159 0.158 0.157 0.164 0.157 0.160 0.159 0.158
L(Si―O2)/nm 0.159 0.160 0.167 0.167 0.159 0.157 0.159 0.166 0.166 0.158
L(Cl―O2)/nm 0.317 0.209 0.149 0.149 0.229 0.143 0.214 0.150 0.150 0.229
L(C1―O3)/nm 0.145 0.192 0.323 0.144 0.193 0.325
L(O1―H1)/nm 0.107 0.283 0.218 0.103 0.339 0.200
L(H1―O3)/nm 0.143 0.099 0.097 0.155 0.098 0.097
L(C1―C2)/nm 0.373 0.207 0.360 0.215
A(Al―O1―Si)/(°) 131.2 137.0 131.6 134.4 137.1 126.6 130.0 124.7 125.5 128.6
A(Al―O2―Si)/(°) 126.0 125.9 123.7 123.3 126.3 134.7 131.6 129.5 128.9 133.8
A(O2―C1―O3)/(°) 72.2 158.9 91.4 71.4 169.4 88.1
A(O2―C1―C2)/(°) 135.1 162.1 133.2 157.4
Table 1 Optimized geometric parameters of the key species involved in the stepwise mechanism of benzene methylation with methanol in the 104T models
Fig 7 Adsorbed species and transition states in the methylation step of the stepwise mechanism in the 104T models
Fig 8 Adsorbed species and transition states in the concerted mechanism in the 104T models
Fig 9 Reaction energy profile for the concerted mechanism of benzene methylation with methanol to form toluene in (a) the 104T9 model and (b) the 104T12 model
Parameter 104T9 104T10
Co_ads1 TS1_Tol_H2O Co_ads2 TS2_Tol_H2O
L(Al―O1)/nm 0.179 0.169 0.180 0.170
L(Al―O2)/nm 0.166 0.168 0.167 0.168
L(Si―O1)/nm 0.164 0.156 0.165 0.157
L(Si―O2)/nm 0.159 0.158 0.157 0.156
L(Cl―O1)/nm 0.370 0.331 0.380 0.327
L(C1―O3)/nm 0.143 0.206 0.143 0.210
L(C1―C2)/nm 0.365 0.225 0.378 0.225
L(O1―H1)/nm 0.102 0.356 0.100 0.344
L(H1―O3)/nm 0.163 0.098 0.176 0.098
A(Al―O1―Si)/(°) 132.3 136.3 126.8 127.6
A(Al―O2―Si)/(°) 124.3 127.1 134.8 137.5
A(O2―C1―C2)/(°) 55.7 172.7 51.1 173.5
Table 2 Optimized geometric parameters of the key species involved in the concerted mechanism of benzene methylation with methanol in the 104T models
1 Hu, H. M. Methylation of Benzene with Methanol over a Seriesof ZSM-5 Catalysts. M. S. Dissertation. Human NormalUniversity, Changsha, 2007.
1 胡慧敏. ZSM-5系列分子筛催化剂上苯与甲醇的烷基化反应研究[D].长沙:湖南师范大学, 2007.
2 Liu J. Chem. Prod. Tech 2011, 18, 19.
2 刘键. 化工生产与技术, 2011, 18, 19.
3 Li, Y. Y. Catalysts Research for Alkylation of Benzene withMethanol. M. E. Dissertation. East China University of Scienceand Technology, Shanghai, 2011.
3 李燕燕.苯、甲醇烷基化催化剂的研究[D].上海:华东理工大学, 2011.
4 Yuan P. ; Wang H. ; Xue Y. F. ; Li Y. C. ; Wang K. ; Dong M. ; Fan W. B. ; Qin Z. F. ; Wang J. G. Acta Phys.-Chim. Sin 2016, 32, 1775.
4 袁苹; 王浩; 薛彦峰; 李艳春; 王凯; 董梅; 樊卫斌; 秦张峰; 王建国. 物理化学学报, 2016, 32, 1775.
5 Zhao B. ; Liu M. ; Tan W. ; Wu H. Y. ; Guo X. W. Acta Petro. Sin 2013, 29, 605.
5 赵博; 刘民; 谭伟; 吴宏宇; 郭新闻. 石油学报, 2013, 29, 605.
6 Liu Y. ; Li D. F. ; Wang T. Y. ; Liu Y. ; Xu T. ; Zhang Y. ACS Catal 2016, 6, 5366.
7 Xu Y. R. ; Xu X. L. ; Zhu X. D. Chem. React. Eng. Technol 2015, 31, 475.
7 徐亚荣; 徐新良; 朱学栋. 化学反应工程与工艺, 2015, 31, 475.
8 Hu H. L. ; Lyu J. H. ; Rui J. Y. Catal. Sci. Technol 2016, 6, 2647.
9 Svelle S. ; Bj?rgen M. J.. Phys. Chem. A 2010, 114, 12548.
10 Rakoczy J. ; Romotowski T. Zeolites 1993, 13, 256.
11 Svelle S. ; Visur M. ; Olsbye U. ; Saepurahman; ; Bj?rgen M. Top Catal 2011, 54, 897.
12 Vos A. M. ; Nulens H. L. ; De Proft F. ; Schoonheydt R. A. ; Geerlings P. J. Phys. Chem. B 2002, 106, 2026.
13 Van der Mynsbrugge J. ; Visur M. ; Olsbye U. ; Beato P. ; Bj?rgen M. ; Van Speybroeck V. ; Svelle S. J.Catal 2012, 292, 201.
14 Hansen N. ; Brüggemann T. ; Bell T. A. ; Keil J. F. J. Phys. Chem. C 2008, 112, 15402.
15 Olson D. H. ; Kokotailo G. T. ; Lawton S. L. ; Meier W. M. J. Phys. Chem 1981, 85, 2238.
16 Kokotailo G. T. ; Lawton S. L. ; Olson D. H. ; Meier W. M. Nature 1978, 272, 437.
17 Vankoningsveld H. ; Vanbekkum H. ; Jansen J. C. Acta Crystallogr. Sect. B, Struct. Sci 1987, 43, 127.
18 Chatterjee A. ; Vetrivel R. Microporous Mater 1994, 3, 211.
19 Nie X.W. ; Janik M. J. ; Guo X.W. ; Song C. S. J. Phys. Chem. C 2012, 116, 4071.
20 Li L. L. ; Nie X.W. ; Song C. S. ; Guo X.W. Acta Phys.-Chim. Sin 2013, 29, 754.
20 李玲玲; 聂小娃; 宋春山; 郭新闻. 物理化学学报, 2013, 29, 754.
21 Li L. L. ; Janik J. M. ; Nie X.W. ; Song C. S. ; Guo X.W. Acta Phys.-Chim. Sin 2015, 31, 56.
21 李玲玲; JanikJ. Michael; 聂小娃; 宋春山; 郭新闻. 物理化学学报, 2015, 31, 56.
22 Fripiat J. G. ; Berger-André F. ; André J. M. ; Derouane E.G. Zeolites 1983, 3, 306.
23 Derouane E. G. ; Fripiat J. G. Zeolites 1985, 5, 165.
24 Jungsuttiwong S. ; Lomratsiri J. ; Limtrakul J. Int. J.. Quant. Chem 2011, 111, 2275.
25 Maseras F. ; Morokuma K. J. Comput. Chem 1995, 16, 1170.
26 Dapprich S. ; Komáromi I. ; Byun K. S. ; Morokuma K. ; Frisch M. J. J. Mol. Struct.-Theochem 1999, 462, 1.
27 Matsubra T. ; Sieber S. ; Morokuma K. Int. J. Quant. Chem 1996, 60, 1101.
28 Rappe A. K. ; Upton T. H. J. Am. Chem. Soc 1992, 114, 7507.
29 Vreven T. ; Morokuma K. J. Comput. Chem 2000, 21, 1419.
30 Mazar M. N. ; Al-Hashimi S. ; Bhan A. ; Cococcioni M. J. Phys. Chem. C 2012, 116, 19385.
31 Van der Mynsbrugge J. ; Hemelsoet K. ; Vandichel M. ; Waroquier M. ; Van Speybroeck V. J. Phys. Chem. C 2012, 116, 5499.
32 Chai J. D. ; Head-Gordon M. Phys. Chem. Chem. Phys 2008, 10, 6615.
33 Goerigk L. ; Grimme S. Phys. Chem. Chem. Phys 2011, 13, 6670.
34 Frisch, M. J.; Trucks, G.W.; Schlegel, H. B.; et al. Gaussian 09, Revision A.02; Gaussian, Inc.: Pittsburgh, PA, 2009.
35 Nie X.W. ; Janik J. M. ; Guo X.W. ; Liu X. ; Song C. S. Catal. Today 2011, 165, 120.
36 Corma A. ; Llopis F. ; Viruela P. ; Zicovichwilson C. J. Am. Chem. Soc 1994, 116, 134.
37 Kondo J. N. ; Yamazaki H. ; Yokoi T. ; Tatsumi T. Catal. Sci. Technol 2015, 5, 3598.
38 Lee C. C. ; Gorte R. J. ; Farneth W. E. J. Phys. Chem. B 1997, 101, 3811.
39 Wang W. ; Buchholz A. ; Seiler M. ; Hunger M. J. Am. Chem. Soc 2003, 125, 15260.
[1] Tian LU,Qinxue CHEN. Revealing Molecular Electronic Structure via Analysis of Valence Electron Density[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 503-513.
[2] Farnaz HEIDAR-ZADEH,Paul W. AYERS. Generalized Hirshfeld Partitioning with Oriented and Promoted Proatoms[J]. Acta Physico-Chimica Sinca, 2018, 34(5): 514-518.
[3] Yueqi YIN,Mengxu JIANG,Chunguang LIU. DFT Study of POM-Supported Single Atom Catalyst (M1/POM, M = Ni, Pd, Pt, Cu, Ag, Au, POM = [PW12O40]3-) for Activation of Nitrogen Molecules[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 270-277.
[4] Fanhua YIN,Kai TAN. Density Functional Theory Study on the Formation Mechanism of Isolated-Pentagon-Rule C100(417)Cl28[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 256-262.
[5] Yanhui YI,Xunxun WANG,Li WANG,Jinhui YAN,Jialiang ZHANG,Hongchen GUO. Plasma-Triggered CH3OH/NH3 Coupling Reaction for Synthesis of Nitrile Compounds[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 247-255.
[6] Robert C MORRISON. Fukui Functions for the Temporary Anion Resonance States of Be-, Mg-, and Ca-[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 263-269.
[7] Aiguo ZHONG,Rongrong LI,Qin HONG,Jie ZHANG,Dan CHEN. Understanding the Isomerization of Monosubstituted Alkanes from Energetic and Information-Theoretic Perspectives[J]. Acta Physico-Chimica Sinca, 2018, 34(3): 303-313.
[8] Hui-Hui QIAN,Xiao HAN,Yan ZHAO,Yu-Qin SU. Flexible Pd@PANI/rGO Paper Anode for Methanol Fuel Cells[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1822-1827.
[9] Chi CHEN,Xue ZHANG,Zhi-You ZHOU,Xin-Sheng ZHANG,Shi-Gang SUN. Experimental Boosting of the Oxygen Reduction Activity of an Fe/N/C Catalyst by Sulfur Doping and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1875-1883.
[10] Yu-Yu LIU,Jie-Wei LI,Yi-Fan BO,Lei YANG,Xiao-Fei ZHANG,Ling-Hai XIE,Ming-Dong YI,Wei HUANG. Theoretical Studies on the Structures and Opto-Electronic Properties of Fluorene-Based Strained Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(9): 1803-1810.
[11] Yi YANG,Lai-Ming LUO,Di CHEN,Hong-Ming LIU,Rong-Hua ZHANG,Zhong-Xu DAI,Xin-Wen ZHOU. Synthesis and Electrocatalytic Properties of PtPd Nanocatalysts Supported on Graphene for Methanol Oxidation[J]. Acta Physico-Chimica Sinca, 2017, 33(8): 1628-1634.
[12] Jian-Ping QIU,Yi-Wen TONG,De-Ming ZHAO,Zhi-Qiao HE,Jian-Meng CHEN,Shuang SONG. Electrochemical Reduction of CO2 to Methanol at TiO2 Nanotube Electrodes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1411-1420.
[13] Bo HAN,Han-Song CHENG. Nickel Family Metal Clusters for Catalytic Hydrogenation Processes[J]. Acta Physico-Chimica Sinca, 2017, 33(7): 1310-1323.
[14] Zi-Han GUO,Zhu-Bin HU,Zhen-Rong SUN,Hai-Tao SUN. Density Functional Theory Studies on Ionization Energies, Electron Affinities, and Polarization Energies of Organic Semiconductors[J]. Acta Physico-Chimica Sinca, 2017, 33(6): 1171-1180.
[15] Lei HAN,Li PENG,Ling-Yun CAI,Xu-Ming ZHENG,Fu-Shan ZHANG. CH2 Scissor and Twist Vibrations of Liquid Polyethylene Glycol——Raman Spectra and Density Functional Theory Calculations[J]. Acta Physico-Chimica Sinca, 2017, 33(5): 1043-1050.